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ABSTRACT
We express backward shift operators on all Bergman-Besov spaces in terms of Bergman projections in one and several variables
including the Banach function spaces and the special Hilbert spaces such as Drury-Arveson and Dirichlet spaces. These operators
are adjoints of the shift operators and their definitions for the case 𝑝 = 1 and proper Besov spaces require the use of nontrivial
imbeddings of the spaces into Lebesgue classes. Our results indicate that the backward shifts are compositions of imbeddings
into Lebesgue classes followed by multiplication operators by the conjugates of the coordinate variables followed by Bergman
projections on appropriate spaces. We apply our results to the wandering subspace property of invariant subspaces of the shift
operators on certain of our Hilbert spaces.

Mathematics Subject Classification (2020): Primary 47B34; Secondary 30H20, 30H25, 30H30 32A25, 32A36, 32A37, 46E15,
46E20, 46E22, 47A15, 47B32, 47B37

Keywords: Backward shift operator, Bergman projection, Wandering subspace property, Bergman-Besov space, Hardy space,
Dirichlet space, Drury-Arveson space

1. INTRODUCTION

Shift operators and their adjoints the backward shift operators have a central position in operator theory. Forward shift operators
on holomorphic function spaces have simple representations as operators of multiplication by the coordinate variables. This is
true also for the adjoint of the shift operator 𝑓 (𝑧) ↦→ 𝑧 𝑓 (𝑧) on the Hardy space 𝐻2 on the unit disc. This operator is the backward
shift operator with the explicit formula

𝑓 (𝑧) ↦→ 𝑓 (𝑧) − 𝑓 (0)
𝑧

(𝑧 ∈ D, 𝑓 ∈ 𝐻2). (1)

Backward shift operators on other holomorphic function spaces such as the weighted Bergman spaces can be written in terms of
the Taylor series of the functions in the spaces, but simple explicit expressions in the spirit of (1) have been lacking until recently.

In Gu and Luo (2024), for weighted Bergman Hilbert spaces 𝐴2
𝑛 on the unit disc with nonnegative integer weight parameter 𝑛,

explicit expressions akin to (1) have been obtained. In the same paper, another formula on the same spaces have been obtained
using the Bergman projections again with integer parameters.

It turns out that, by judicious use of dual representations, it is possible to extend the Bergman projection formulas considerably.
We obtain expressions for the backward shift operators on weighted Bergman and Bergman-Besov spaces 𝐵𝑝

𝑞 on the unit disc and
the ball using Bergman projections. The spaces on which our formulas work include weighted Bergman spaces with non-integer
weight parameter 𝑞 > −1, Besov spaces which correspond to parameter values 𝑞 ≤ −1, Banach Bergman-Besov with parameters
1 ≤ 𝑝 < ∞, the same spaces of holomorphic functions of several complex variables on the unit ball of C𝑁 , and in particular the
Drury-Arveson and Dirichlet spaces.

To place our results in context, we introduce some notation. Let B be the unit ball in C𝑁 with respect to the norm |𝑧 | =
√︁
⟨𝑧, 𝑧⟩

induced by the usual Hermitian inner product ⟨𝑤, 𝑧⟩ = 𝑤1𝑧1 + · · · + 𝑤𝑁 𝑧𝑁 , which is the unit disc D for 𝑁 = 1. Let 𝐻 (B) denote
the space of all holomorphic functions on B, respectively.

We let 𝜈 be the Lebesgue measure on B normalized so that 𝜈(B) = 1. For 𝑞 ∈ R, we also define on B the measures

𝑑𝜈𝑞 (𝑧) := (1 − |𝑧 |2)𝑞 𝑑𝜈(𝑧).
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These measures are finite for 𝑞 > −1 and 𝜎-finite otherwise. For 0 < 𝑝 < ∞, we denote the Lebesgue classes with respect to 𝜈𝑞
by 𝐿 𝑝

𝑞 , writing also 𝐿 𝑝 = 𝐿
𝑝

0 .
The standard weighted Bergman spaces on B are 𝐴𝑝

𝑞 = 𝐿
𝑝
𝑞 ∩ 𝐻 (B) for 𝑞 > −1 normed by ∥ 𝑓 ∥𝐴𝑝

𝑞
:= ∥ 𝑓 ∥𝐿𝑝

𝑞
. Equivalently, the

Bergman space 𝐴𝑝
𝑞 is imbedded isometrically in 𝐿 𝑝

𝑞 by the inclusion map 𝑖. We again write 𝐴𝑝 = 𝐴
𝑝

0 for the unweighted Bergman
spaces.

Bergman spaces are generalized to two-parameter Besov spaces 𝐵𝑝
𝑞 for 𝑞 ≤ −1. We defer the precise definition of Besov spaces

to a later section; see Definition 2.1. It suffices now to note that the Besov space 𝐵𝑝
𝑞 is imbedded isometrically in the Lebesgue

space 𝐿 𝑝
𝑞 with the same parameters 𝑝, 𝑞 by a map that is a combination of a derivative of the function and the product of a power

of 1 − |𝑧 |2, where the order of the derivative and the power are the same. It is also true that an 𝑓 ∈ 𝐻 (B) belongs to 𝐵𝑝
𝑞 whenever

sufficiently high-order derivatives of 𝑓 lie in a Bergman space.
We use the notation 𝐵𝑝

𝑞 for the full collection of Bergman-Besov spaces for 𝑞 ∈ R. For all 𝑞 ∈ R and 1 ≤ 𝑝 < ∞, Bergman-Besov
projections 𝑃𝑠 exist from the Lebesgue class 𝐿 𝑝

𝑞 onto the Bergman-Besov space 𝐵𝑝
𝑞 for 𝑠 satisfying a certain well-known inequality;

see Theorem 3.1.
The shift operator 𝑆 on a holomorphic function space on the unit discD is simply the operator of multiplication by the coordinate

variable 𝑧; so 𝑆( 𝑓 ) (𝑧) = 𝑧 𝑓 (𝑧). When the space on which 𝑆 acts matters, we attach the parameters of the space to 𝑆 and write
𝑆
𝑝
𝑞 : 𝐵𝑝

𝑞 → 𝐵
𝑝
𝑞 .

For function spaces on the unit ball B, we have 𝑁 coordinate variables 𝑧1, . . . , 𝑧𝑁 and hence 𝑁 shift operators; so 𝑆 𝑗 ( 𝑓 ) (𝑧) =
𝑧 𝑗 𝑓 (𝑧) for 𝑗 = 1, . . . , 𝑁 . But we can also indicate the spaces on which the shifts act and write (𝑆𝑝𝑞 ) 𝑗 : 𝐵𝑝

𝑞 → 𝐵
𝑝
𝑞 .

The adjoints (𝑆𝑝𝑞 )∗ and (𝑆𝑝𝑞 )∗𝑗 of the shift operators on 𝐵𝑝
𝑞 act on the dual spaces (𝐵𝑝

𝑞 )∗ and are called the backward shift
operators. For 1 < 𝑝 < ∞, we have (𝐵𝑝

𝑞 )∗ = 𝐵𝑝′
𝑞 , where 𝑝′ is the exponent conjugate to 𝑝, that is, 𝑝′ = 𝑝/(𝑝 − 1). For 𝑝 = 1, the

corresponding dual spaces are the weighted Bloch spaces B∞
𝛼 , whose definitions are also deferred to a later section; see Definition

2.2. For the dual spaces, see Theorem 3.3.
The main purpose of this paper is to establish expressions for the backward shift operators on 𝐴𝑝

𝑞 and 𝐵𝑝
𝑞 in terms of Bergman

projections. We use the fact that the adjoint of a shift operator on a complex Lebesgue space is merely the operator of multiplication
by the conjugate of the coordinate variable used in the shift operator. Our formulas have the following form: We take a function
in 𝐵𝑝

𝑞 and imbed it in the associated Lebesgue space 𝐿 𝑝
𝑞 as explained above, then we multiply the imbedded function by the

conjugate of the corresponding coordinate variable, and lastly we project back to the Bergman or Besov space by a suitable
Bergman projection.

Our main results in this direction are Theorems 4.2, 4.4, 6.2, and 6.4. They and their proofs occupy Sections 4 and 6. In Sections
2 and 3 following, we summarize all relevant information on the spaces we work on and the projections used in the theorems. In
Section 5, we show that the invariant subspaces of the backward shifts in certain Besov spaces on the disc have the wandering
subspace property.

2. PRELIMINARIES

In this section, we give the remaining notation and the necessary details on the function spaces. We use multi-index notation in
which 𝛼 = (𝛼1, . . . , 𝛼𝑁 ) is an 𝑁-tuple of nonnegative integers, |𝛼 | = 𝛼1+· · ·+𝛼𝑁 , 𝛼! = 𝛼1! · · · 𝛼𝑁 !, 00 = 1, and 𝑧𝛼 = 𝑧

𝛼1
1 · · · 𝑧𝛼𝑁

𝑁

for 𝑧 ∈ C𝑛. A star ( )∗ indicates adjoints for operators and duals for spaces. We show an integral inner product on a function space
𝑋 by [ · , · ]𝑋.

