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ABSTRACT
In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent
variable and one or more independent variables. Although there are various methods for estimating parameters, the most popular is
the Ordinary Least Squares (OLS) method. However, in the presence of multicollinearity and outliers, the OLS estimator may give
inaccurate values and also misleading inference results. There are many modified biased robust estimators for the simultaneous
occurrence of outliers and multicollinearity in the data. In this paper, a new estimator called the Liu-Ratio Estimator (LRE), which
can be used as an alternative to the Least Squares Ratio (LSR) estimator and the Ridge Ratio estimator (RRE), is proposed to
mitigate the effect of 𝑦-direction outliers and multicollinearity in the data. The performance of the proposed estimator is examined
in two Monte Carlo simulation studies in the presence of multicollinearity and 𝑦-direction outliers. According to the simulation
results, LRE is a strong alternative to LSR and RRE in the presence of multicollinearity and 𝑦-direction outliers in the data.
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1. INTRODUCTION

Regression analysis is a statistical technique for investigating and modeling the relationship between variables. Applications for
regression models are numerous and occur in almost every field, including engineering, the physical and chemical sciences,
economics, management, life and biological sciences, and social sciences. The classical linear regression model assumes a relation
of the form:

𝑦𝑖 = 𝛽0 +
𝑝∑︁
𝑗=1

𝑥𝑖 𝑗 𝛽 𝑗 + 𝜀𝑖 , 𝑖 = 1, 2, ..., 𝑛 (1)

where 𝑛 is the number of observations, 𝑥𝑖 𝑗 𝑗 = 1, 2, ..., 𝑝 are the independent variables for observation i, 𝑦𝑖 the observed response
variable, the 𝜀𝑖 is the error term for the observation i and 𝛽 𝑗 are the coefficients to be estimated, representing the relationship
between each independent variable and the dependent variable.

The most popular way of estimating 𝛽 is to minimize the Ordinary Least Squares (OLS) criterion. Unfortunately, the well-
known problem of multicollinearity in regression analysis due to high correlation between independent variables affects the OLS
estimator. As a result of multicollinearity between explanatory variables, the variance of OLS becomes so large that estimates
become unstable (Montgomery et al. 2001). Many biased estimators have been proposed for the multicollinearity problem, but the
Ridge Estimator (RE) proposed by Hoerl and Kennard (1970) and the Liu Estimator (LE) proposed by Liu (1993) are some of the
most widely used estimators.

In addition, there are many situations where the distribution of errors is nonnormal. In the case of nonnormal distributions,
particularly heavy-tailed distributions, the OLS estimator no longer has the desirable properties. These heavy-tailed distributions
tend to generate outliers, which may have an improper effect on the OLS estimates (Montgomery et al. 2001). Numerous robust
estimating techniques, including the M-estimator, the least squares median estimator, the least truncated sum of squares estimator,
the S-estimator, and the MM-estimator, have been presented to generate parameter estimates in the presence of outliers (Rousseeuw
and Leroy 1987), (Maronna et al. 2006). However, while robust estimators are robust techniques for obtaining parameter estimates
that are not affected by outliers, some unstable estimates may still be obtained due to the presence of multicollinearity between
variables. Therefore, to mitigate the effects of both outliers and multicollinearity to some extent is to use biased-robust estimators.
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For example, various modifications of RE and LE, which are used for the multicollinearity problem, are widely used to address
both outliers and multicollinearity (Silvapulle 1991), (Arslan and Billor 2000), (Maronna 2011), (Kan et al. 2013), (Jadhav and
Kashid 2016), (Ertaş et al. 2017), (Filzmoser and Kurnaz 2018).

