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ABSTRACT 

 
Strategies for comparison of alternative tests do not receive much attention in 

econometrics. The purpose of this paper is to introduce the concept of stringency and 

illustrate it in the context of a very simple hypothesis testing problem. Systematic use of 

this concept can be very helpful in evaluating relative performance of tests.  
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1. INTRODUCTION 

 

We start by posing a puzzle: why did the Durbin and Watson (1950) and Durbin and Watson 

(1951) papers on testing for serial correlation become among the most highly cited 

econometrics papers of the era? It was clear to contemporaries that serial correlation was 

widespread in time series, but all tests necessarily depend on the structure of the matrix of 

regressors. The contribution of Durbin and Watson was to create bounds which were 

invariants across all design matrices, and hence permitted tabulation of critical values. 

Without such a table, limitations in computational capabilities made it impossible to test for 

serial correlation. Advances in computational capabilities have now made it a trivial matter to 

obtain simulated critical values for any test statistic, taking the design matrix into account. 

Contemporary journals would reject the Durbin Watson paper; it provides an unnecessary 

approximation. 

 

While the concept of “stringency” is critical for the evaluation of tests, it receives virtually no 

attention in textbooks; see however, Zaman (1996) for an extended discussion. The main 

reason for this neglect is that the heavy computations required for widespread application of 

this concept have become possible only recently, due to massive increases in computational 

capabilities of computers. 

 

Lehmann and Romano (2005, p. 245) write that methods based on invariance and 

unbiasedness apply to a restricted class of problems. Outside this class, the problem of what 

to look for in a good test is left not only without a solution, “but even without a formulation.” 

Later, they suggest that “stringency” provides a possible formulation, but it is difficult to 

compute the most stringent test when considerations of invariance cannot be applied. The goal 
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of our paper is to show that advances in computational power have made it much more 

feasible to look for the most stringent test, although finding it remains computationally 

burdensome. Generations of statisticians brought up on this canonical text have absorbed the 

lesson that except in a very narrow class of problems, finite sample comparisons of 

hypothesis tests can only be done in an intuitive and ad-hoc way. Asymptotic theory does 

create substantial simplifications, so that globally valid comparisons of tests can be carried 

out, and several methodologies for doing this have been developed by a number of authors. 

However, asymptotic comparisons of tests suffer from the following as yet unresolved 

problems: 

 

1. Three different ways to taking limits to calculate the asymptotic power lead to three 

different criteria for optimality of tests: Pitman efficiency, Bahadur efficiency, and 

Hodges-Lehmann efficiency. Unfortunately, these are often in conflict, and no clear 

resolution of these conflicts is available. 

 

2. One way to resolve the conflict is to study how well the finite sample situation is 

approximated by the three different types of asymptotics. While there are many results 

in this direction, no clear conclusion has emerged from this line of research. 

 

3. Asymptotics provide a coarse gauge of test performance. Large numbers of tests with 

vastly different finite sample properties turn out to be asymptotically equivalent for 

one or more of the asymptotic performance criteria. 

 

In particular, asymptotic methods of comparison prove LM (Lagrange multiplier), Wald and 

LR (likelihood ratio) tests to be first order equivalent, but these can have drastically different 

finite sample performances. The results of this lack of a methodology for finite sample 

comparison of tests, is chaos. Analytics are generally impossibly complex, so simulation 

studies are the only feasible means for test comparisons. However, simulations studies show 

what is obvious a priori: each test has areas of strength and weakness. This means that tests 

cannot be compared without knowing the alternative hypothesis, but tests are useful only 

when we do not know whether or not the null hypothesis holds, and do not know the 

alternative. We can cite hundreds of studies with different and conflicting recommendations 

for hypothesis tests, since there is no standard method for comparisons; see Islam (2017) for 

illustrations of these conflicts. 

 

Over the past few decades, massive increases in computational power have made feasible a 

computational approach to stringency which was not originally possible. This makes it 

possible to apply the concept to a much wider class of problems than those treated by 

Lehmann. We propose the use of “stringency” as a Gold Standard for the evaluation of tests. 