The Pochhammer symbol (𝑎)𝑏 is defined by

(𝑎)𝑏 :=
Γ(𝑎 + 𝑏)
Γ(𝑎)

when 𝑎 and 𝑎+𝑏 are off the pole set−N of the gamma function Γ. This is a shifted rising factorial since (𝑎)𝑘 = 𝑎(𝑎+1) · · · (𝑎+𝑘−1)
for positive integer 𝑘 . In particular, (1)𝑘 = 𝑘! and (𝑎)0 = 1. A very useful identity is

(𝑎)𝑛+𝑚 = (𝑎)𝑛 (𝑎 + 𝑛)𝑚 (2)

for 𝑛, 𝑚 ∈ N. Stirling formula gives

Γ(𝑐 + 𝑎)
Γ(𝑐 + 𝑏) ∼ 𝑐𝑎−𝑏, (𝑎)𝑐

(𝑏)𝑐
∼ 𝑐𝑎−𝑏, (𝑐)𝑎

(𝑐)𝑏
∼ 𝑐𝑎−𝑏 (Re 𝑐 → ∞), (3)

where 𝐴 ∼ 𝐵 means that |𝐴/𝐵 | is bounded above and below by two strictly positive constants, that is, 𝐴 = O(𝐵) and 𝐵 = O(𝐴)
for all 𝐴, 𝐵 of interest. For 𝐴 = O(𝐵), we also write 𝐴 ≲ 𝐵.
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For 𝑞 ∈ R and 𝑤, 𝑧 ∈ B, the Bergman-Besov kernels are

𝐾𝑞 (𝑧, 𝑤) :=


1

(1−⟨𝑧, 𝑤⟩)1+𝑁+𝑞 =

∞∑︁
𝑘=0

(1+𝑁+𝑞)𝑘
𝑘!

⟨𝑧, 𝑤⟩𝑘 , 𝑞 > −(1+𝑁),

2𝐹1 (1, 1; 1−(𝑁+𝑞); ⟨𝑧, 𝑤⟩) =
∞∑︁
𝑘=0

𝑘! ⟨𝑧, 𝑤⟩𝑘
(1−(𝑁+𝑞))𝑘

, 𝑞 ≤ −(1+𝑁),

where 2𝐹1 ∈ 𝐻 (D) is the Gauss hypergeometric function. They are the reproducing kernels of Hilbert Bergman-Besov spaces.
Notice that

𝐾−(1+𝑁 ) (𝑧, 𝑤) =
1

⟨𝑧, 𝑤⟩ log
1

1 − ⟨𝑧, 𝑤⟩ .

These kernels are positive definite and sesquiholomorphic, and hence give rise to reproducing kernel Hilbert spaces of holomorphic
functions which are the Bergman-Besov Hilbert spaces 𝐵2

𝑞 . In particular, for 𝑞 > −1, the 𝐵2
𝑞 are weighted Bergman spaces 𝐴2

𝑞 ,
𝐵2
−1 is the Hardy space 𝐻2, 𝐵2

−𝑁 is the Drury-Arveson space, and 𝐵2
−(1+𝑁 ) is the Dirichlet space. When 𝑁 = 1, the Hardy and the

Drury-Arveson spaces coincide.
To define the Bergman-Besov spaces for 𝑝 ≠ 2, we proceed as follows. Let the coefficient of ⟨𝑧, 𝑤⟩𝑘 in the series expansion of

𝐾𝑞 (𝑧, 𝑤) be 𝑐𝑘 (𝑞) for any 𝑞 ∈ R. Note that 𝑐0 (𝑞) = 1, 𝑐𝑘 (𝑞) > 0 for any 𝑘 , and by (3),

𝑐𝑘 (𝑞) ∼ 𝑘𝑁+𝑞 (𝑘 → ∞), (4)

for every 𝑞. This explains the choice of the parameters of the hypergeometric function in 𝐾𝑞 .

Let 𝑓 ∈ 𝐻 (B) be given on B by its convergent homogeneous expansion 𝑓 =
∞∑
𝑘=0

𝑓𝑘 in which 𝑓𝑘 is a homogeneous polynomial

in 𝑧1, . . . , 𝑧𝑁 of degree 𝑘 . For 𝑁 = 1, 𝑓𝑘 is simply the 𝑘th term in the Taylor series of 𝑓 ∈ 𝐻 (D). For any 𝑠, 𝑡 ∈ R, we define the
radial fractional differential operator 𝐷𝑡

𝑠 on 𝐻 (B) by

𝐷𝑡
𝑠 𝑓 :=

∞∑︁
𝑘=0

𝑑𝑘 (𝑠, 𝑡) 𝑓𝑘 :=
∞∑︁
𝑘=0

𝑐𝑘 (𝑠 + 𝑡)
𝑐𝑘 (𝑠)

𝑓𝑘 . (5)

Note that 𝑑0 (𝑠, 𝑡) = 1 so that 𝐷𝑡
𝑠 (1) = 1, 𝑑𝑘 (𝑠, 𝑡) > 0 for any 𝑘 , and

𝑑𝑘 (𝑠, 𝑡) ∼ 𝑘 𝑡 (𝑘 → ∞),

for any 𝑠, 𝑡 by (4). So 𝐷𝑡
𝑠 is a continuous operator on 𝐻 (B) and is of order 𝑡. In particular, 𝐷𝑡

𝑠𝑧
𝛾 = 𝑑 |𝛾 | (𝑠, 𝑡)𝑧𝛾 for any multi-index

𝛾. More importantly,

𝐷0
𝑠 = 𝐼, 𝐷𝑢

𝑠+𝑡𝐷
𝑡
𝑠 = 𝐷

𝑡+𝑢
𝑠 , and (𝐷𝑡

𝑠)−1 = 𝐷−𝑡
𝑠+𝑡

for any 𝑠, 𝑡, 𝑢, where the inverse is two-sided. Thus any 𝐷𝑡
𝑠 maps 𝐻 (B) onto itself. The coefficients 𝑑𝑘 (𝑠, 𝑡) are chosen in such a

way that

𝐷𝑡
𝑞𝐾𝑞 (𝑧, 𝑤) = 𝐾𝑞+𝑡 (𝑧, 𝑤) (6)

for any 𝑞, 𝑡 ∈ R, where differentiation is performed in the holomorphic variable 𝑧.
Consider now the linear transformation 𝐼 𝑡𝑠 defined for 𝑓 ∈ 𝐻 (B) by

𝐼 𝑡𝑠 𝑓 (𝑧) := (1 − |𝑧 |2)𝑡 𝐷𝑡
𝑠 𝑓 (𝑧).

When 𝑡 = 0, 𝑠 is irrelevant and 𝐼0𝑠 is just the inclusion 𝑖.

Definition 2.1. For 𝑞 ∈ R and 0 < 𝑝 < ∞, we define the Bergman-Besov space 𝐵𝑝
𝑞 to consist of all 𝑓 ∈ 𝐻 (B) for which 𝐼 𝑡𝑠 𝑓

belongs to 𝐿 𝑝
𝑞 for some 𝑠, 𝑡 satisfying

𝑞 + 𝑝𝑡 > −1. (7)

It is well-known that under (7), Definition 2.1 is independent of 𝑠, 𝑡 and the norms ∥ 𝑓 ∥𝐵𝑝
𝑞

:= ∥𝐼 𝑡𝑠 𝑓 ∥𝐿𝑝
𝑞

are all equivalent. For
𝑝 = 2, these norms are also equivalent to the norms obtained from the reproducing kernels. Explicitly,

∥ 𝑓 ∥ 𝑝
𝐵

𝑝
𝑞

=

∫
B
|𝐷𝑡

𝑠 𝑓 (𝑧) |𝑝 (1 − |𝑧 |2)𝑞+𝑝𝑡 𝑑𝜈(𝑧) (𝑞 + 𝑝𝑡 > −1). (8)

When 𝑞 > −1, we can take 𝑡 = 0 in (7) and obtain the weighted Bergman spaces 𝐴𝑝
𝑞 = 𝐵

𝑝
𝑞 . When 𝑞 ≤ −1, we call the spaces 𝐵𝑝

𝑞

proper Besov spaces. For 0 < 𝑝 < 1, what we call norms are actually quasinorms.
The Lebesgue class of all essentially bounded functions on B with respect to any 𝜈𝑞 is the same, so we denote them all by L∞.

72



Kaptanoğlu, Backward Shift Operators as Bergman Projections

For 𝛼 ∈ R, we also define the weighted Lebesgue spaces L∞
𝛼 to consist of all measurable 𝜑 defined on B for which (1− |𝑧 |2)𝛼𝜑(𝑧)

belongs to L∞ normed by

∥𝜑∥L∞
𝛼

:= ess sup
𝑧∈B

(1 − |𝑧 |2)𝛼 |𝜑(𝑧) |.

Definition 2.2. For 𝛼 ∈ R, we define the Bloch-Lipschitz space B∞
𝛼 to consist of all 𝑓 ∈ 𝐻 (B) for which 𝐼 𝑡𝑠 𝑓 belongs to L∞

𝛼 for
some 𝑠, 𝑡 satisfying

𝛼 + 𝑡 > 0. (9)

It is well-known that under (9), Definition 2.2 is independent of 𝑠, 𝑡 and the norms ∥ 𝑓 ∥B∞
𝛼

:= ∥𝐼 𝑡𝑠 𝑓 ∥L∞
𝛼

are all equivalent.
Explicitly,

∥ 𝑓 ∥B∞
𝛼
= sup

𝑧∈B
|𝐷𝑡

𝑠 𝑓 (𝑧) | (1 − |𝑧 |2)𝛼+𝑡 (𝛼 + 𝑡 > 0). (10)

If 𝛼 > 0, we can take 𝑡 = 0 in (9) and obtain the weighted Bloch spaces. When 𝛼 < 0, these spaces are the holomorphic Lipschitz
spaces Λ−𝛼 = B∞

𝛼 . The usual Bloch space B∞
0 = B∞ corresponds to 𝛼 = 0. There is no mention of the little Bloch space in this

paper.