Recently, Akbilgic and Akinci (2009) proposed the Least Squares Ratio (LSR) as an alternative for OLS in order to estimate the
beta parameter vector in the presence of 𝑦-direction outliers. On the other hand, Jadhav and Kashid (2018) developed an estimator
called the Ridge Ratio Estimator (RRE) as an alternative to RE and LSR in the presence of outliers and multicollinearity in the
data. Therefore, one of the objectives of this paper is to propose a new estimator as an alternative to LSR and RRE to overcome
the simultaneous occurrence of outliers and multicollinearity in the data, based on the fact that LE is always an alternative to RE
as known from the multicollinearity problem. Another objective is to investigate the performance of the proposed estimator with
respect to LSR and RRE through extensive simulation studies.

The organization of the paper is as follows: The main ideas underlying the proposed estimator are highlighted in Section 2. In
Section 3, two separate Monte Carlo simulation studies are conducted to evaluate the performance of the proposed estimator with
respect to LSR and RRE. In Section 4, the performance of the proposed estimator is evaluated against that of other estimators on
artificial data. Finally, the conclusions of the study are presented in Section 5.

2. A NEW ROBUST LIU RATIO ESTIMATOR

For the regression model given by (1), OLS minimizes the sum of squares of the distances between the observed value 𝑦𝑖

and the fitted value 𝑦̂𝑖 where 𝑖 = 1, 2, ..., 𝑛. As an alternative to OLS, LSR method starts with the same goal 𝑦𝑖 = 𝑦̂𝑖 , or
𝑦𝑖 − 𝑦̂𝑖 = 0, 𝑖 = 1, 2, ..., 𝑛 as in OLS. Note that the OLS approach satisfies this aim by finding the regression parameters
minimizing the sum of (𝑦𝑖 − 𝑦̂𝑖)2 . However, LSR proceeds by dividing through by 𝑦𝑖 and so 𝑦̂𝑖

𝑦𝑖
= 1 is obtained under an

assumption of 𝑦𝑖 ≠ 0 where 𝑖 = 1, 2, ..., 𝑛 (Akbilgic and Akinci 2009). Hence, it is obvious that, equations 𝑦̂𝑖
𝑦𝑖
− 1 = 0 and thus

𝑦𝑖− 𝑦̂𝑖
𝑦𝑖

= 0 where 𝑖 = 1, 2, ..., 𝑛 are obtained by basic mathematical operations. As a result, the LSR estimator is obtained by
minimizing the objective function as follows:

min
𝛽

𝑛∑︁
𝑖=1

(
𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖

)2
or min

𝛽

𝑛∑︁
𝑖=1

(
1 − 𝛽 𝑗

𝑥𝑖 𝑗

𝑦𝑖

)2
(2)

where 𝑦̂𝑖 = 𝛽0 +
∑𝑝

𝑗=1 𝛽 𝑗𝑥𝑖 𝑗 , 𝑖 = 1, 2, ..., 𝑛. Taking the partial derivatives of (2) with respect to the 𝛽 components and setting
them equal to zero, Akbilgic and Akinci (2009) defined the LSR estimator as follows:

𝛽𝐿𝑆𝑅 =

((
𝑋

𝑌

) ′ (
𝑋

𝑌

))−1 (
𝑋

𝑌2

) ′

𝑌 (3)

where 𝑋/𝑌 matrix is obtained by dividing the values 𝑥𝑖 𝑗 by 𝑦𝑖 , and 𝑋
/
𝑌2 is computed by dividing the values 𝑥𝑖 𝑗 by 𝑦2

𝑖
where

𝑗 = 1, 2, ..., 𝑝.
On the other hand, Jadhav and Kashid (2018) developed an estimator called RRE as an alternative to RE and LSR. Note that

RRE using RE and LSR estimator is proposed to tackle the problem of outliers and multicollinearity. For the parameters 𝛽 in
Equation (1), the RRE is defined as:

𝛽𝑅𝑅𝐸 =

((
𝑋

𝑌

) ′ (
𝑋

𝑌

)
+ 𝑘 𝐼

)−1 (
𝑋

𝑌2

) ′

𝑌, 𝑘 > 0, (4)

where 𝑘 is a biasing parameter.
Let us state that the LSR and RRE given by (3) and (4) are obtained by minimization of the objective function given below:

𝑆 (𝛽) =
(
1 − 𝑋𝛽

) ′ (
1 − 𝑋𝛽

)
+ 𝑘𝛽′𝛽 (5)

where 1 is the 𝑛 × 1 dimensional matrix of 1s, 𝑋 is obtained by dividing the values 𝑥𝑖 𝑗 by 𝑦𝑖 for 𝑗 = 1, ..., 𝑝 and the parameter
𝑘 ≥ 0 controls the amount of shrinkage. Note that minimization of the objective function given by (5) with respect to the parameter
vector 𝛽 yields the LSR estimator given by (3) when 𝑘 = 0 and the RRE given by (4) when 𝑘 > 0.

As an alternative to the objective function (5), which yields the LSR and RRE given by (3) and (4), consider the following
penalized objective function:

𝑆 (𝛽) =
(
1 − 𝑋𝛽

) ′ (
1 − 𝑋𝛽

)
+

(
𝑑𝛽𝐿𝑆𝑅 − 𝛽

) ′ (
𝑑𝛽𝐿𝑆𝑅 − 𝛽

)
, 0 < 𝑑 < 1 (6)

where 𝛽𝐿𝑆𝑅 is the LSR estimator given in (3) and 𝑋 is obtained by dividing the values 𝑥𝑖 𝑗 by 𝑦𝑖 for 𝑗 = 1, ..., 𝑝. When 𝑆 (𝛽) in
(6) is differentiated with respect to 𝛽, the following equation is obtained:

𝜕𝑆

𝜕𝛽

����
𝛽

= −2𝑋 ′ + 2𝑋 ′𝑋𝛽 − 2𝑑𝛽𝐿𝑆𝑅 + 2𝛽 = 0. (7)
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Solving the system given in (7) with respect to 𝛽 defines the Liu Ratio Estimator (LRE) as follows:

𝛽𝐿𝑅𝐸 =
(
𝑋 ′𝑋 + 𝐼

)−1 (
𝑋 ′ + 𝑑𝛽𝐿𝑆𝑅

)
, 0 < 𝑑 < 1, (8)

where 𝑑 is a biasing parameter. If the estimator (8) is restated in the structure of (3) or (4), LRE is obtained as follows:

𝛽𝐿𝑅𝐸 =

((
𝑋

𝑌

) ′ (
𝑋

𝑌

)
+ 𝐼

)−1 ((
𝑋

𝑌2

) ′

𝑌 + 𝑑𝛽𝐿𝑆𝑅

)
, 0 < 𝑑 < 1 (9)

where 𝑋/𝑌 matrix is obtained by dividing the values 𝑥𝑖 𝑗 by 𝑦𝑖 , and 𝑋
/
𝑌2 is computed by dividing the values 𝑥𝑖 𝑗 by 𝑦2

𝑖
where

𝑗 = 1, 2, ..., 𝑝.

3. THE MONTE CARLO SIMULATION STUDIES

In this section, the performance of LRE is compared with other existing estimators, OLS, RE, LE, LSR and RRE using two
different Monte Carlo simulation designs. In the first design, we investigated the effects of sample size (𝑛), the degree of the
collinearity (𝜌), the number of the explanatory variables (𝑝) and the variance

(
𝜎2) on the performances of the considered

estimators. In the second simulation design, we examined LSR, RRE and LRE performances for each of 𝑛, 𝑝, 𝜌 and 𝜎2 values
at certain values of 𝑘 and 𝑑. For both simulation designs, we generate the explanatory variables by the following McDonald and
Galarneau (1975) as