For a one-dimensional parameter, it should usually be possible to evaluate this one number 

numerically for most hypothesis testing problems. Zaman (1996) utilized this methodology to 

show that the popular Durbin-Watson test for autoregressive errors in regression model was 

very poor compared to certain alternatives. More recently, Khan (2017) has used the approach 

to compare tests of normality and come up with definitive recommendations. For higher 

dimensional problems, there remain formidable obstacles to the numerical evaluation of 

stringencies. Nonetheless, the concept sets up a clear target for what to look for in tests; this 

contrasts with Lehmann's pessimistic conclusion that the problem is left not only without a 

solution, but “even without a formulation.” Stringency provides a formulation of the 

problem of what to look for in a good test. Even if exact evaluation of stringencies is not 

possible, a large number of strategies can be used to provide an approximation to this one 
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number which provides a clear cut evaluation and ranking of all tests. Having a goal, a well-

defined target number we are trying to calculate as a single performance measure for all tests, 

would lead to substantial clarity even in situations where only approximations to it are 

available. 

 

Even though we find occasional applications of it in the literature, the basic concepts involved 

in using stringency as a measure of finite sample performance of tests, remain unfamiliar to 

most. The goal of this paper is to provide an exposition of stringency in the context of a very 

simple example: tests for location parameter of a single draw from a Cauchy distribution. This 

example is chosen since many of the required tools can be analytically calculated, while those 

which cannot be, are easily evaluated numerically. 

 

A quick review of the notation and definition of stringency and related concepts is given in 

Section 2. From Section 3, we specialize to the case of testing for a Cauchy location 

parameter. Section 4 describes the Neyman Pearson (NP) tests in this context. The power 

function of these tests is computed in Section 5. A qualitative description and graphs of the 

power envelope, the shortcoming, and the stringency for the Neyman Person tests are shown 

in sections 6 and 7 and 8 respectively. Section 8 then concludes by finding the most stringent 

NP test, followed by a discussion of why even more stringent tests would be possible if we 

did not limit our search to only NP tests. 

 

2. CONCEPT OF STRINGENCY IN HYPOTHESIS TESTING 

 

We review the basic principles of hypothesis testing in order to set up the notation, 

terminology and framework for our discussion of stringency. Suppose that we have a vector 

of observations X, which comes from a parametric family of densities X
 ∼  

f(x ,θ). The 

parameter θ ∈ Θ is an element of the parameter space Θ. 

 

2.1. Hypotheses 

  

A hypothesis test consists of two mutually disjoint subsets Θ0 and Θ1 of Θ that are interpreted 

as 

Null Hypothesis   : X ∼ f(x ,θ) for some θ ∈ Θ0 

Alternative Hypothesis   : X ∼ f(x ,θ) for some θ ∈ Θ1 

 

2.2. Tests and Rejection Regions Hypotheses 

  

Any function T(X) taking values {0,1} is called a test
1
, with the interpretation that when X is 

observed, we accept the null hypothesis if T(X)
 
=

 
0 and reject if T(X)

 
=

 
1. The set of all 

values of X for which T(X)
 
=

 
1 is called the rejection region of the test, and tests can 

alternatively be characterized by their rejection regions.  

 

2.3. Power, Size and Errors of Types I and II  

 

There are two types of errors that can occur during hypothesis testing, and the probabilities of 

these errors can be used to evaluate the performance of tests. A type II error is when the Null 

Hypothesis is actually false, but the test does not reject the Null Hypothesis. The power of a 

                                                 
1
 Randomized tests can take intermediate values, but these can be ignored for the purposes of the present 

discussion. Our goal is to present an exposition in the simplest possible framework. 
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test is one minus the probability of type II error, which is a function of the exact value of θ in 

the parameter space of alternatives Θ1. Using Π to denote power, 

 

 Power of T(⋅) = Π(T ,θ)  = 1 – P(T(X) = 0 | θ)  = P(T(X) = 1| θ) (2.1) 

 

where the domain of θ is considered limited to the Θ1 region. A type I error is when the Null 

Hypothesis is true, but the test rejects the Null Hypothesis. The size (also called level) of a 

test is defined as the maximum possible probability of type I error:  

 

 Size of T(⋅) =  (T) )|1)((sup 0 


XTP   (2.2) 

 ),(sup
0




T


  (2.3) 

 

Note the abuse of notation in the last equation, where we are using the power function Π 

outside of its usual domain. For a test to be considered good it should have a small size and a 

high power. 

 

2.4. Power Envelope 
 

Let us fix the size, α, of the test and define  α be class of all tests of size α. To define 

stringency, the crucial concept is the power envelope, which is the maximum possible power 

that can be achieved at a given alternative. For any given size α, this can be defined as 

follows: 

     θ,α  sup
 ∈ 

α

Π(  θ  (2.4) 

   

This is the maximum possible power achievable against the alternative θ by any test T of size 

α. 