Remark 2.3. Definitions 2.1 and 2.2 imply that 𝐼 𝑡𝑠 imbeds 𝐵𝑝
𝑞 isometrically into 𝐿 𝑝

𝑞 if and only if (7) holds, and 𝐼 𝑡𝑠 imbeds B∞
𝛼

isometrically into L∞
𝛼 if and only if (9) holds. By (8) and (10), 𝑓 ∈ 𝐵𝑝

𝑞 if and only if 𝐷𝑡
𝑠 𝑓 ∈ 𝐴𝑝 for 𝑞 + 𝑝𝑡 = 0, and 𝑓 ∈ B∞

𝛼 if and
only if 𝐷𝑡

𝑠 𝑓 ∈ B∞ for 𝛼 + 𝑡 = 0.

The reproducing property in the 𝐵2
𝑞 is this: Given a 𝑞 ∈ R, there are 𝑡, 𝑠1, 𝑠2 ∈ R such that for any 𝑓 ∈ 𝐵2

𝑞 and 𝑧 ∈ B, we have

𝑓 (𝑧) = [ 𝑓 (·), 𝐾𝑞 (𝑧, ·)]𝐵2
𝑞
= 𝐶𝑞

∫
B
𝐷𝑡

𝑠1 𝑓 (𝑤)𝐷
𝑡
𝑠2𝐾𝑞 (𝑧, 𝑤) (1 − |𝑤 |2)𝑞+2𝑡 𝑑𝜈(𝑤),

where [·, ·] are the inner products associated to the norms in (8) and the 𝐶𝑞 are normalizing constants. For Bergman spaces,
𝑞 > −1 and naturally 𝑡 = 0.

Proposition 2.4. (Kaptanoğlu and Üreyen 2008, Proposition 3.1) (Kaptanoğlu and Tülü 2011, Proposition 2.1) For any 𝑝 > 0
and 𝑞, 𝛼, 𝑠, 𝑡 ∈ R, the maps 𝐷𝑡

𝑠 : 𝐵𝑝
𝑞 → 𝐵

𝑝
𝑞+𝑝𝑡 and 𝐷𝑡

𝑠 : B∞
𝛼 → B∞

𝛼+𝑡 are Banach space isomorphisms. They are also isometries
when the parameters of the imbeddings 𝐼 in the norms of the spaces are chosen as 𝑠, 𝑢 for the domain and as 𝑠 + 𝑡, 𝑢 − 𝑡 for the
target space.

3. BERGMAN-BESOV PROJECTIONS

Bergman-Besov projections are the linear transformations 𝑃𝑠 defined for 𝑠 ∈ R and suitable 𝜑 by

𝑃𝑠𝜑(𝑧) =
∫
B
𝜑(𝑤)𝐾𝑠 (𝑧, 𝑤) 𝑑𝜈𝑠 (𝑤) (𝑧 ∈ B).

Theorem 3.1. (Kaptanoğlu 2005, Theorem 1.2) (Kaptanoğlu and Tülü 2011, Theorem 1.3) For 1 ≤ 𝑝 < ∞, the map 𝑃𝑠 : 𝐿 𝑝
𝑞 → 𝐵

𝑝
𝑞

is bounded if and only if

𝑞 + 1 < 𝑝(𝑠 + 1). (11)

Given an 𝑠 satisfying (11), if 𝑡 satisfies (7), then

𝑃𝑠 𝐼
𝑡
𝑠 𝑓 =

𝑁!
(1 + 𝑠 + 𝑡)𝑁

𝑓 (12)

holds for 𝑓 ∈ 𝐵𝑝
𝑞 . Further, 𝑃𝑠 : L∞

𝛼 → B∞
𝛼 is bounded if and only if

𝛼 < 𝑠 + 1. (13)

Given an 𝑠 satisfying (13), if 𝑡 satisfies (9), then (12) holds for 𝑓 ∈ B∞
𝛼 .

Remark 3.2. Note that 1 + 𝑠 + 𝑡 > 0 if either (7) and (11), or (9) and (13) hold, thus in all cases considered in Theorem 3.1.

The dual of a Banach (or Hilbert) space is the space of all bounded linear functionals on the space. For 1 < 𝑝 < ∞, the dual of
𝐿
𝑝
𝑞 is 𝐿 𝑝′

𝑞 under the pairing [·, ·]𝑞 , where [
𝜑, 𝜓

]
𝑞

:=
∫
B
𝜑 𝜓 𝑑𝜈𝑞 . (14)

The dual of any 𝐿1
𝑞 can be realized as any one of L∞

𝛼 under the pairing [·, ·]𝑞+𝛼.
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Theorem 3.3. (Kaptanoğlu 2005, Remark 7.3) (Kaptanoğlu and Tülü 2011, Theorem 6.2) For 1 < 𝑝 < ∞, the dual space of 𝐵𝑝
𝑞

can be identified with 𝐵𝑝′
𝑞 under each of the pairings[

𝑓 , 𝑔
]
𝑞,𝑠,𝑡

:=
∫
B
𝐼 𝑡𝑠 𝑓 𝐼

−𝑞+𝑠
𝑞+𝑡 𝑔 𝑑𝜈𝑞 (15)

for 𝑠, 𝑡 satisfying (11) and (7), that is, for every bounded linear functional Φ on 𝐵
𝑝
𝑞 , there is a unique 𝑔 ∈ 𝐵

𝑝′
𝑞 such that

Φ 𝑓 = [ 𝑓 , 𝑔]𝑞,𝑠,𝑡 for 𝑓 ∈ 𝐵𝑝
𝑞 . The dual space of any 𝐵1

𝑞 can be identified with any B∞
𝛼 under each of the pairings [ 𝑓 , 𝑔]𝑞+𝛼,𝑠,𝑡 for

𝑠, 𝑡 satisfying (11) and (7) with 𝑝 = 1, that is, for every bounded linear functional Φ on 𝐵1
𝑞 , there is a unique 𝑔 ∈ B∞

𝛼 such that
Φ 𝑓 = [ 𝑓 , 𝑔]𝑞+𝛼,𝑠,𝑡 for 𝑓 ∈ 𝐵1

𝑞 .

Equation (15) takes simpler forms for Bergman spaces for which 𝑞 > −1 and we can take 𝑡 = 0. For 1 < 𝑝 < ∞, we can also
take 𝑠 = 𝑞, but for 𝑝 = 1, we must have 𝑠 > 𝑞. Then the pairings are∫

B
𝑓 𝑔 𝑑𝜈𝑞 and

∫
B
𝑓 𝐼

−𝑞−𝛼+𝑠
𝑞+𝛼 𝑔 𝑑𝜈𝑞+𝛼 (16)

for 1 < 𝑝 < ∞ and 𝑝 = 1, respectively.
So we have two pairings (14) and (15) with one and three parameters to use without and with an 𝐼 𝑡𝑠 , respectively.
Most useful is the Banach space adjoint of 𝐼 𝑡𝑠 : 𝐵𝑝

𝑞 → 𝐿
𝑝
𝑞 for 1 ≤ 𝑝 < ∞ under the conditions (7) and (11). We use Theorem

3.3. For 1 < 𝑝 < ∞, the adjoint is the operator (𝐼 𝑡𝑠)∗ : 𝐿 𝑝′
𝑞 → 𝐵

𝑝′
𝑞 such that [𝐼 𝑡𝑠 𝑓 , 𝜓]𝑞 = [ 𝑓 , (𝐼 𝑡𝑠)∗𝜓]𝑞,𝑠,𝑡 for 𝑓 ∈ 𝐵𝑝

𝑞 and 𝜓 ∈ 𝐿 𝑝′
𝑞 ,

where 𝑠 satisfies (11). For 𝑝 = 1, it is the operator (𝐼 𝑡𝑠)∗ : L∞
𝛼 → B∞

𝛼 such that [𝐼 𝑡𝑠 𝑓 , 𝜓]𝑞+𝛼 = [ 𝑓 , (𝐼 𝑡𝑠)∗𝜓]𝑞+𝛼,𝑠,𝑡 for 𝑓 ∈ 𝐵1
𝑞 and

𝜓 ∈ L∞
𝛼 .

Theorem 3.4. Let 𝑞 ∈ R. For 1 < 𝑝 < ∞, we have (𝐼 𝑡𝑠)∗ =
(1 + 𝑠 + 𝑡)𝑁

𝑁!
𝑃𝑞+𝑡 , and for 𝑝 = 1, we have (𝐼 𝑡𝑠)∗ =

(1 + 𝑠 + 𝑡)𝑁
𝑁!

𝑃𝑞+𝛼+𝑡

for any 𝛼 ∈ R, where 𝑠, 𝑡 satisfy (11) and (7). Explicitly, for 𝑓 ∈ 𝐵𝑝
𝑞 and 𝜓 ∈ (𝐿 𝑝

𝑞 )∗,∫
B
𝐼 𝑡𝑠 𝑓 𝜓 𝑑𝜈𝑞+𝛼 =

(1 + 𝑠 + 𝑡)𝑁
𝑁!