𝑥𝑖 𝑗 =

(
1 − 𝜌2

)1/2
𝑢𝑖 𝑗 + 𝜌𝑢𝑖 𝑝+1, 𝑖 = 1, 2, .., 𝑛, 𝑗 = 1, 2, ..., 𝑝 (10)

where 𝑢𝑖 𝑗 are independent standard normal pseudo-random numbers. 𝜌 is specified so that the correlation between any two
variables is given by 𝜌2. These variables are standardized such that 𝑋 ′𝑋 is a correlation matrix. Investigations are conducted on
three distinct sets of correlations that correspond to 𝜌 = 0.8, 0.9 and 0.95. The response variable is generated by

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ... + 𝛽𝑝𝑥𝑝𝑖 + 𝜀𝑖 , 𝑖 = 1, 2, . . . , 𝑛 (11)

where 𝜀𝑖 ∼ 𝑁
(
0, 𝜎2) and 𝛽0 is equal to zero. The values of 𝜎2 are 1, 5, and 10 for various comparisons of the error term. For

each set of explanatory variables, the parameter vector 𝛽 is chosen as the normalized eigenvector corresponding to the largest
eigenvalue of 𝑋 ′𝑋 so that 𝛽′𝛽 = 1. The sample sizes 𝑛 are 50, 100 and 200. The number of explanatory variables is chosen as
𝑝 = 4, 8, and 12.

We examine the effects of 𝑦-direction outliers on the estimators by considering three different cases such as no outlier, one
outlier and two outliers. When there is no outlier, dependent variables are taken into consideration as in Equation (11). In the
case of one outlier, the 𝑛 observation is changed as 𝑦 (𝑛) = 500. For two outlier case, 𝑦 (1) = 500 and 𝑦 (𝑛) = 500 altered
observations are used.

In order to estimate the biasing parameters in the simulation, based on the studies of Kibria (2003) and Qasim et al. (2020), the
biasing parameters for RE, LE, RRE, and LRE are taken as follows:

RE: 𝑘̂𝑅𝐸 =
𝜎̂2
𝑂𝐿𝑆(∏𝑝+1

𝑗=1 𝛽2
𝑂𝐿𝑆 ( 𝑗)

) 1
𝑝+1

where 𝜎̂2
𝑂𝐿𝑆

=

∑𝑛
𝑖=1 (𝑦𝑖− 𝑦̂𝑂𝐿𝑆 (𝑖) )2

𝑛−𝑝−1

LE: 𝑑𝐿𝐸 = max ©­«0,min ©­«
𝛽2
𝑂𝐿𝑆 ( 𝑗)− 𝜎̂2

𝑂𝐿𝑆

max
(
𝜎̂2
𝑂𝐿𝑆
𝜆𝑗

)
+max

(
𝛽2
𝑂𝐿𝑆 ( 𝑗)

) ª®¬ª®¬ where 𝜆 𝑗 is the jth eigenvalues of 𝑋 ′𝑋 , 𝑗 = 1, 2, ..., 𝑝 + 1.

RRE: 𝑘̂𝑅𝑅𝐸 =
𝜎̂2

𝐿𝑆𝑅(∏𝑝+1
𝑗=1 𝛽2

𝐿𝑆𝑅 ( 𝑗)

) 1
𝑝+1

where 𝜎̂2
𝐿𝑆𝑅

=

∑𝑛
𝑖=1 (𝑦𝑖− 𝑦̂𝐿𝑆𝑅 (𝑖) )2

𝑛−𝑝−1

LRE: 𝑑𝐿𝑅𝐸 = max ©­«0,min ©­«
𝛽2
𝐿𝑆𝑅 ( 𝑗)− 𝜎̂2

𝐿𝑆𝑅

max
(
𝜎̂2
𝐿𝑆𝑅
𝜆𝑗

)
+max

(
𝛽2
𝐿𝑆𝑅 ( 𝑗)

) ª®¬ª®¬ where 𝜆 𝑗 is the jth eigenvalues of 𝑋 ′𝑋 , 𝑗 = 1, 2, ..., 𝑝 + 1.