 

2.5. Shortcoming 
 

The shortcoming, S, of any test T is measured by its performance relative to the power 

envelope: 

 S(T ,θ)
 
=

 
MP(θ ,α)

 
–

 
Π(T ,θ) (2.5) 

 

A test with zero shortcoming at θ is called the Most Powerful test for the alternative θ. Such a 

test has the property that no other test of equal size can have more power at θ. 

 

2.6. Stringency 
 

The stringency of a test is the maximum shortcoming of a test evaluated over the entire space 

of alternatives: 

 ),(max)(
1




TSTS


   (2.6) 

 

This is a single number which measures the overall performance of the test. This means that 

all tests can be compared and ranked on the basis of this measure. Furthermore, the stringency 

of a test has a natural and intuitive explanation. A test with stringency zero is a uniformly 

most powerful test – it is most powerful for all alternatives. This test should always be 

preferred, if it exists. If a test has stringency of 1%, it means that the test has power only 1% 
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less than the most powerful test available at all possible alternatives. For practical purposes, 

this test is nearly as good as a uniformly most powerful test. If tests with stringencies between 

5% to 10% can be found, then we need search no further for practical purposes. If the best 

available tests have stringency of 50% or more, then we should search for better methods of 

testing. The point is that evaluating stringency of tests provides us with a very important 

guide to the use and comparison of tests in practical problems. Previously, this evaluation was 

only possible in a very narrow class of problems, and hence the concept of stringency was 

ignored as being of limited practical value. Massive increases in computer power have made 

possible to evaluation of stringency in a much larger class of problems. The goal of this 

article is to illustrate this possibility. 

 

3. NEYMAN-PEARSON TESTS FOR CAUCHY LOCATION PARAMETER 

 

To clarify the concepts discussed so far, we illustrate them all within the context of an 

example. Suppose X is a random variable with a Cauchy distribution, with location parameter 

θ: X
 ∼ 

(θ). The likelihood function for X, which is also the density of X, is: 

 
])(1[

1
),(

2





x
xl    

 

Throughout this paper, we consider the one-sided problem of finding a hypothesis test in the 

following situation  

Null Hypothesis  0: X ∼   (0).  

Alternative Hypothesis  1: X ∼  (θ) for some θ > 0 (3.7) 

  

We occasionally want to consider only a single point alternative, in which case we will use 

the notation 

Point Alternative   : X ∼  (θ) for some θ > 0 

 

According to the Neyman Pearson lemma, the most powerful test against a point alternative 

θ ∈ Θ1 must reject the Null hypothesis for all x for which the likelihood ratio 

 

 C
xl

xl
xLR 

),(

)0,(
),(


   (3.8) 

 

for some constant C. While the usual definition of the likelihood ratio is the inverse of our 

definition in equation 3.8, we will use the reversed ratio, because it simplifies the algebra. For 

the Cauchy problem at hand, this can be written explicitly as 

 

 
2

2

1

)(1
),(

x

x
xLR







   (3.9) 

 

With this definition, all Neyman Pearson tests have rejection regions of the form 

 

 RR(θ,C) = {x:
 
LR(x ,θ)

 
≤

 
C}

 
=

 
{x:

 

2

2

1

)(1

x

x



 
≤

 
C}

 
 (3.10) 

 = {x:
 
0

 
≤

 
(C

 
–1)x

2 
+

 
2θx

 
+

 
(C

 
–

 
1

 
–

 
θ

2
)} (3.11) 
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Neyman Pearson tests are all the indicator functions of rejection regions  

 

 NP(X,θ,C) = I(X ∈ RR(θ,C))  

 

The size or level of any such test is 

 

α =
 
E(NP(X ,θ ,C)

 
|  0) 

 =
 
P(X

 ∈ RR(θ ,C)
 
|  0)  

 =
 
P(LR(X ,θ)

 
≤

 
C |  0)  

   

The most powerful test against a point alternative θ1 is NP(x ,θ1 ,C*(θ1 ,α)), with fixed level 

α, where C
*
(θ1,α) is the value of C for which the level is α. In other words, 

 

  P(LR(X ,θ1)
 
<

 
C

*
(θ1 ,α) |  θ 

)
 
=

 
α (3.12) 

 

We often wish to consider the α-level Neyman-Pearson test against a point alternative θ1, and 

evaluate its performance (power) when the actual value of the alternative is θ. We will denote 

this function of three variables as 

 

 ΠNP(θ1 ,α ,θ) =
 
Π(NP(X ,θ1 ,C

*
(θ1 ,α)),θ) (3.13) 

 =
 
E(NP(X ,θ1 ,  C

*
(θ1 ,α))

 
|   )  

 =
 
P(X

 ∈  RR(θ1 ,  C
*
(θ1 ,α))

 
|   )  

 =
 
P(LR(X ,θ1)

 
≤

 
C

*
(θ1 ,α) |   )  

 

Finally, because Neyman Pearson tests, NP(X ,θ ,C), are the most powerful tests against the 

point alternative θ, we can claim that 

 

 MP(θ ,α)= ΠNP(θ1 ,α ,θ)  (3.14) 

 

is the maximum power possible for any α-level test, where C
*
 is as defined in equation 3.12. 