∫
B
𝐼 𝑡𝑠 𝑓 𝐼

−𝑞−𝛼+𝑠
𝑞+𝛼+𝑡 𝑃𝑞+𝛼+𝑡𝜓 𝑑𝜈𝑞+𝛼,

where 𝛼 = 0 for 1 < 𝑝 < ∞ and 𝛼 ∈ R is arbitrary for 𝑝 = 1.

This theorem says that the composition of an 𝐼-type operator following a 𝑃-type operator can be removed under certain integrals.

Proof. We give the proof only for 1 < 𝑝 < ∞; the proof for 𝑝 = 1 follows the same lines and is omitted.
Let 𝑓 ∈ 𝐵𝑝

𝑞 , 𝜓 ∈ 𝐿 𝑝′
𝑞 , and put 𝐹 = 𝐷𝑡

𝑠 𝑓 . By Proposition 2.4, 𝐹 ∈ 𝐵𝑝
𝑞+𝑝𝑡 ; but since 𝑞 + 𝑝𝑡 > −1, actually 𝐹 ∈ 𝐴𝑝

𝑞+𝑝𝑡 , a Bergman
space which can be described without using any derivative. We have 𝑞 + 𝑝𝑡 + 1 < 𝑝(𝑠 + 𝑡 + 1), so by Theorem 3.1, 𝑃𝑠+𝑡 maps

𝐴
𝑝
𝑞+𝑝𝑡 onto itself and 𝑃𝑠+𝑡𝐹 =

𝑁!
(1 + 𝑠 + 𝑡)𝑁

𝐹. We compute by first writing the integrals explicitly, next differentiating under the
integral sign using (6), then interchanging the order of integration by the Fubini theorem, and finally using the information about
𝐹 just stated. We obtain[

𝑓 , 𝑃𝑞+𝑡𝜓
]
𝑞,𝑠,𝑡

=

∫
B
(1 − |𝑧 |2)𝑡𝐷𝑡

𝑠 𝑓 (𝑧) (1 − |𝑧 |2)−𝑞+𝑠

· 𝐷−𝑞+𝑠
𝑞+𝑡

∫
B
𝜓(𝑤)𝐾𝑞+𝑡 (𝑧, 𝑤) (1 − |𝑤 |2)𝑞+𝑡 𝑑𝜈(𝑤) (1 − |𝑧 |2)𝑞 𝑑𝜈(𝑧)

=

∫
B
(1 − |𝑧 |2)𝑠+𝑡𝐹 (𝑧)

∫
B
𝜓(𝑤)𝐾𝑠+𝑡 (𝑧, 𝑤) (1 − |𝑤 |2)𝑞+𝑡 𝑑𝜈(𝑤) 𝑑𝜈(𝑧)

=

∫
B
(1 − |𝑤 |2)𝑞+𝑡 𝜓(𝑤)

∫
B
𝐹 (𝑧)𝐾𝑠+𝑡 (𝑤, 𝑧) (1 − |𝑧 |2)𝑠+𝑡 𝑑𝜈(𝑧) 𝑑𝜈(𝑤)

=

∫
B
(1 − |𝑤 |2)𝑞+𝑡 𝜓(𝑤) 𝑃𝑠+𝑡𝐹 (𝑤) 𝑑𝜈(𝑤)

=

∫
B
(1 − |𝑤 |2)𝑡 𝑁!

(1 + 𝑠 + 𝑡)𝑁
𝐹 (𝑤) 𝜓(𝑤) 𝑑𝜈𝑞 (𝑤)

=

∫
B

𝑁!
(1 + 𝑠 + 𝑡)𝑁

𝐼 𝑡𝑠 𝑓 (𝑤) 𝜓(𝑤) 𝑑𝜈𝑞 (𝑤) =
[

𝑁!
(1 + 𝑠 + 𝑡)𝑁

𝐼 𝑡𝑠 𝑓 , 𝜓

]
𝑞

.

The proof is complete.

Theorem 3.4 takes simpler forms for Bergman spaces for which 𝑞 > −1 and we can take 𝑡 = 0. For 1 < 𝑝 < ∞, we can further

take 𝑠 = 𝑞 and then 𝑖∗ =
(1 + 𝑞)𝑁
𝑁!

𝑃𝑞 , where 𝑖 is the inclusion from 𝐴
𝑝
𝑞 into 𝐿 𝑝

𝑞 . For 𝑝 = 1, we must have 𝑞 < 𝑠, and then
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𝑖∗ =
(1 + 𝑠)𝑁
𝑁!

𝑃𝑞 upon taking 𝛼 = 0. The simpler explicit forms for 𝑓 ∈ 𝐴𝑝
𝑞 and 𝜓 ∈ (𝐿 𝑝

𝑞 )∗ for general 𝛼 are∫
B
𝑓 𝜓 𝑑𝜈𝑞 =

(1 + 𝑞)𝑁
𝑁!

∫
B
𝑓 𝑃𝑞𝜓 𝑑𝜈𝑞 (1 < 𝑝 < ∞), (17)∫

B
𝑓 𝜓 𝑑𝜈𝑞+𝛼 =

(1 + 𝑠)𝑁
𝑁!

∫
B
𝑓 𝐼

−𝑞−𝛼+𝑠
𝑞+𝛼 𝑃𝑞+𝛼𝜓 𝑑𝜈𝑞+𝛼 (𝑝 = 1). (18)

We need the following results when we compute the backward shifts explicitly on specific Bergman-Besov spaces. First, using
multi-index notation,

⟨𝑧, 𝑤⟩𝑘 =
∑︁
|𝛾 |=𝑘

𝑘!
𝛾!
𝑧𝛾𝑤𝛾 . (19)

Lemma 3.5. Let 𝛼, 𝛽 be two multi-indices, |𝛼 | = 𝑛, and 𝑠 > −1. Then∫
B
𝑧𝛼𝑧𝛽 (1 − |𝑧 |2)𝑠 𝑑𝜈(𝑧) =


0, if 𝛽 ≠ 𝛼,

𝑁!𝛼!
(1 + 𝑠)𝑁+𝑛

, if 𝛽 = 𝛼.

Proof. This is (Alpay and Kaptanoğlu 2001, Lemma 1).

Lemma 3.6. Let 𝛼, 𝛽 be two multi-indices, 𝑛 = |𝛼 |, 𝑚 = |𝛽 |, and 𝑟, 𝑠 ∈ R with 𝑟 + 𝑠 > −1. Let 𝐽 = 𝑃𝑠

(
𝑧𝛼𝑧𝛽 (1 − |𝑧 |2)𝑟

)
. Then

𝐽 =


𝑁! (1 + 𝑁 + 𝑠)𝑛−𝑚
(1 + 𝑟 + 𝑠)𝑁+𝑛

𝛼!
(𝛼 − 𝛽)! 𝑧

𝛼−𝛽 , if 𝑠 > −(1 + 𝑁),

𝑁! ((𝑛 − 𝑚)!)2

(1 − (𝑁 + 𝑠))𝑛−𝑚 (1 + 𝑟 + 𝑠)𝑁+𝑛

𝛼!
(𝛼 − 𝛽)! 𝑧

𝛼−𝛽 , if 𝑠 ≤ −(1 + 𝑁),

for 𝛼 ≥ 𝛽, and 𝐽 = 0 otherwise, where 𝛼 ≥ 𝛽 means 𝛼 𝑗 ≥ 𝛽 𝑗 for all 𝑗 = 1, . . . , 𝑁 .

Proof. In what follows, by Lemma 3.5, the only value of 𝛾 that gives a nonzero integral is 𝛾 = 𝛼 − 𝛽 ≥ 0, which also explains
why the integral is 0 for 𝛼 < 𝛽.

For 𝑠 > −(1 + 𝑁), by the way Bergman-Besov projections and kernels are defined, (19), and Lemma 3.5,

𝐽 =

∫
B
𝑤𝛼𝑤𝛽 (1 − |𝑤 |2)𝑟+𝑠

∞∑︁
𝑘=0

(1 + 𝑁 + 𝑠)𝑘
𝑘!

∑︁
|𝛾 |=𝑘

𝑘!
𝛾!
𝑧𝛾𝑤𝛾 𝑑𝜈(𝑤)

=
(1 + 𝑁 + 𝑠)𝑛−𝑚

(𝛼 − 𝛽)! 𝑧𝛼−𝛽
∫
B
|𝑤𝛼 |2 (1 − |𝑤 |2)𝑟+𝑠 𝑑𝜈(𝑤)

=
(1 + 𝑁 + 𝑠)𝑛−𝑚

(𝛼 − 𝛽)! 𝑧𝛼−𝛽
𝑁!𝛼!

(1 + 𝑟 + 𝑠)𝑁+𝑛
.

For 𝑠 ≤ −(1 + 𝑁), similarly,

𝐽 =

∫
B
𝑤𝛼𝑤𝛽 (1 − |𝑤 |2)𝑟+𝑠

∞∑︁
𝑘=0

𝑘!
(1 − (𝑁 + 𝑠))𝑘

∑︁
|𝛾 |=𝑘

𝑘!
𝛾!
𝑧𝛾𝑤𝛾 𝑑𝜈(𝑤)

=
((𝑛 − 𝑚)!)2

(1 − (𝑁 + 𝑠))𝑛−𝑚
1

(𝛼 − 𝛽)! 𝑧
𝛼−𝛽

∫
B
|𝑤𝛼 |2 (1 − |𝑤 |2)𝑟+𝑠 𝑑𝜈(𝑤)

=
((𝑛 − 𝑚)!)2

(1 − (𝑁 + 𝑠))𝑛−𝑚
1

(𝛼 − 𝛽)! 𝑧
𝛼−𝛽 𝑁!𝛼!