As a measure of performance we use the estimated Mean Squared Error (MSE) between the estimated parameters in the l-th
repetition, 𝛽 (𝑙) , and the true parameters 𝛽:

MSE =
1
𝑚

𝑚∑︁
𝑙=1

1
𝑝




𝛽 − 𝛽 (𝑙)



2

(12)

where 𝑝 is the number of explanatory variables. The simulation experiment is replicated 𝑚 = 2000 times by generating new
pseudo-random numbers. The R programming language was used to carry out the calculations. The results are given in Tables 1-3
where the lowest estimated MSE values in each row are indicated by bold.
In all 81 scenarios in Tables 1-3, the LSR, RRE and LRE outperformed other estimators according to criterion (12). With the
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Table
1.The

estim
ated

M
SE

valuesofthe
considered

estim
atorsforthe

m
odelw

hen
𝑝
=

2
N

o
outlier

O
ne

outlier
Two

outliers
𝜎

2
𝑛

𝜌
O

LS
R

E
LE

LSR
R

R
E

LR
E

O
LS

R
E

LE
LSR

R
R

E
LR

E
O

LS
R

E
LE

LSR
R

R
E

LR
E

1
50

0.8
3.874

1.731
0.836

1.104
1.008

1.043
66639.985

33649.654
10840.251

1.115
1.011

1.045
47482.474

13934.638
6376.756

1.119
1.012

1.048
5

50
0.8

18.756
7.000

3.602
1.796

1.243
1.229

66755.55
33738.42

10868.439
1.893

1.266
1.242

47585.798
13989.384

6389.664
1.906

1.27
1.245

10
50

0.8
39.375

14.953
8.504

2.547
1.466

1.324
66525.692

33542.163
10818.309

2.753
1.53

1.345
47403.547

13909.209
6374.627

2.781
1.534

1.340
1

50
0.9

8.586
3.144

1.367
1.33

1.072
1.102

10400.479
275.513

271.375
1.340

1.076
1.104

335131.132
160914.664

89564.179
1.392

1.088
1.114

5
50

0.9
42.251

14.49
7.867

3.02
1.605

1.443
10412.218

279.069
271.616

3.058
1.611

1.444
335134.314

160891.027
89610.788

3.364
1.699

1.499
10

50
0.9

81.964
27.041

14.999
4.822

2.097
1.629

10387.775
283.39

273.565
4.875

2.116
1.637

334751.036
160565.563

89372.943
5.368

2.259
1.711

1
50

0.95
14.332

4.986
2.313

1.565
1.159

1.178
110682.31

22309.457
16422.522

1.595
1.167

1.181
25303.971

310.034
239.406

1.619
1.175

1.188
5

50
0.95

72.727
25.501

15.425
4.03

1.88
1.614

110530.006
22269.075

16397.836
4.228

1.94
1.646

25272.394
313.56

245.276
4.375

1.981
1.663

10
50

0.95
142.487

46.331
28.765

6.875
2.787

2.124
110708.454

22374.722
16479.652

7.279
2.878

2.203
25391.9

321.936
253.227

7.340
2.865

2.200
1

100
0.8

3.34
1.471

0.720
1.036

0.996
1.02

10198.92
2144.602

984.846
1.038

0.996
1.021

480.365
3.225

85.917
1.042

0.998
1.024

5
100

0.8
17.474

6.768
3.864

1.396
1.121

1.169
10203.427

2151.653
999.082

1.404
1.123

1.171
496.307

3.431
87.961

1.421
1.127

1.175
10

100
0.8

34.438
12.756

7.631
1.771

1.233
1.225

10251.047
2176.151

1018.585
1.795

1.237
1.228

505.923
3.628

89.693
1.818

1.243
1.233

1
100

0.9
4.788

1.916
0.851

1.062
1.003

1.035
6251.16

362.017
264.557

1.063
1.003

1.036
1603.233

83.091
659.89

1.065
1.004

1.037
5

100
0.9

23.743
8.541

4.500
1.432

1.109
1.147

6287.381
372.356

270.937
1.442

1.113
1.151

1625.594
85.726

662.281
1.449

1.114
1.153

10
100

0.9
49.678

17.979
9.756

2.015
1.312

1.281
6314.094

384.904
279.665

2.021
1.31

1.28
1644.439

87.799
661.543

2.045
1.319

1.286
1

100
0.95

13.699
4.709

2.265
1.262

1.058
1.104

16134.448
1079.382

504.879
1.264