 

3.1. Explanation of the Neyman Pearson Lemma 
 

The first goal in the calculation of stringency is the calculation of the power envelope. This is 

a function of θ1 that maps each value in the alternative to the maximum possible power that 

attainable at θ1 within the class of level α tests. In this particular problem, and in all one 

parameter problems, the test NP(X ,θ ,C) is the best possible test at the alternative θ among all 

tests having the same significance level as the NP test. The meaning of “best” is defined by 

the following theorem. 

 

Theorem 3.1. (Neyman-Pearson) Suppose that the test NP(X ,θ ,C) has level α and T(X) is a 

different test with level less than or equal to α. Then the test T must have less power than NP 

at the alternative θ. 

 

In other words 

 

Π(T ,θ)
 
= P(T(X)  = 1|   )) ≤ P(NP(X ,θ ,C)

 
=

 
1|   )

 
=

 
Π(NP(X ,θ ,C),θ) 

 

Explanation: The mathematical proof is available from many sources. Here we offer an 

intuitive explanation. While the mathematical statement appears complex, the intuition is 
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quite straightforward. The NP test is the best possible test because it rejects the null at all the 

points in the rejection region RR(θ ,C) = {X: LR(X ,θ) ≤ C}. Any different test must remove 

some points from this region, and replace them by points outside this region to get equal size. 

But points outside this region have LR(X ,θ) > C, so that the null hypothesis is more likely at 

those points, while the alternative is less likely. Rejecting the null hypothesis when it is more 

likely leads to a loss in power. 

 

Before doing explicit analytical calculations, it is useful to do a graphical analysis of the 

likelihood ratio, so as to acquire some intuitive understanding of the shape of the rejection 

regions for varying values of C and θ. This is undertaken in the next section. 

 

4. REJECTION REGIONS OF THE MOST POWERFUL TEST 

 

4.1. The Likelihood Ratio 
 

Fixing the value of θ at 0.5, a graph of LR(x ,θ
 
=0.5) is shown in Figure 4.1. The shaded area 

in the graph represents the rejection region. 

 

For any θ > 0 it can be verified by calculus that LR(x ,θ) as defined in Equation 3.9 has the 

following properties: 

 

1. ),(lim1),(lim  xLRxLR
xx 

  

 

2. 
2

2

1

1
),()1),2/((1),0(





 LRLRLR  

 

3. LR is continuous, having a minimum at (xmin(θ),ymin(θ)) and a maximum at 

(xmax(θ),ymax(θ)) with xmin(θ)
 
< 0 < xmax(θ), 

 

4. The curve is strictly increasing from −∞ to xmax 

 

5. The curve is strictly decreasing from xmax to xmin 

 

6. The curve is strictly increasing from xmin to ∞. 

 
Figure 4.1 The LR(x ,θ  = 0.5) and Rejection Regions 

 
 

Any horizontal line with height C between ymin and ymax (we use the shorthand xmin to refer to 

xmin(θ), when there is no danger of confusion) will hit this curve once at some point xin(θ,C) 
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between xmin and xmax. If C ≠ 1, there will be exactly one other point of intersection at xout(θ,C). 

This second point will be to the right of xmax if C < 1 and to the left of xmin if C > 1. 

4.2. Rejection Regions in terms of Likelihood Ratio 

 

Given any value of C between ymin and ymax, we can characterize three different kinds of 

rejection regions. 

 

1. If C
 
<

 
1 then xin

 
<

 
xout and RR(θ ,C)

 
=

 
(xin,xout). 

 

2. If C
 
=

 
1 then xout does not exist and RR(θ ,C)

 
=

 
(xin,∞ . 

 

3. If C
 
>

 
1 then xout

 
<

 
xin and RR(θ ,C)

 
=

 
(xin,xout)

c
 which is the complement of an interval. 