(1 + 𝑟 + 𝑠)𝑁+𝑛
.

We use Lemma 3.6 only for 𝑚 = 1.

4. BACKWARD SHIFT OPERATORS ON SPACES ON UNIT DISC

The spaces we work on have infinite families of equivalent norms. The pairings under which the dual spaces are realized depend
strongly on the particular norms used. Likewise, the adjoint operators take different forms depending on the pairings. For this
reason, for each type of space, we define the adjoints anew.

Throughout this section, 𝑁 = 1. When (7) and (11) both hold, always 𝑠 + 𝑡 > −1.

Definition 4.1. For 𝑞 > −1, let 𝑆𝑝𝑞 : 𝐴𝑝
𝑞 → 𝐴

𝑝
𝑞 be the shift operator acting on a Bergman space. If 1 < 𝑝 < ∞, we define its adjoint

(𝑆𝑝𝑞 )∗ : 𝐴𝑝′
𝑞 → 𝐴

𝑝′
𝑞 by

[
𝑆
𝑝
𝑞 𝑓 , 𝑔

]
𝑞
=
[
𝑓 , (𝑆𝑝𝑞 )∗𝑔

]
𝑞
, where 𝑓 ∈ 𝐴𝑝

𝑞 and 𝑔 ∈ 𝐴𝑝′
𝑞 . If 𝑝 = 1, we define its adjoint (𝑆1

𝑞)∗ : B∞
𝛼 → B∞

𝛼

by
[
𝑆1
𝑞 𝑓 , 𝑔

]
𝑞+𝛼 =

[
𝑓 , (𝑆1

𝑞)∗𝑔
]
𝑞+𝛼,𝑠,0, where 𝑓 ∈ 𝐴1

𝑞 and 𝑔 ∈ B∞
𝛼 .
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Theorem 4.2. The adjoint of a Bergman shift operator is

(𝑆𝑝𝑞 )∗𝑔(𝑧) = (1 + 𝑠)𝑃𝑞+𝛼
(
𝑧𝑔(𝑧)

)
= (1 + 𝑠)

∫
D

𝑤 𝑔(𝑤)
(1 − 𝑤𝑧)2+𝑞+𝛼 𝑑𝜈𝑞+𝛼 (𝑤),

where 𝑔 ∈ 𝐴𝑝′
𝑞 , 𝛼 = 0, and 𝑠 = 𝑞 for 1 < 𝑝 < ∞, and 𝑔 ∈ B∞

𝛼 , 𝛼 ∈ R, and 𝑠 satisfies (11) for 𝑝 = 1.

Proof. Let 1 < 𝑝 < ∞ and 𝑔 ∈ 𝐴𝑝′
𝑞 first. Definition 4.1 and (17) give[

𝑆
𝑝
𝑞 𝑓 , 𝑔

]
𝑞
=

∫
D
𝑧 𝑓 (𝑧) 𝑔(𝑧) 𝑑𝜈𝑞 (𝑧) =

∫
D
𝑓 (𝑧) 𝑧𝑔(𝑧) 𝑑𝜈𝑞 (𝑧)

= (1 + 𝑞)
∫
D
𝑓 (𝑧) 𝑃𝑞

(
𝑧𝑔(𝑧)

)
𝑑𝜈𝑞 (𝑧) =

[
𝑓 , (1 + 𝑞)𝑃𝑞

(
𝑧𝑔(𝑧)

) ]
𝑞
.

Then

(𝑆𝑝𝑞 )∗𝑔(𝑧) = (1 + 𝑞)𝑃𝑞

(
𝑧𝑔(𝑧)

)
(1 < 𝑝 < ∞).

Let 𝑝 = 1 and 𝑔 ∈ B∞
𝛼 next. Definition 4.1 and (18) give[

𝑆1
𝑞 𝑓 , 𝑔

]
𝑞+𝛼 =

∫
D
𝑧 𝑓 (𝑧) 𝑔(𝑧) 𝑑𝜈𝑞+𝛼 (𝑧) =

∫
D
𝑓 (𝑧) 𝑧𝑔(𝑧) 𝑑𝜈𝑞+𝛼 (𝑧)

= (1 + 𝑠)
∫
D
𝑓 (𝑧) 𝐼−𝑞−𝛼+𝑠

𝑞+𝛼 𝑃𝑞+𝛼
(
𝑧𝑔(𝑧)

)
𝑑𝜈𝑞+𝛼 (𝑧)

=
[
𝑓 , (1 + 𝑠)𝑃𝑞+𝛼

(
𝑧𝑔(𝑧)

) ]
𝑞+𝛼,𝑠,0.

Thus (𝑆1
𝑞)∗𝑔(𝑧) = (1 + 𝑠)𝑃𝑞+𝛼

(
𝑧𝑔(𝑧)

)
.

We keep 𝛼 when 𝑝 = 1 for flexibility. But if we choose 𝛼 = 0, then the only difference between the two cases in Theorem 4.2 is
whether the coefficient is 1 + 𝑞 or 1 + 𝑠 with 𝑠 > 𝑞.

Definition 4.3. Let 𝑞 ≤ −1 and 𝑡, 𝑠 satisfy (7) and (11). Also let 𝑠 > −2 for convenience. Let 𝑆𝑝𝑞 : 𝐵𝑝
𝑞 → 𝐵

𝑝
𝑞 be the

shift operator acting on a proper Besov space. If 1 < 𝑝 < ∞, we define its adjoint (𝑆𝑝𝑞 )∗ : 𝐵𝑝′
𝑞 → 𝐵

𝑝′
𝑞 by the identity[

𝑆
𝑝
𝑞 𝑓 , 𝑔

]
𝑞,𝑠,𝑡

=
[
𝑓 , (𝑆𝑝𝑞 )∗𝑔

]
𝑞,𝑠+1,𝑡 , where 𝑓 ∈ 𝐵

𝑝
𝑞 and 𝑔 ∈ 𝐵

𝑝′
𝑞 . If 𝑝 = 1, we define its adjoint (𝑆1

𝑞)∗ : B∞
𝛼 → B∞

𝛼 by[
𝑆1
𝑞 𝑓 , 𝑔

]
𝑞+𝛼,𝑠,𝑡 =

[
𝑓 , (𝑆1

𝑞)∗𝑔
]
𝑞+𝛼,𝑠+1,𝑡 , where 𝑓 ∈ 𝐵1

𝑞 and 𝑔 ∈ B∞
𝛼 .

Theorem 4.4. The adjoint of a proper Besov shift operator is

(𝑆𝑝𝑞 )∗𝑔(𝑧) =
(2 + 𝑠 + 𝑡)2

2 + 𝑠 𝑃𝑞+𝛼+𝑡
(
𝑧𝐼

−𝑞−𝛼+𝑠
𝑞+𝛼+𝑡 𝑔(𝑧)

)
,

where 𝑔 ∈ 𝐵𝑝′
𝑞 and 𝛼 = 0 for 1 < 𝑝 < ∞, 𝑔 ∈ B∞

𝛼 and 𝛼 ∈ R for 𝑝 = 1, 𝑡, 𝑠 satisfy (7) and (11), and 𝑠 > −2 for convenience.

The explicit integral expression for 𝑃𝑞+𝛼+𝑡 depends on whether 𝑞 + 𝛼 + 𝑡 > −2 or 𝑞 + 𝛼 + 𝑡 ≤ −2.

Proof. Let 𝑓 ∈ 𝐵𝑝
𝑞 be given by its Taylor series 𝑓 (𝑧) = ∑∞

𝑘=0 𝑓𝑘𝑧
𝑘 . Since 𝑠 > −2 and 𝑠 + 𝑡 > −1 > −2, by (5) we have

𝐷𝑡
𝑠 (𝑧 𝑓 (𝑧)) =

∞∑︁
𝑘=0

(2 + 𝑠 + 𝑡)𝑘+1
(2 + 𝑠)𝑘+1

𝑓𝑘𝑧
𝑘+1 =

2 + 𝑠 + 𝑡
2 + 𝑠 𝑧

∞∑︁
𝑘=0

(2 + 𝑠 + 1 + 𝑡)𝑘
(2 + 𝑠 + 1)𝑘

𝑓𝑘𝑧
𝑘 =

2 + 𝑠 + 𝑡
2 + 𝑠 𝑧𝐷𝑡

𝑠+1 𝑓 (𝑧),

and hence 𝐼 𝑡𝑠 (𝑧 𝑓 (𝑧)) =
2 + 𝑠 + 𝑡

2 + 𝑠 𝑧𝐼 𝑡
𝑠+1 𝑓 (𝑧).

Let 1 < 𝑝 < ∞ and 𝑔 ∈ 𝐵𝑝′
𝑞 first. Definition 4.3, the previous calculation, and Theorem 3.4 give[

𝑆
𝑝
𝑞 𝑓 , 𝑔

]
𝑞,𝑠,𝑡

=

∫
D
𝐼 𝑡𝑠 (𝑧 𝑓 (𝑧)) 𝐼

−𝑞+𝑠
𝑞+𝑡 𝑔(𝑧) 𝑑𝜈𝑞 (𝑧)

=

∫
D
𝐼 𝑡𝑠+1 𝑓 (𝑧)

2 + 𝑠 + 𝑡
2 + 𝑠 𝑧𝐼

−𝑞+𝑠
𝑞+𝑡 𝑔(𝑧) 𝑑𝜈𝑞 (𝑧)

= (2 + 𝑠 + 𝑡)
∫
D
𝐼 𝑡𝑠+1 𝑓 (𝑧)

2 + 𝑠 + 𝑡
2 + 𝑠 𝐼

−𝑞+𝑠+1
𝑞+𝑡 𝑃𝑞+𝑡

(
𝑧𝐼

−𝑞+𝑠
𝑞+𝑡 𝑔(𝑧)

)
𝑑𝜈𝑞 (𝑧)

=

[
𝑓 (𝑧), (2 + 𝑠 + 𝑡)2

2 + 𝑠 𝑃𝑞+𝑡
(
𝑧𝐼

−𝑞+𝑠
𝑞+𝑡 𝑔(𝑧)

) ]
𝑞,𝑠+1,𝑡

.