1.059
1.104

3786.59
659.29

1599.82
1.272

1.062
1.107

5
100

0.95
71.713

23.493
14.264

2.583
1.463

1.378
16206.988

1099.17
516.107

2.598
1.462

1.378
3838.046

669.735
1598.714

2.615
1.470

1.382
10

100
0.95

129.272
41.231

24.767
3.997

1.865
1.656

16270.935
1124.121

529.387
4.054

1.879
1.663

3910.352
688.784

1606.804
4.083

1.886
1.662

1
200

0.8
3.846

1.639
0.774

1.01
0.993

1.006
7926.647

1957.891
1343.945

1.010
0.993

1.006
5383.217

563.529
526.902

1.010
0.993

1.006
5

200
0.8

18.474
6.78

3.755
1.203

1.062
1.114

7965.217
1981.025

1363.837
1.206

1.064
1.115

5415.279
572.762

529.15
1.207

1.063
1.116

10
200

0.8
39.446

14.739
8.691

1.406
1.125

1.176
7985.94

1998.333
1381.326

1.420
1.130

1.18
5435.076

581.752
530.902

1.419
1.129

1.178
1

200
0.9

5.757
2.24

0.964
1.04

1.003
1.029

1723.361
483.201

632.332
1.040

1.003
1.029

14523.593
4669.841

2203.649
1.040

1.002
1.029

5
200

0.9
29.047

10.274
5.329

1.276
1.072

1.124
1741.125

488.224
633.732

1.279
1.073

1.125
14504.736

4667.649
2204.356

1.285
1.076

1.127
10

200
0.9

56.529
19.381
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60.855
14.441

7.742
2.390

2.203
10186.622

877.742
881.913

7.773
2.394

2.203
29050.204

3361.629
2095.271

7.812
2.398

2.201
1

200
0.9

35.310
9.526

1.098
2.132

1.215
1.638

16948.57
1290.932

625.896
2.139

1.217
1.640

127540.396
38822.079

3355.094
2.150

1.218
1.643

5
200

0.9
180.901

48.881
5.537

6.55
2.130

2.148
17079.771

1316.061
630.099

6.584
2.141

2.149
127685.158

38866.985
3359.624

6.691
2.170

2.153
10

200
0.9

364.599
98.811

11.02
12.313

3.367
2.225

17254.997
1348.93

635.024
12.421

3.390
2.226

127877.033
38929.171

3365.18
12.616

3.420
2.225

1
200

0.95
80.118

21.452
0.692

3.538
1.510

1.952
95780.669

20585.028
676.354

3.572
1.519

1.958
220670.252

57282.291
1760.579

3.599
1.524

1.961
5

200
0.95

398.392
106.157

3.443
13.267

3.517
2.191

96094.469
20689.105

679.066
13.345

3.526
2.188

220860.583
57326.758

1762.045
13.542

3.557
2.188

10
200

0.95
806.223

215.746
6.852

25.588
6.081

2.094
96396.472

20776.776
681.414

25.801
6.122

2.092
221089.695

57358.344
1764.309

26.000
6.158

2.090
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inclusion of the 𝑦-direction outliers, the performance of the commonly used OLS, RE and LE is quite poor. On the other hand,
LSR, RRE and LRE exhibited different behaviors in different scenarios. The following observations can be obtained from Tables
1-3:

1. When the number of outliers is gradually increased along with the number of variables in the model by keeping 𝜌, 𝑛, and 𝜎2

constant, an increase in the estimated MSE values of all estimators is observed.
2. When 𝑛, 𝑝 and 𝜎2 are held constant, we observe that the estimated MSE values of LSR generally increase as the correlation

between variables is increased, while the estimated MSE values of RRE and LRE remain almost constant. On the other hand,
when the correlation between the variables and the outliers in the data are increased, the estimated MSE values of the LSR and
RRE estimators increase. On the other hand, for 𝑝 = 8, the estimated MSE value of LRE decreases when the model variance is
large.