 

The actual coordinates of the extrema are given by 

 













 
 2

max

2

minmin ,
2

4
),( xyx


 













 
 2

min

2

maxmax ,
2

4
),( xyx


 

  

For values of C < ymin the rejection region is the empty set, and for C > ymax, the entire real 

line is the rejection region. Between these two limits, the rejection region grows 

monotonically as C increases. Correspondingly, the probability P(RR(θ ,C) |    ) increases 

continuously from 0 to 1 as C increases. Given any level 0 < α < 1, there is a unique value 

C
*
(α ,θ) at which the test NP(X ,θ ,C

*
(α ,θ)) has level α, and that value is obtained by solving 

the equation P(RR(θ ,C) |    )  =
 
α for C. As this is a Neyman Pearson test, amongst all tests 

of level α it is the most powerful test. 

 

4.3. The Level of a NP Test 

 

The most powerful level α test is characterized by the following theorem: 

 

Theorem 4.2. (α level NP Test Neyman-Pearson): The most powerful level α test for the 

Hypotheses in (3.7) rejects the null for all x
 ∈ 

RR(θ ,C
*
(θ ,α)) where 

 

4

4

22
1),(

2

22
*













C  and 




tan

2
  

(4.15) 

 

 

The definition of θα is motivated by the fact that it is that value of θ for which C
*
(θ ,α)

 
=

 
1. 

Another way of saying it is that the test NP(x ,θα ,1) has level α. Or using plainer words, when 

the level of the test is set to α, and the likelihood ratio cutoff is set to C
 
=

 
1, then θα is the 

value of the alternative θ against which a test has level α. 
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Proof: For the case of C
 
=

 
1, it is easy to see that the rejection region of the Neyman Pearson 

test NP(x ,θ ,1) is of the form RR(θ ,1)
 
=

 
(θ/2,∞ , and that its level is 

 





 

)2/arctan(2/arctan

)1( 2/2/

2









x

x

dx
 

  

When we set the level at α, this becomes α
 
=

 
1/2

 
–

 
arctan(θ/2)/π. When we solve this for θ, 

the result is θα
 
=

 
2

 
/
 
tan(πα), which proves the theorem when C

 
=

 
1. 

 

When C
 
≠

 
1, the two points where the horizontal line at C meets the LR curve are the roots of 

the equation LR(x ,θ)
 
=

 
C or 

 (1
 
–

 
C)x

2 
–

 
2θx

 
+

 
1

 
–

 
C

 
+

 
θ

2
  (4.16) 

 

They can be computed to be 

 

 
C

CC
xin






1

)1( 22
 (4.17) 

 
C

CC
xin






1

)1( 22
 

 

Note that when (C
 
<

 
1) then xin <

 
xout, and when C

 
<

 
1 the inequality is reversed. Furthermore, 

when C
 
<

 
1 the leading term of the quadratic equation 4.16 is positive, so the smaller values 

(which comprise the rejection region) will be between the roots, and when C
 
>

 
1 the leading 

term is negative so the smaller values will occur outside the roots. 

 

The level of the NP test, when C
 
<

 
1 is given by 

 

 
out

in

out

in

x

x

x

x

x

x

dx



arctan

)1( 2


  (4.18) 

 

When C
 
>

 
1 the value xout <

 
xin so this integral in equation 4.18 is negative. Also in this case, 

we are looking for the probability outside the interval, so the level of the NP test for this case 

is given by 

 1
arctan

1
)1( 2




out

in

out

in

x

x

x

x

x

x

dx


 (4.19) 

 

Actually, the two cases in the previous equation are not really different. The arctan is a multi-

valued function, of which we usually take the principal branch, which take values between 

­π/2 and π/2. If instead, we choose the discontinuous branch taking values between 0 and π, 

the “+1” would occur automatically. We will instead, rewrite the above two equations as one 

by simply adding an indicator function as 

 

 }0{
arctan

1
)1( 2


 out

x

x

x

x

xI
x

x

dx
out

in

out

in


 (4.20) 
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If we set the level equal to α we must have 

 

 })0{(arctanarctan  outinout xIxx    

 

Since tan is has a period of π, if we take tan of both sides, tan(πα)
 
=

 
tan(πα–π), so we can 

ignore the indicator function. On the left hand side, we can use the trigonometric identity 

tan(a–b)
 
=

 
(tan(a)–tan(b))/(1+tan(a)tan(b)) to get 

 

tan
1






inout

inout

xx

xx
 

 

Substituting the roots from equation 4.17 and using the definition of θα in the statement of this 

theorem yields 

 
)1(2

)1(2
tan/2

2

22

C

CC









  (4.21) 

 

Squaring both sides, and rearranging 

 

 22222 ))1(2())1((   CCC   

 

This last is a quadratic equation in C with two roots, which, after some simplification turn out 

to be 

 
4

4

22
1

2

22













C  (4.22) 

 

Since ymax
 
=

 
1+θ

 
/2+(θ θ   )/2, only the smaller root in the above equation is valid as a 

solution, which is the claim of the theorem. 