The desired formula is obtained.
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Let 𝑝 = 1 and 𝑔 ∈ B∞
𝛼 next. Similar to the previous case, Definition 4.3, the above calculation, and Theorem 3.4 give[
𝑆
𝑝
𝑞 𝑓 , 𝑔

]
𝑞+𝛼,𝑠,𝑡 =

∫
D
𝐼 𝑡𝑠 (𝑧 𝑓 (𝑧)) 𝐼

−𝑞−𝛼+𝑠
𝑞+𝛼+𝑡 𝑔(𝑧) 𝑑𝜈𝑞+𝛼 (𝑧)

=

∫
D
𝐼 𝑡𝑠+1 𝑓 (𝑧)

2 + 𝑠 + 𝑡
2 + 𝑠 𝑧𝐼

−𝑞−𝛼+𝑠
𝑞+𝛼+𝑡 𝑔(𝑧) 𝑑𝜈𝑞+𝛼 (𝑧)

=

∫
D
𝐼 𝑡𝑠+1 𝑓 (𝑧)

(2+𝑠+𝑡)2

2 + 𝑠 𝐼
−𝑞−𝛼+𝑠+1
𝑞+𝛼+𝑡 𝑃𝑞+𝛼+𝑡

(
𝑧𝐼

−𝑞−𝛼+𝑠
𝑞+𝛼+𝑡 𝑔(𝑧)

)
𝑑𝜈𝑞+𝛼 (𝑧)

=

[
𝑓 (𝑧), (2 + 𝑠 + 𝑡)2

2 + 𝑠 𝑃𝑞+𝛼+𝑡
(
𝑧𝐼

−𝑞−𝛼+𝑠
𝑞+𝛼+𝑡 𝑔(𝑧)

) ]
𝑞+𝛼,𝑠+1,𝑡

.

The desired formula follows.

We check some well-known Hilbert spaces to see the differences between our formulas and the more commonly known ones.
Such differences are bound to happen since we base our formulas on integral inner products while many formulas in the literature
are based on the norms derived from reproducing kernels. Since all the spaces involved consist of holomorphic functions on D, it
is enough to check the results on 𝑔(𝑧) = 𝑧𝑛 for 𝑛 = 0, 1, 2, . . ..

Remark 4.5. Let 𝑞 > −1 and consider first the Bergman Hilbert spaces 𝐴2
𝑞 . Here there must be no difference in the literature

among the backward shift operators since the reproducing kernels of Bergman spaces are derived from standard integral norms.
Theorem 4.2 and Lemma 3.6 give

(𝑆2
𝑞)∗ (𝑧𝑛) = (1 + 𝑞)𝑃𝑞 (𝑧𝑛𝑧) = (1 + 𝑞) (2 + 𝑞)𝑛−1

(1 + 𝑞)1+𝑛
𝑛𝑧𝑛−1 =

𝑛

1 + 𝑞 + 𝑛 𝑧
𝑛−1,

which agrees with (Kaptanoğlu 2014, (26)), as expected.

Remark 4.6. For the proper Besov spaces 𝐵2
𝑞 with 𝑞 ≤ −1, there are two possibilities, 𝑞 + 𝑡 > −2 or 𝑞 + 𝑡 ≤ −2. In the first

possibility (𝑞 + 𝑡 > −2), we have 𝐷−𝑞+𝑠
𝑞+𝑡 (𝑧𝑛) = (2 + 𝑠 + 𝑡)𝑛

(2 + 𝑞 + 𝑡)𝑛
𝑧𝑛 by (5). Then Theorem 4.4 and Lemma 3.6 give

(𝑆2
𝑞)∗ (𝑧𝑛) =

(2 + 𝑠 + 𝑡)2

2 + 𝑠
(2 + 𝑠 + 𝑡)𝑛
(2 + 𝑞 + 𝑡)𝑛

𝑃𝑞+𝑡
(
𝑧(1 − |𝑧 |2)−𝑞+𝑠𝑧𝑛

)
=

(2 + 𝑠 + 𝑡)2

2 + 𝑠
(2 + 𝑠 + 𝑡)𝑛
(2 + 𝑞 + 𝑡)𝑛

(2 + 𝑞 + 𝑡)𝑛−1
(1 + 𝑠 + 𝑡)1+𝑛

𝑛𝑧𝑛−1

=
(2 + 𝑠 + 𝑡)2

2 + 𝑠
1

1 + 𝑠 + 𝑡
𝑛

1 + 𝑞 + 𝑡 + 𝑛 𝑧
𝑛−1.

Let 𝑠 → ∞ since it can be as large as we wish; then essentially

(𝑆2
𝑞)∗ (𝑧𝑛) =

𝑛

1 + 𝑞 + 𝑡 + 𝑛 𝑧
𝑛−1. (20)

For 𝑞 = −1, we have 𝐵2
−1 = 𝐻2 for which essentially (𝑆2

−1)
∗ (𝑧𝑛) = 𝑛

𝑡 + 𝑛 𝑧
𝑛−1. For 𝐻2, any small 𝑡 > 0 works. If we further let

𝑡 → 0+, we obtain (𝑆2
−1)

∗ (𝑧𝑛) → 𝑧𝑛−1, which is what (1) says.

Remark 4.7. In the second possibility (𝑞 + 𝑡 ≤ −2) when 𝑞 ≤ −1, by (5) again, we have 𝐷−𝑞+𝑠
𝑞+𝑡 (𝑧𝑛) = (2 + 𝑠 + 𝑡)𝑛

𝑛!
(−(𝑞 + 𝑡))𝑛

𝑛!
𝑧𝑛.

Then Theorem 4.4 and Lemma 3.6 give

(𝑆2
𝑞)∗ (𝑧𝑛) =

(2 + 𝑠 + 𝑡)2

2 + 𝑠
(2 + 𝑠 + 𝑡)𝑛

𝑛!
(−(𝑞 + 𝑡))𝑛

𝑛!
𝑃𝑞+𝑡

(
𝑧(1 − |𝑧 |2)−𝑞+𝑠𝑧𝑛

)
=

(2+𝑠+𝑡)2

2 + 𝑠
(2+𝑠+𝑡)𝑛

𝑛!
(−(𝑞+𝑡))𝑛

𝑛!
(𝑛 − 1)!

(−(𝑞+𝑡))𝑛−1

𝑛!
(1+𝑠+𝑡)1+𝑛

𝑧𝑛−1

=
(2 + 𝑠 + 𝑡)2

2 + 𝑠
1

1 + 𝑠 + 𝑡
−(1 + 𝑞 + 𝑡) + 𝑛

𝑛
𝑧𝑛−1.

As 𝑠 → ∞ again, essentially

(𝑆2
𝑞)∗ (𝑧𝑛) =

−(1 + 𝑞 + 𝑡) + 𝑛
𝑛

𝑧𝑛−1. (21)

For 𝑞 = −2, 𝐵2
−2 is the Dirichlet space for which (𝑆2

−2)
∗ (𝑧𝑛) = 1 − 𝑡 + 𝑛

𝑛
𝑧𝑛−1 essentially. For this space, we must have 𝑡 > 1/2. In
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spite of this, if we further let 𝑡 → 0+, we obtain (𝑆2
−2)

∗ (𝑧𝑛) → 1 + 𝑛
𝑛

𝑧𝑛−1, which is what (Kaptanoğlu 2014, (26)) says, contrary
to intuition.

5. WANDERING SUBSPACE PROPERTY

In this section, we identify some shift operators acting on Bergman-Besov Hilbert spaces 𝐵2
𝑞 whose invariant subspaces have the

wandering subspace property.
Let 𝑇 be a left-invertible operator on a Hilbert space 𝐻 and let 𝐸 ⊂ 𝐻 be a closed 𝑇-invariant subspace of 𝐻. We say 𝐸 has the

wandering subspace property if 𝐸 is the smallest closed 𝑇-invariant subspace including 𝐸 ⊖ 𝑇𝐸 , where ⊖ indicates orthogonal
complement, that is, if 𝐸 =

∞∨
𝑛=0

𝑇𝑛 (𝐸 ⊖ 𝑇𝐸), where
∨

indicates closed linear span.

In (Richter 1988, Theorem 1 and Corollary), it is shown that the invariant subspaces of the shift operator on the Besov Hilbert
spaces 𝐵2

𝑞 with −2 ≤ 𝑞 ≤ −1, that is, on those spaces between the Hardy Hilbert and Dirichlet spaces, have the wandering
subspace property. In (Aleman et al. 1996, Theorem 3.5), it is shown that the invariant subspaces of the shift operator on the
unweighted Bergman Hilbert space has the wandering subspace property. It should be noted that all results of this form are norm
(or inner product) dependent since the adjoint depends on it, except perhaps those on Bergman spaces in whose norms there
is universal agreement. In fact, in Gallardo-Gutiérrez et al. (2020) it is shown that by renorming, one can force the wandering
subspace property.