3. When 𝑛, 𝑝 and 𝜌 are kept constant and the variance 𝜎2 is increased, the MSE values of the LSR, RRE and LRE estimators
generally increase. When the model variance increases with the number of outliers, the estimated MSE values of the LSR and
RRE increase. On the contrary, for 𝑝 = 8, the estimated MSE values of LRE decrease at high correlation and small sample size.

4. When 𝑝, 𝜌 and 𝜎2 are kept constant and the number of observations in the model is increased, a decrease is observed in the
estimated MSE values of all estimators. When the number of outliers and the number of variables in the model are increased, a
decrease is observed in the estimated MSE values of the LSR and RRE. On the other hand, the estimated MSE values of the LRE
for 𝑝 = 8 show an increase at high correlation and large variance values.

As a result, we can conclude that the estimated MSE values for LSR, RRE and LRE for variables such as 𝑛, 𝑝, 𝜌 , and 𝜎2 with the
change in the number of outliers are considerably lower than OLS, RE and LE.

In the second simulation scheme, we investigate the performance of LSR, RRE and LRE in the presence of 𝑦-direction outliers
for each 𝑛, 𝑝, 𝜌, and 𝜎2. The purpose of this simulation is to investigate the performance of LSR, RRE and LRE with respect
to MSE values given in (12) with various values of the biasing parameter 𝑘 and 𝑑 and the presence of outliers in the 𝑦-direction.
The biasing parameters 𝑘 and 𝑑 are not estimated in the second simulation scheme. Only the MSE values obtained by increasing
𝑘 and 𝑑 values in the range [0, 1] by 0.1 are compared. We only consider the cases 𝜌 = 0.8, 0.95, 𝑛 = 50, 200, and 𝑝 = 2, 8,
and 𝜎2 = 1, 10. Depending on these 𝑛, 𝜌, 𝑝, and 𝜎2 values, the explanatory variables are generated according to equation (10).
Similar to the previous simulation scheme, we examine the effects of outliers in the 𝑦-direction on the estimators considering three
different cases: no outliers, one outlier and two outliers. For every values of 𝑘 and 𝑑, the simulation is run 2000 times. The results
are collectively presented graphically in Figures 1-6.
Figures 1-6 clearly show the effects of varying the biasing parameter 𝑘 and 𝑑 between 0 and 1 on the estimated MSE values of the
estimators. According to the figures, we can obtain the following results depending on each

(
𝑛, 𝜌, 𝑝, 𝜎2) .

1) The LSR estimator showed an increase in the estimated MSE values in the presence of none, one and two outliers in the
𝑦-direction, but generally showed a stable behavior.
2) Although the MSE values estimated for RRE decreased with increasing values of the biasing parameter 𝑘 , it did not affect the
MSE values estimated from the outliers in the 𝑦-direction.
3) Although the MSE values estimated for LRE increased with increasing values of the biasing parameter 𝑑, it did not affect the
MSE values estimated from the outliers in the 𝑦-direction.
As a result, no dramatic change is observed in the MSE values estimated by comparing LSR, RRE and LSR among themselves as
OLS, RE and LE. On the other hand, for large values of the biasing parameter 𝑘 , RRE and for small values of the biasing parameter
𝑑, LRE stand out due to their performance.