 

This is the proof for all cases. □ 

 

For any fixed point alternative θ, equation 4.22 allows us to solve for the likelihood ratio 

cutoff of the most power test, C
 
=

 
C

*
(θ ,α) in terms of α. Similarly, equation 4.21 can easily 

be solved to give the level α of the most powerful test in terms of the likelihood ratio cutoff C. 

 

We can then compute the limits of the rejection region, xin and xout by plugging the value of 

C
*
(θ ,α) and θα from the theorem into equation 4.17. After some simplification this results in 
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Theorem 4.3. Using the definitions given in equation 4.23, the rejection region for the most 

powerful α level test is given by 
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
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Figure 4.2 The Rejection Region RR(θ
 
=

 
0.5,α )  as a function of α  

 
 

4.4. Rejection Regions in terms of the α-Level  

 

To get an idea of the structure of these tests, below are shown graphs of the rejection region 

with the value of θ fixed at 0.5. 

 

Note that this is exactly the same as the graph in Figure 4.1, except that the y-axis has 

undergone a nonlinear monotonic transformation, given by the maps between C
*
(θ ,α) and α 

given in equations 4.15 and 4.21. 

 

Note also that for any particular observed value X, the p-value (or the observed significance 

level), is defined as the smallest α for which X lies in the rejection region. In fact, the curve in 

Figure 4.2 is a graph of p-value on the y-axis against observations X on the x-axis. 

 

Another way to look at the rejection regions is to fix a level α at a particular value, say 0.05, 

and see how the rejection region varies as a function of the alternative θ1. This is shown in 

Figure 4.3. 
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Figure 4.3 The Rejection Region RR(θ1 ,α=
 
0.5) as a function of θ1  

 
 

5. THE POWER FUNCTION OF NP TESTS 

 

Remember that the power of a test T is a function of θ as defined in equation 2.1 

 

The left graph in Figure 5.4 is the power function 

 

  ΠNP(θ1 = 2, α = 2, θ)  

  

of the fixed test: NP(X ,θ1
 
=

 
2,α

 
=

 
0.2). It is often a point of confusion, that the maximum of 

this power function does not occur at θ
 
=

 
2. In fact, the power function often fails to have a 

maximum, because it often approaches 1 in the limit as θ
 
→

 
∞. This is because a power 

function takes one fixed test, designed to be optimal at the point θ1
 
=

 
2 and measures its power 

at other θs for which the test was not designed. 

 

As compared to the power function, if we were to fix the level α and alternative θ where the 

power is to be evaluated, and consider all possible tests, we would find that the test 

NP(X ,θ1  =
 
θ ,α) would be the most powerful (this is exactly the result of the Neyman Pearson 

Lemma). In the right graph of Figure 5.4 the power of all Neyman Pearson tests against 

different alternatives θ1 is shown when measured at θ
 
=

 
0.2. 

 

Both of the functions shown in Figure 5.4 are actually different views of the ΠNP(θ1,α θ) 

function defined in 3.13. The fact that it would take four dimensions to draw this function 

makes it challenging to visualize. Three of the four dimensions are depicted in Figure 5.5, 

which fixes α at the values of 0.05 and 0.20 and shows the other three dimensions. The curves 

of Figure 5.4 can be seen as two different slices from the image on the top right in Figure 5.5. 

 
Figure 5.4 Power as a function of θ and θ1  
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Figure 5.5 Power as a funtion of θ and θ1  

 
 

 

 

An obvious observation from the lower graphs of Figure 5.5 is that when θ   0 the power is 

equal to α. What is more interesting is the meaning of the power vs. α curve when θ    0. 

When θ    0, the likelihood ratio is simply a constant  , so there are technically only two NP 

tests, One with α   0 which rejects nothing and one with α     which rejects everything. The 

shown curve is the limit of NP tests, as θ → 0 . In this case, the rejection region is an 

interval, which can be seen graphically in Figure 5.3, and according to equation 4.23 works 

out to be sec(πα  ± tan(πα , and the probability of this region when the actual distribution is 

centered at θ is shown in the graph (when α > 0.5 the tan becomes negative and we consider 

the outside of the interval rather than the inside, as previously). 