In (Shimorin 2001, Theorem 4.1), a very practical sufficient condition is given for the wandering subspace property in which
𝐴 ≤ 𝐵 means 𝐵 − 𝐴 is a positive operator.

Theorem 5.1. (Shimorin (2001)) If 𝑆 is the shift operator on a space of holomorphic functions on D and 𝑆𝑆∗ + (𝑆∗𝑆)−1 ≤ 2𝐼,
then the invariant subspaces of 𝑆 have the wandering subspace property.

Checking the hypothesis of this theorem is especially easy since both 𝑆2
𝑞 (𝑆2

𝑞)∗ and (𝑆2
𝑞)∗𝑆2

𝑞 are diagonal operators on the
orthogonal basis {1, 𝑧, 𝑧2 . . .} for all 𝐵2

𝑞 . We also see that renorming does have an effect.

Theorem 5.2. For −1 < 𝑞 ≤ 0, the shift operator 𝑆2
𝑞 on the Bergman space 𝐴2

𝑞 has the wandering subspace property.

Proof. By Remark 4.5, we have 𝑆2
𝑞 (𝑆2

𝑞)∗ (𝑧𝑛) =
𝑛

1 + 𝑞 + 𝑛 𝑧
𝑛 for 𝑛 ≥ 1, 𝑆2

𝑞 (𝑆2
𝑞)∗ (1) = 0, (𝑆2

𝑞)∗𝑆2
𝑞 (𝑧𝑛) =

1 + 𝑛
2 + 𝑞 + 𝑛 𝑧

𝑛, and

((𝑆2
𝑞)∗𝑆2

𝑞)−1 (𝑧𝑛) = 2 + 𝑞 + 𝑛
1 + 𝑛 𝑧𝑛. Applying Theorem 5.1, 𝑆2

𝑞 (𝑆2
𝑞)∗ + (𝑆2

𝑞)∗𝑆2
𝑞 ≤ 2𝐼 if and only if

2 + 𝑞
1

≤ 2 and
𝑛

1 + 𝑞 + 𝑛 + 2 + 𝑞 + 𝑛
1 + 𝑛 ≤ 2.

The first inequality gives 𝑞 ≤ 0 and the second 𝑞 ≥ −1.

Theorem 5.3. For 𝑞 ≤ −1, the shift operator 𝑆2
𝑞 on the Besov space 𝐵2

𝑞 using the adjoints from (Kaptanoğlu 2014, (26)) has the
wandering subspace property if 𝑞 = −1, that is, for the Hardy space 𝐻2 with the usual norm and adjoint.

Proof. For −2 < 𝑞 ≤ −1, (𝑆2
𝑞)∗ (𝑧𝑛) =

𝑛

1 + 𝑞 + 𝑛 𝑧
𝑛−1, which is identical to the adjoints in Theorem 5.2. So we have only 𝑞 = −1

from the proof of that theorem.

For 𝑞 ≤ −2, (𝑆2
𝑞)∗ (𝑧𝑛) =

−1 − 𝑞 + 𝑛
𝑛

𝑧𝑛−1. Then 𝑆2
𝑞 (𝑆2

𝑞)∗ (𝑧𝑛) =
−1 − 𝑞 + 𝑛

𝑛
𝑧𝑛 and ((𝑆2

𝑞)∗𝑆2
𝑞)−1 (𝑧𝑛) =

1 + 𝑛
−𝑞 + 𝑛 𝑧

𝑛. Hence

𝑆2
𝑞 (𝑆2

𝑞)∗ + (𝑆2
𝑞)∗𝑆2

𝑞 ≤ 2𝐼 if and only if

1
−𝑞 ≤ 2 and

−1 − 𝑞 + 𝑛
𝑛

+ 1 + 𝑛
−𝑞 + 𝑛 ≤ 2.

The first inequality gives 𝑞 ≤ −1/2 and the second 𝑞 ≥ −1. Thus there is no 𝑞 ≤ −2 with desired properties.

Theorem 5.4. For 𝑞 ≤ −1, the shift operator 𝑆2
𝑞 on the Besov space 𝐵2

𝑞 using the adjoints in Theorem 4.4 has the wandering
subspace property if 𝑡 is chosen to obtain −1 ≤ 𝑞 + 𝑡 ≤ 0.

Note that it is compulsory to have 𝑞 + 2𝑡 > −1 by (7).

Proof. To make the formulas amenable to computation, we use the adjoints in Remarks 4.6 and 4.7 in their limiting form as
𝑠 → ∞.

For 𝑞 + 𝑡 > −2, by using (20) we have (𝑆2
𝑞)∗ (𝑧𝑛) =

𝑛

1 + 𝑞 + 𝑡 + 𝑛 𝑧
𝑛−1. Then also 𝑆2

𝑞 (𝑆2
𝑞)∗ (𝑧𝑛) =

𝑛

1 + 𝑞 + 𝑡 + 𝑛 𝑧
𝑛 and
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((𝑆2
𝑞)∗𝑆2

𝑞)−1 (𝑧𝑛) = 2 + 𝑞 + 𝑡 + 𝑛
1 + 𝑛 𝑧𝑛. Hence 𝑆2

𝑞 (𝑆2
𝑞)∗ + (𝑆2

𝑞)∗𝑆2
𝑞 ≤ 2𝐼 if and only if

2 + 𝑞 + 𝑡
1

≤ 2 and
𝑛

1 + 𝑞 + 𝑡 + 𝑛 + 2 + 𝑞 + 𝑡 + 𝑛
1 + 𝑛 ≤ 2.

The first inequality gives 𝑞 + 𝑡 ≤ 0 and the second 𝑞 + 𝑡 ≥ −1. Thus for 𝑞 ≤ −1, if we choose 𝑡 with −1 ≤ 𝑞 + 𝑡 ≤ 0, then 𝑆2
𝑞 on

𝐵2
𝑞 has the wandering subspace property.

For 𝑞 + 𝑡 ≤ −2, by using (21) we have (𝑆2
𝑞)∗ (𝑧𝑛) =

−1 − 𝑞 − 𝑡 + 𝑛
𝑛

𝑧𝑛−1. Then also 𝑆2
𝑞 (𝑆2

𝑞)∗ (𝑧𝑛) =
−1 − 𝑞 − 𝑡 + 𝑛

𝑛
𝑧𝑛 and

((𝑆2
𝑞)∗𝑆2

𝑞)−1 (𝑧𝑛) = 1 + 𝑛
−𝑞 − 𝑡 + 𝑛 𝑧

𝑛. Hence 𝑆2
𝑞 (𝑆2

𝑞)∗ + (𝑆2
𝑞)∗𝑆2

𝑞 ≤ 2𝐼 if and only if

1
−𝑞 − 𝑡 ≤ 2 and

−1 − 𝑞 − 𝑡 + 𝑛
𝑛

+ 1 + 𝑛
−𝑞 − 𝑡 + 𝑛 ≤ 2.

The first inequality gives 𝑞 + 𝑡 ≥ 1/2 and the second 𝑞 + 𝑡 ≥ −1, which contradict 𝑞 + 𝑡 ≤ −2. So no 𝑞 and 𝑡 can be found with the
desired properties in this case.

Some other shift operators are checked in Gu and Luo (2024).

6. BACKWARD SHIFT OPERATORS ON SPACES ON UNIT BALL

Shift operators 𝑆 𝑗 , 𝑗 = 1, . . . , 𝑁 , on holomorphic function spaces on the unit ball B in C𝑁 are investigated from many perspectives
in Kaptanoğlu (2014). Here we concentrate only on their adjoints represented as Bergman-Besov projections. For readability, we
refrain from attaching the parameters 𝑞, 𝑝 of the spaces to the shift operators since they are clear from the context. We also take
𝛼 = 0 when 𝑝 = 1 again for simplicity.

Definition 6.1. For 𝑞 > −1, let 𝑆 𝑗 : 𝐴𝑝
𝑞 → 𝐴

𝑝
𝑞 be a shift operators acting on a Bergman space, 𝑗 = 1, . . . , 𝑁 . If 1 < 𝑝 < ∞,

we define its adjoint 𝑆∗
𝑗

: 𝐴𝑝′
𝑞 → 𝐴

𝑝′
𝑞 by

[
𝑆 𝑗 𝑓 , 𝑔

]
𝑞
=

[
𝑓 , 𝑆∗

𝑗
𝑔
]
𝑞
, where 𝑓 ∈ 𝐴

𝑝
𝑞 and 𝑔 ∈ 𝐴

𝑝′
𝑞 . If 𝑝 = 1, we define its adjoint

𝑆∗
𝑗

: B∞ → B∞ by
[
𝑆 𝑗 𝑓 , 𝑔

]
𝑞
=
[
𝑓 , 𝑆∗

𝑗
𝑔
]
𝑞,𝑠,0, where 𝑓 ∈ 𝐴1

𝑞 and 𝑔 ∈ B∞.

Theorem 6.2. For 𝑗 = 1, . . . , 𝑁 , the adjoint of the Bergman shift operator 𝑆 𝑗 is

𝑆∗𝑗𝑔(𝑧) =
(1 + 𝑠)𝑁
𝑁!

𝑃𝑞

(
𝑧 𝑗𝑔(𝑧)

)
=

(1 + 𝑠)𝑁
𝑁!