4. AN EMPIRICAL APPLICATION

In this section, we created an experimental dataset to study the performance of LSR, RRE and LRE. To do this, we created a
dataset using Equation (10) with 𝑛 = 100,𝑝 = 4 and 𝜌 = 0.95. We used set.seed(4) in the R Program. Using equation (11) to
create the response variable with 𝜎2 = 5. Modified observations 𝑦 (1) = 500 and 𝑦 (𝑛) = 500 were used to create two outliers. In
this case, the eigenvalues of the 𝑋 ′𝑋 matrix were calculated as 100.000, 3.738, 0.106, 0.092, and 0.064. The condition number
is approximately 39.410, therefore the matrix X is moderate ill-conditioned. The eigenvalues of the 𝑋 ′𝑋 matrix were calculated
as 164.869, 5.437, 0.122, 0.077, and 0.060. The condition number is approximately 52.593, therefore the matrix 𝑋 is moderate
ill-conditioned. The numerical results are summarized in Table 4.

From Table 4, it can be observed that the estimated MSE values of LSR, RRE, and LRE give smaller values compared to OLS,
RE, and LE. As a result, RRE and LRE outperform LSR in the presence of multicollinearity and 𝑦-direction outliers. It also seems
that LRE can be a strong alternative to RRE.
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Figure 1.The estimated MSE values of LSR, RRE and LRE as a function 𝑘 and 𝑑 where 𝑝 = 2 with no outlier

Table 4.The estimated parameter values and the estimated MSE values of the estimators

𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝑀𝑆𝐸
(
𝛽
)

𝛽𝑂𝐿𝑆 11.0549 59.8429 455.3388 26.2779 -451.0035 83022.074
𝛽𝑅𝐸

(
𝑘̂𝑅𝐸 = 0.7087

)
10.9771 14.8855 67.4696 22.2895 -30.0934 1255.141

𝛽𝐿𝐸

(
𝑑𝐿𝐸 = 0

)
10.9454 14.598 53.2606 20.1941 -18.1441 777.143

𝛽𝐿𝑆𝑅 0.1297 6.8485 -4.443 -5.1036 1.8292 19.359
𝛽𝑅𝑅𝐸

(
𝑘̂𝑅𝑅𝐸 = 0.2234

)
0.1239 1.2467 -1.202 -1.4109 0.6017 1.224

𝛽𝐿𝑅𝐸

(
𝑑𝐿𝑅𝐸 = 0

)
0.1253 0.2183 -0.439 -0.5042 0.0808 0.253
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Figure 2.The estimated MSE values of LSR, RRE and LRE as a function 𝑘 and 𝑑 where 𝑝 = 8 with no outlier
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Figure 3.The estimated MSE values of LSR, RRE and LRE as a function 𝑘 and 𝑑 where 𝑝 = 2 with one outlier
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Figure 4.The estimated MSE values of LSR, RRE and LRE as a function 𝑘 and 𝑑 where 𝑝 = 8 with one outlier
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Figure 5.The estimated MSE values of LSR, RRE and LRE as a function 𝑘 and 𝑑 where 𝑝 = 2 with two outliers
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Figure 6.The estimated MSE values of LSR, RRE and LRE as a function 𝑘 and 𝑑 where 𝑝 = 8 with two outliers
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5. CONCLUSION

In this article, we proposed a new estimator named the LRE as an alternative to LSR and RRE in the presence of multicollinearity
and 𝑦-direction outliers. Two separate Monte Carlo simulation study are conducted to examine the performance of LRE. In the
first simulation study, we compared the considered estimators together with the estimates of the biasing parameters 𝑘 and 𝑑. When
the 𝑦-direction outliers are taken into account, the performance of OLS, RE and LE is considerably poor, while the performance
of LSR, RRE and LRE is more stable. In the second simulation study, the performance of LSR, RRE and LRE are analyzed by
choosing 𝑘 and 𝑑 values as fixed and equally spaced. According to the simulation results, LRE performs better for small values
of 𝑑 and RRE performs better for large values of 𝑘 . According to the simulation results and the analysis of synthetic data, we
recommend LRE as an alternative to RRE in the presence of 𝑦-direction outliers and multicollinearity between variables.
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