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Öz
Çoklu doğrusallığa sahip regresyon modelleri, r – (k, d) sınıfı tahmincileri, ana bileşen regresyonu, Liu tipi tahminciler gibi çeşitli tahmin-
cileri kullanarak ele alınabilir. Bu çalışmada, r – (k, d) sınıfı kestiricisinin, ana bileşenlerin regresyonu, Liu tipi tahmincileri ve sıradan en 
küçük kareler üzerinde, ortalama karesel hata matrisi (MSEM) kriteri açısından üstün olduğu koşulları belirledik. Son olarak, sayısal bir 
örnek ve Monte Carlo simülasyonu ile teorik sonuçları gösterdik.

Anahtar Kelimeler: Liu-tipi tahmin edici, r-(k, d ) Sınıf Tahmin Edici Temel bileşenler regresyonu, ortalama karesel hata matrisi

Abstract
Regression models with multicollinearity can be tackled by using various estimators such as  class estimators, principal com-
ponents regression, Liu-type estimators. In this study, we defined conditions where the  class estimator is superior over the bi-
ased estimators in terms of mean square error matrix (MSEM) criterion. Finally, we showed theoretical results by means of a numerical ex-
ample and a simulation study.

Keywords:  class estimator, Liu-type estimators,  class estimator , Ordinary Ridge Regression Principal 
Component Regression, Mean square error matrix, Multicollinearity

I. INTRODUCTION
The ordinary least squares (OLS) estimation is one of the most commonly used methods in the literature. But this estima-

tor is unsuitable in the presence of multicollinearity. Through the years a lot of research has been dedicated to overcome this 
hurdle. To overcome this problem, different remedial actions have been proposed and the most popular of those are Stein es-
timator [1], the principal components regression (PCR) estimator which became one of the most popular estimators propo-
sed by Massy [2]. Another very popular estimator is ordinary Ridge Regression (ORR) estimator, which was proposed by 
Hoerl and Kennard [3].

While early studies have proposed new estimators to tackle the multicollinearity in later years researchers combined var-
ious estimators to obtain better results. In 1984 Baye and Parker [4] introduced  class estimator, which combines the 
ORR and PCR. In addition, Baye and Parker also showed that  class estimator is superior to PCR estimator based on 
the scalar mean square error (SMSE) criterion.

Liu [5] introduced a new estimator called Liu estimator (LE), which combined the Stein estimator with the ORR estima-
tor and Akdeniz and Kaçıranlar [6] named this estimator after Liu as Liu estimator (LE). Kacıranlar and Sakallıoğlu [7] in-
troduced the  class estimator, which is a combination of the Liu and PCR estimators. Liu [8] presented the Liu-type 
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estimator (LTE) by combining the ordinary ridge regression estimator and LE. Based on the MSEM criterion Özkale and 
Kacıranlar [9] have compared the  class estimator with PCR,  class estimator and LE.

One of the latest additions to such efforts is the  estimator, which is a combination of the Liu-type and PCR esti-
mators. Inan [10], who proposed the  estimator. She studied the scalar mean square error (SMSE) properties of this 
estimator. As the MSEM is stronger criterion than the SMSE, we use the MSEM criteria. But calculation of MSEM is more 
difficult than SMSE. In this study, we aimed to compare the  estimator with OLS, PCR,ORR, LE,  and Liu-
type estimators based on the MSEM criteria. Furthermore, necessary and sufficient conditions for the  class estima-
tor to dominate the OLS, PCR and Liu-type estimators sense are derived.

A Monte Carlo simulation and and real data have been conducted to show the performance of estimators. The article is 
organized as follows: The second section of the article describes our model and defines  estimator. The MSEM cri-
teria comparison of  estimator with OLS, PCR, and Liu-type estimators also takes place in the second section. The 
third section provides the numerical example and the outcome of the Monte Carlo simulation. Finally, some conclusions re-
marks are given in section four.

II. MATERIAL AND METHOD
We considered the linear regression model given as

       (1)

Where  is  observable random vector,  is a  matrix of non-stochastics variables of rank ;  is 
vector of unknown parameters associated with  and  is a  vector of error terms. Let  be 

an orthogonal matrix that consist of the eigenvalues of .

, where  ranked according to the magnitude. Further let  be re-
maining columns of  having deleted  columns where . Obviously, and 

 where . The  class estimator for  as 
proposed by Inan [10] is

  ,   (2)

where   is the PCR estimator.

Inan[10] proposed  class estimator and saw that MSE was decreased. Thus,  class estimator is an im-
proved method for undertaking multicollinearity.

2.1: Main Results
In this section, we have compare the  class estimator with the OLS estimator, PCR and the Liu-type estimator.

Theorem 1. The is superior to the OLS estimator  if and only if

Proof. We first compared the  with the OLS estimator of  by the MSEM .

=  where  . If we write  and

 then

=     (3)
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The MSEM of  is given as

   + 

       (4)

by using (3) and (4),  can be expressed as

      (5)

Let us define and  as follows

and

and

Then the expression in (5) equals

 ( 6)

So that the  class estimator is superior to the OLS estimator if and only if  (Rao and 
Toutenburg, [11]). We conclude the proof.

There are many different theorems that compare two biased estimators in terms of MSEM such as Trenkler [12], Trenkler 
and Toutenburg [13]and etc. We used the theorem by Baksalary and Trenkler [14].

Theorem 2. The  class estimator is superior to the PCR estimator by the criterion of MSEM if and only if 

 where  is the null space of = 

Proof.

    (7)

 can be expressed as
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 +

 

        (8)

Since comparing  with in terms of MSEM by using the matrix would be challenging, we opted to used a 
theorem proposed by Baksalary and Trenkler [14].