 

6. THE POWER ENVELOPE 

 

Knowing the power of the most powerful tests, it is easy to calculate the power envelope, 

which is the maximum possible power attainable at any alternative θ. Note that even though 

the power envelope was computed using only NP tests, it is the maximum possible power 

against all possible tests. 
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As mentioned in 2.4, the curve along the diagonal, ΠNP(θ ,α ,θ), is exactly the maximum 

power function, MP. It can be computed explicitly as 

 

),,(),(  NPMP   
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 /))),(arctan()),((arctan(  inout xx

where the values of arctan are to be taken so that the answer ends up between 0 and 1, by 

reasoning similar to the explanation of equations 4.18 and 4.19. We already have formulas for 

xout and xin in equation 4.23. 

 

The power function (the left curve of Figure 5.4) has been redrawn for many different values 

of θ1 in Figure 6.6. The curves represent the values θ1
 
=

 
0,

 
1.3,

 
2.75,

 
10 and 10

6
. A bold curve 

has been drawn to show the envelope of all these curves and this is the MP function. Note that 

each power curve tangentially touches the MP curve at the point θ
 
=

 
θ1, a fact that is explained 

by equation 3.14. 

 
Figure 6.6 Power Envelope and Power Functions for NP tests 

 
 

7. SHORTCOMING 

 

The difference between the power envelope and the power function of any test is the 

shortcoming of that test. As we are only considering NP tests at the moment, we can introduce 

the notation 

SNP(θ1,α,θ) =
 
S(NP(X ,θ1,C

*
(α)),θ) 

 

to refer to the shortcoming of the α-level NP test against the alternative θ1. If we subtract each 

of the power functions of Figure 6.6 from the power envelope, we can see the shortcoming of 

the tests more clearly in Figure 7.7. 
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Figure 7.7 The Shortcoming SNP(θ1,α
 
=

 
0.2,θ) 

 
There two different kinds of power curves in Figure 7.7 the ones with small values of θ1 

approach 1 in the limit as θ
 
→

 
∞. The reason for this can be seen by noticing that if θ1

 
<

 
θα, 

then the rejection region is bounded. As θ gets larger, the rejection region becomes infinitely 

far from θ, so the rejection probability falls to zero (which implies that the shortcoming 

approaches 1). On the other hand, as soon as θ1
 
>

 
θα, the rejection region contains all values 

above xout, so as θ gets large, the probability of the rejection region approaches 1 so the 

shortcoming approaches zero. Since θα
 
<

 
0 for all α

 
>

 
0.5, so for large α, all power curves will 

be off the second type with the shortcoming approaching 0 as θ gets large. 

 

Note that in Figure 6.6, θα=0.2 ≈
 
2.75, which is the first curve that appears to approach 1 in the 

limit (actually, since θα 0.2 is slightly larger than 2.75, the drawn curve would eventually fall). 

An α-level Neyman-Pearson test against the alternative θ1 has zero shortcoming 

 

 at θ
 
=

 
0, because at that point the level α is equal to the power. 

 

 at θ
 
=

 
θ1 because at that point the test is most powerful, and hence tangent to the power 

envelope. 

 

 and in the limit as θ
 
→

 
∞, when θα

 
<

 
θ1 , as explained above. 

 

7.1. A Conjecture 

 

For the values of θ
 
≥

 
θα, from the graph it seems like the largest difference between MP and 

the power function occurs at small values of θ. One might conjecture that the test against 

θ
 
=

 
θα might be the test that achieves minimum shortcoming. We will see that while this 

conjecture is often true, it does not hold for all values of α. 

 

7.2. The Shortcoming Function 

 

As the shortcoming is also a function of three variables, S(θ1 ,α,θ), we can look at three 

dimensional slices of this function by fixing one of the variables at some constant values. 

 

The top left graph in Figure 7.8 shows a more complete picture of the same shortcoming 

shown in Figure 7.7. For any fixed value of θ1, you can see the shortcoming curves of 

Figure
 
7.7. 
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Figure 7.8 Views of SNP(θ1 ,α ,θ ) with one variable fixed. The z-axis label identifies the variable held constant. 

 
 

 

8. STRINGENCY 

 

For any value of θ1 and α, the stringency S(θ1 ,α) was defined to be the maximum 

shortcoming over all values of θ. While finding a global maximum can be a difficult problem 

in general, in our particular case, the simple structure of the shortcoming curves makes it 

quite easy, because there are two possible regions where the maximum might be, and each 

region has a simple maximum without any other apparent local maxima. 