∫
B

𝑤 𝑗 𝑔(𝑤)
(1 − ⟨𝑧, 𝑤⟩)1+𝑁+𝑞 𝑑𝜈𝑞 (𝑤),

where 𝑔 ∈ 𝐴𝑝′
𝑞 and 𝑠 = 𝑞 for 1 < 𝑝 < ∞, and 𝑔 ∈ B∞ and 𝑠 > 𝑞 for 𝑝 = 1.

Proof. The proof is very similar to that of Theorem 4.2 and we omit it. The only thing that requires attention is that now we work
in C𝑁 with 𝑁 > 1. The same are true for the proof of Theorem 6.4 below.

Definition 6.3. Let 𝑞 ≤ −1 and 𝑡, 𝑠 satisfy (7) and (11). Also let 𝑠 > −(1 + 𝑁) for convenience. Let 𝑆 𝑗 : 𝐵𝑝
𝑞 → 𝐵

𝑝
𝑞 be a shift

operator acting on a proper Besov space, 𝑗 = 1, . . . , 𝑁 . If 1 < 𝑝 < ∞, we define its adjoint 𝑆∗
𝑗

: 𝐵𝑝′
𝑞 → 𝐵

𝑝′
𝑞 by the identity[

𝑆 𝑗 𝑓 , 𝑔
]
𝑞,𝑠,𝑡

=
[
𝑓 , 𝑆∗

𝑗
𝑔
]
𝑞,𝑠+1,𝑡 , where 𝑓 ∈ 𝐵𝑝

𝑞 and 𝑔 ∈ 𝐵𝑝′
𝑞 . If 𝑝 = 1, we define its adjoint 𝑆∗

𝑗
: B∞ → B∞ by the same identity,

where 𝑓 ∈ 𝐵1
𝑞 and 𝑔 ∈ B∞.

Theorem 6.4. For 𝑗 = 1, . . . , 𝑁 , the adjoint of the proper Besov shift operator 𝑆 𝑗 is

𝑆∗𝑗𝑔(𝑧) =
1 + 𝑁 + 𝑠 + 𝑡

1 + 𝑁 + 𝑠
(2 + 𝑠 + 𝑡)𝑁

𝑁!
𝑃𝑞+𝑡

(
𝑧 𝑗 𝐼

−𝑞+𝑠
𝑞+𝑡 𝑔(𝑧)

)
,

where 𝑔 ∈ 𝐵𝑝′
𝑞 for 1 < 𝑝 < ∞, 𝑔 ∈ B∞ for 𝑝 = 1, 𝑡, 𝑠 satisfy (7) and (11), and 𝑠 > −(1 + 𝑁) for convenience.

The explicit integral expression for 𝑃𝑞+𝑡 depends on whether 𝑞 + 𝑡 > −(1 + 𝑁) or 𝑞 + 𝑡 ≤ −(1 + 𝑁).
Let’s evaluate the formulas in Theorems 6.2 and 6.4 on a monomial for all values of 𝑞 and see their actual effects on certain

standard reproducing kernel Hilbert spaces. In the Remarks below 𝑔(𝑧) = 𝑧𝛼, 𝑛 = |𝛼 |, 𝛽 = 𝑒 𝑗 , 𝑒 𝑗 = (0, . . . , 0, 1, 0 . . . , 0) with 1

in 𝑗 th position, 𝑗 = 1, . . . , 𝑁 , and |𝛽 | = 𝑚 = 1. Note that
𝛼!

(𝛼 − 𝑒 𝑗 )!
= 𝛼 𝑗 .

Remark 6.5. Let 𝑞 > −1 and consider the Bergman Hilbert spaces 𝐴2
𝑞 on B. Theorem 6.2, Lemma 3.6, and (2) give

𝑆 𝑗 (𝑧𝛼) =
(1 + 𝑞)𝑁
𝑁!

𝑃𝑞 (𝑧 𝑗 𝑧𝛼) =
(1 + 𝑞)𝑁
𝑁!

𝑁! (1 + 𝑁 + 𝑞)𝑛−1
(1 + 𝑞)𝑁+𝑛

𝛼!
(𝛼 − 𝑒 𝑗 )!

𝑧𝛼−𝑒 𝑗 =
𝛼 𝑗

𝑁 + 𝑞 + 𝑛 𝑧
𝛼−𝑒 𝑗 ,

which agrees with (Kaptanoğlu 2014, (26)).
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Remark 6.6. For the proper Besov spaces 𝐵2
𝑞 with 𝑞 ≤ −1, when 𝑞 + 𝑡 > −2, we have 𝐷−𝑞+𝑠

𝑞+𝑡 (𝑧𝛼) = (1 + 𝑁 + 𝑠 + 𝑡)𝑛
(1 + 𝑁 + 𝑞 + 𝑡)𝑛

𝑧𝛼 by (5).

Theorem 6.4, Lemma 3.6, and (2) give

(𝑆2
𝑞)∗ (𝑧𝛼) =

1+𝑁+𝑠+𝑡
1 + 𝑁 + 𝑠

(2 + 𝑠 + 𝑡)𝑁
𝑁!

(1 + 𝑁 + 𝑠 + 𝑡)𝑛
(1 + 𝑁 + 𝑞 + 𝑡)𝑛

𝑃𝑞+𝑡
(
𝑧 𝑗 (1 − |𝑧 |2)−𝑞+𝑠𝑧𝑛

)
=

1+𝑁+𝑠+𝑡
1 + 𝑁 + 𝑠

(2+𝑠+𝑡)𝑁
𝑁!

(1+𝑁+𝑠+𝑡)𝑛
(1+𝑁+𝑞+𝑡)𝑛

𝑁! (1+𝑁+𝑞+𝑡)𝑛−1
(1 + 𝑠 + 𝑡)𝑁+𝑛

𝛼 𝑗 𝑧
𝛼−𝑒 𝑗

=
(1 + 𝑁 + 𝑠 + 𝑡)2

(1 + 𝑁 + 𝑠) (1 + 𝑠 + 𝑡)
𝛼 𝑗

𝑁 + 𝑞 + 𝑡 + 𝑛 𝑧
𝛼−𝑒 𝑗 .

Let 𝑠 → ∞ as before since it can be as large as we wish; then essentially

(𝑆2
𝑞)∗ (𝑧𝑛) =

𝛼 𝑗

𝑁 + 𝑞 + 𝑡 + 𝑛 𝑧
𝛼−𝑒 𝑗 .

The cases 𝑞 = −1 and 𝑞 = −𝑁 pertain to the Hardy space 𝐻2 and the Drury-Arveson space. We must have 𝑞 + 2𝑡 > 0 for this
formula to make sense by Definition 6.3. But again contrary to intuition, if we let 𝑡 → 0+, we obtain the adjoint formulas in
(Kaptanoğlu 2014, (26)) that are derived from the reproducing kernel norms.

Remark 6.7. For the proper Besov spaces 𝐵2
𝑞 with 𝑞 ≤ −1, when 𝑞 + 𝑡 ≤ −2, we have

𝐷
−𝑞+𝑠
𝑞+𝑡 (𝑧𝛼) = (1 + 𝑁 + 𝑠 + 𝑡)𝑛

𝑛!
(1 − (𝑁 + 𝑞 + 𝑡))𝑛

𝑛!
𝑧𝛼

by (5). Theorem 6.4, Lemma 3.6, and (2) give

(𝑆2
𝑞)∗ (𝑧𝛼) =

1+𝑁+𝑠+𝑡
1 + 𝑁 + 𝑠

(2+𝑠+𝑡)𝑁
𝑁!

(1+𝑁+𝑠+𝑡)𝑛
𝑛!

(1−(𝑁+𝑞+𝑡))𝑛
𝑛!

𝑃𝑞+𝑡
(
𝑧 𝑗 (1−|𝑧 |2)−𝑞+𝑠𝑧𝑛

)
=

1 + 𝑁 + 𝑠 + 𝑡
1 + 𝑁 + 𝑠

(2 + 𝑠 + 𝑡)𝑁
𝑁!

(1 + 𝑁 + 𝑠 + 𝑡)𝑛
𝑛!

(1 − (𝑁 + 𝑞 + 𝑡))𝑛
𝑛!

𝑁! (𝑛 − 1)! (𝑛 − 1)!
(1 − (𝑁 + 𝑞 + 𝑡))𝑛−1 (1 + 𝑠 + 𝑡)𝑁+𝑛

𝛼 𝑗 𝑧
𝛼−𝑒 𝑗

=
(1 + 𝑁 + 𝑠 + 𝑡)2

(1 + 𝑁 + 𝑠) (1 + 𝑠 + 𝑡)
−(𝑁 + 𝑞 + 𝑡) + 𝑛

𝑛2 𝛼 𝑗 𝑧
𝛼−𝑒 𝑗 .

Let 𝑠 → ∞ again; then essentially

(𝑆2
𝑞)∗ (𝑧𝑛) =

−(𝑁 + 𝑞 + 𝑡) + 𝑛
𝑛2 𝛼 𝑗 𝑧

𝛼−𝑒 𝑗 .

The case 𝑞 = −(1 + 𝑁) pertains to the Dirichlet space. We must have 𝑞 + 2𝑡 > 0 for this formula to make sense by Definition 6.3.
But again contrary to intuition, if we let 𝑡 → 0+, we obtain the adjoint formulas in (Kaptanoğlu 2014, (26)) that are derived from
the reproducing kernel norms.
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