We noted from (8) that in our case , where

Where  is Moore-Penrose inverse of A and also . Hence 

.  if and only if .

From the part (b) of theorem we can obtain the definition of :

In addition, , where

Then,  is superior over  if and only if

.

Under the assumption 

if we let  where

is nnd if and only if. 

Theorem 3. The  class estimator is superior to the Liu-type estimator by the criterion of MSEM if and only if 

 where  is the null space of = 

Proof.

 (9)
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where . In consequence of (4) and (9), it can be seen that

 

 

 – 

Similar to the previous case, theorem by Baksalarly and Trenkler [14] was used below.

Letting  , where  

 and .

 and .  and  because where 

then the  dominates the  if and only if

However, it is obvious that  so the condition turns out to be . 
If we let  where

, we obtain 

Then  is nnd if and only if  

We can say that the necessary and sufficient conditions for the r-(k,d) class estimator to dominate the OLS, PCR and Liu-
type estimators have been obtained in Theorems 1–3.

III. RESULTS
To motivate the problem of estimation in the linear regression model, we consider the data about Total National Research 

and Development Expenditures as a percent of Gross National Product by countryfrom 1972–1986, which was discussed in 
Gruber [15] and Akdeniz and Erol [16].

We firstly obtain the eigenvalue of  as

= 312.930, = 0.7536, = 0.0453, = 0.0372, = 0.0019

The condition number indicates a serious multicollinearity among the regression vector. For the OLS, PCR, ORR, LE, LTE, 
 and  were obtained by replacing the corresponding theoretical MSE expressions in all unknown model pa-

rameters with their OLS are summarized in Table 1 and 2.

We can use the following formula to choose  as given by Liu [8]
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Table 1. Estimated MSE with d=1 and various values of 

0.10 0.30 0.50 0.70 1
OLS 0.8814 0.8814 0.8814 0.8814 0.8814
PCR 0.7417 0.7417 0.7417 0.7417 0.7417
ORR 0.6068 0.6816 0.7058 0.7186 0.7300
LE 0.8814 0.8814 0.8814 0.8814 0.8814
LTE 153.2568 22.1533 9.7610 5.9868 3.7802
r-k 0.7417 0.7435 0.7459 0.7482 0.7513

0.6102 0.6054 0.6023 0.6001 0.5978

Table 2. Estimated MSE with and various values of 

OLS 0.8814 0.8814 0.8814 0.8814 0.8814 0.8814 0.8814 0.8814
PCR 0.7417 0.7417 0.7417 0.7417 0.7417 0.7417 0.7417 0.7417
ORR 0.7550 0.7550 0.7550 0.7550 0.7550 0.7550 0.7550 0.7550
LE 31.9632 13.5274 3.1667 1.6332 1.0146 0.7191 0.8814 6.6712
LTE 0.4579 0.4419 0.7550 0.9139 1.0363 1.1720 1.4004 2.377
r-k 0.7622 0.7622 0.7622 0.7622 0.7622 0.7622 0.7622 0.7622

0.5571 0.5640 0.5756 0.5800 0.5832 0.5865 0.5919 0.6130

We observed that under some conditions on  and .  class estimator performed well compared to others. The 
estimated MSE values of the  are indeed than those of the OLS, PCR, ORR, LE, r-k and LTE, which agrees with 
our theoretical findings described in the theorem.

 3.1 Monte Carlo Simulation

In this study, the properties of estimator is examined by Monte Carlo simulation. estimator was com-
pared with the PCR,  estimator in terms of MSE.

According to Liu [8] and Kibria [17] the explanatory variables and response variable are generated by using the follow-
ing equations:

   

Where  are independent standard normal pseudo-random numbers and  is specified so that correlation between any two 
explanatory variables is given by . In this simulation. three different sets of correlations namely,
were considered to show collinearity between the explanatory variables. By applying the variance inflation factors and 
condition indices it can easily be shown that the explanatory variables are weak, strong and severely collinear when

, respectively. In this experiment. we selected  for , 50, 100  Then. the experiment was 
replicated 1000 times by generating new error terms.

Let us consider the PCR,  and  and compute their respective estimated MSE values with the different 
levels of multicollinearity. Based on the simulation results shown in Tables 3. we can see that with the increase of the levels 
of multicollinearity. the estimated MSE values of the PCR.  and  increase in general. For fixed  and  the 
estimated MSE of estimators increase with the increasing level of multicollinearity. We can see that  is much better 
than the competing estimators when the explanatory variables are severely collinear. The simulation results are given in 
Tables 3.
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Table 3. Estimated MSE values for three estimator

 
30 0.1454 0.1304 0.1181

0.90 50 0.1860 0.1824 0.1818
100 0.0800 0.0809 0.0645

30 0.3462 0.4318 0.1627
0.95 50 0.1054 0.0821 0.0816

100 0.2587 0.2530 0.2530

30 0.1543 0.3523 0.1955
0.99 50 0.2721 0.1754 0.2542

100 0.2659 0.1695 0.1688
We have repeated the simulation studies and our results showed that for three different values of n and multicollinearity 

there was a deviation in the MSE values. The least deviation was seen with . Generally speaking, the smallest MSE 
value calculated was seen with  , while for and the  showed a better performance. So 
the simulation results support the findings in this article.

IV. DISCUSSION AND CONCLUSION
In this study, We have used the MSEM criterion to compare the  class estimator with the OLS, PCR, ORR, LE 

r-k and Liu-type estimators. We proved that the  class estimator is superior overall seven aforementioned estimators 
in terms of mean squared error matrix under certain conditions in a numerical example. We also determined that those condi-
tions depend on some unknown parameters. Finally, we illustrated our findings with a numerical example and a Monte Carlo 
simulation. Both numerical example and simulation results which agrees with our theoretical findings.
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