 

We are looking for the maximum shortcoming. While a general search for a maximum can 

often be difficult on a computer. Our problem is much simpler, because of the location of the 

zeros of the shortcoming function. There are two distinct regions, the first being between zero 

and θα, and the second region being all the values greater than θα. In the first region, the 

shortcoming seems to rise from zero to a maximum value and then fall back to zero. In the 

second region once again it rises, and then if θ1
 
<

 
θα, it falls back approaching zero in the 

limit. 

 

Since stringency is a function of two variables, so it can be summarized by just a single three 

dimensional graph of Figure 7.8. This graph has been obtained by doing a numerical 

maximization separately in the two regions mentioned in the previous paragraph. 

 

A number of features that were anticipated can be clearly seen here. The stringency is 1, 

whenever θ1
 
<

 
θα. Outside this region, for any fixed α, the stringency graph seems to be 

increasing in θ, so the conjecture made in section 7 appears to be holding. 
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Figure 8.9 A graph of the Stringency function S(θ1 ,α ). 

 
8.1. Most Stringent Tests 

 

Stringency is our single standard by which we are measuring the quality of a test. For any 

given α, we want to find the most stringent NP test, i.e. the one that has the minimum 

stringency. From our conjecture, the minimum seems to be at θ1
 
=

 
0 for α

 
≥

 
0.5 and for θ

 
=

 
θα 

for α
 
<

 
0.5. Figure 8.9 shows the value of θ1 that achieves the minimum value (obtained 

numerically). The dotted line shows the conjectured value θα. As can be seen, the conjecture 

was good for α
 
<

 
0.27 (in fact the cutoff seems to be around 0.2671), for larger values of α, the 

minimum occurs somewhere else. We did not notice this by looking at the graphs because the 

values of stringency in that area are all very near zero, so difficult to distinguish by simply 

looking. We will look a bit more closely to see exactly what happens near α
 
=

 
0.27 that causes 

the sudden change in the next section. 

 

The following graph shows the stringency of the most stringent Neyman Pearson Test in 

Figure 8.10. You can notice the kink near α
 
=

 
0.27 reflected in this graph as well. 

 

It is important to note that this is not the most stringent test possible. As we mention in the 

next section, there are other non-Neyman-Pearson tests that can be even more stringent. 

 
Figure 8.10 Location of θ1 that attains the Most Stringent NP test. 

 
8.2. The Change Near α

 
=

 
0.27 

 

The central thick curve in Figure 8.12 is the graph of the shortcoming for α
 
=

 
0.267, and 

θ1
 
=

 
1.8

 
=

 
θα=0.267. As mentioned before, shortcoming curves have two possible locations for 

the maximum. For this particular curve, both maxima are equal. The dashed line is for values 

of α 0.01 smaller and the dotted line for α being 0.01 larger than 0.267 (and θ1 taking the 

corresponding θα values. 
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Figure 8.11 Stringency of the Most Stringent NP α-level Test. 

 
As shown in Figure 8.9, for values of α

 
<

 
0.267, the θ1 that minimizes the maximum 

stringency is θα , so the dashed line has the smallest shortcoming for that α. On the other hand, 

when α
 
>

 
0.267, increasing the value of θ1 to a value larger than θα will reduce the second 

peak near θ
 
=

 
6 and increase the peak near θ

 
=

 
0.5, so that the overall maximum becomes 

smaller. 

 
Figure 8.12 Shortcoming… 

 
 
Figure 8.13 The Log Likelihood Ratio for a Mixture Alternative  

 
8.3. Bayes' Tests 
 

If we consider tests other than NP tests, it is quite clear that we can get a lower figure for 

stringency. All we need to do is to reduce the height of the peak, at the expense of increasing 

the shortcoming at other values of θ. One way to expand the class of tests is to consider a 
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prior probability on Θ1, and find the most stringent Bayes' Test. If we only consider single-

point priors, we get the NP class of tests, but as we consider other possibilities, the class of 

Bayes' tests is big enough to find the most stringent test. 

 

As an illustration of the variety of new tests introduced by considering Bayes' tests, consider a 

two-point prior, which puts mass m at θ1 and 1–m  at θ. The likelihood ratio now becomes 
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To continue with the α
 
=

 
0.2 example. We will let θ1

 
=

 
θα=0.2

 
=

 
2cot

-1
0.2π , θ2

 
=

 
1 and let the 

prior probability be m
 
=

 
0.95 for θ1. The graph is Figure 8.13 shows the log likelihood ratio 

for this prior. We have shown the log likelihood because it emphasizes the differences in the 

smaller values, where the shape is unusual. As illustrated in the figure, If C
 
=

 
0.4 is chosen as 

the cutoff, then the rejection regions is the unions of two intervals, which is a shape not 

achievable with NP tests. 
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