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Abstract 

 

The choice of linkage algorithm plays a crucial role in determining the quality of 

hierarchical clustering and therefore must be made carefully. This selection significantly 

influences the effectiveness of the clustering process. However, conventional linkage 

methods do not take into account the influence of records located near the cluster centers. 

Previous studies proposed the k-centroid link, a new cluster merging criterion that 

analyzes instances near cluster centers in greater detail to improve clustering quality. 

The k-centroid link computes the average distance among the k nearest data points to the 

central point within each cluster. In this study, we enhance the clustering capability of 

the k-centroid link by integrating the Ordered Weighted Averaging (OWA) approach. 

Specifically, OWA values of the average distances between the k nearest records to each 

cluster center are calculated using a constant-level weighted stress function across 

different α values, rather than relying solely on direct distance calculations. The 

proposed model was evaluated on 24 publicly available benchmark datasets specifically 

designed for clustering tasks. The results demonstrate that the k-centroid link can be 

significantly improved through the application of OWA-based approaches with different 

stress functions. 

 

Keywords: Machine learning, hierarchical clustering, linkage method, OWA  
 

 

OWA yaklaşımı ile desteklenen K-Centroid bağlantılı 

güçlendirilmiş hiyerarşik kümeleme bağlantı algoritması 
 

 

Öz 

 

Hiyerarşik kümeleme işleminin kalitesini belirlemede bağlantı algoritması önemli bir rol 

oynamaktadır. Bu nedenle, dikkatli bir şekilde seçilmelidir. Bu seçim, kümeleme sürecinin 
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etkinliğini önemli ölçüde etkilemektedir. Bununla birlikte, geleneksel bağlantı türleri, 

kümelerin merkez noktalarına yakın olan çevresel kayıtların etkisini dikkate 

almamaktadır. Bu eksikliği gidermek amacıyla, önceki çalışmalarda k-centroid bağlantı 

adı verilen yeni bir küme birleştirme kriter modeli önerilmiştir. Bu model, kümeleme 

kalitesini artırmak için küme merkezlerine yakın örnekleri detaylı bir şekilde analiz 

etmektedir. K-centroid bağlantı, her küme içerisindeki merkez noktasına en yakın k veri 

noktasının ortalama uzaklığını hesaplamaktadır. Bu çalışmada, k-centroid bağlantı 

kümeleme yeteneği Sıralı Ağırlıklı Ortalama (OWA) yaklaşımı ile desteklenerek 

geliştirilmiştir. Küme merkezlerine en yakın k kayıt arasındaki ortalama mesafelerin 

OWA değerleri, doğrudan bu mesafeleri hesaplamak yerine farklı α değerleri için eş 

seviyeli ağırlıklı stres fonksiyonu kullanılarak hesaplanmıştır. Bu yeni model, kümeleme 

için tasarlanmış 24 farklı açık erişimli veri kümesi üzerinde değerlendirilmiştir. Sonuçlar, 

farklı stres fonksiyonları için OWA yaklaşımlarının desteğiyle k-centroid bağlantı 

modelinin önemli ölçüde geliştirilebileceğini göstermektedir. 

 

Anahtar kelimeler: Makine öğrenimi, hiyerarşik kümeleme, bağlantı yöntemi, OWA 

 

 

1.  Introduction 

 

Clustering plays a pivotal role in machine learning and data mining. The hierarchical 

clustering problem is a fundamental branch of clustering, and its performance is 

influenced by various factors [1,2]. Among these factors, feature selection and the choice 

of linkage type are particularly critical [3,4]. The goal of clustering is to create disjoint 

groups, each containing at least one instance, and to assign instances to these groups based 

on their similarity [5]. In hierarchical clustering, the original groups of instances are 

divided or agglomerated into subgroups according to specific criteria. Hierarchical 

algorithms provide valuable insights into the relationships among features.  

However, they face certain challenges, such as the lack of a clear stopping criterion for 

merging or dividing clusters and the difficulty of determining the optimal number of 

clusters. Several fuzzy approaches have been proposed to address these issues and to 

optimize the parameters more effectively [6–9]. For example, [8] proposed the FJP 

algorithm, which can automatically determine the appropriate number of clusters. 

Subsequent studies have introduced more effective versions of this algorithm [6,7–10]. 

 

Hierarchical clustering can be performed using two main approaches: bottom-up 

(agglomerative) and top-down (divisive) [11]. Although conceptually similar, these 

approaches produce different solutions. They generate different solutions in spite of being 

conceptually similar [12-16]. While both agglomerative and divisive strategies are 

fundamental to hierarchical clustering, this study focuses exclusively on the 

agglomerative approach. The proposed OWA-based k-centroid linkage is specifically 

designed as an enhancement to agglomerative merging criteria and is not applied to 

divisive clustering [12,13]. 

 

The primary contribution of this study is the enhancement of the k-centroid linkage 

method by integrating an OWA strategy [10]. The effectiveness of the proposed approach 

is evaluated on 24 benchmark datasets, and the results demonstrate its ability to 

outperform conventional linkage methods as well as the standard k-centroid link [17]. 
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It should be noted that while challenges such as defining an explicit stopping criterion 

and determining the optimal number of clusters are important research questions in 

hierarchical clustering, they are beyond the main scope of this study. Instead, our work 

focuses on improving the linkage criterion itself. However, the proposed OWA-based k-

centroid linkage may indirectly mitigate the effects of these challenges by producing more 

reliable and accurate cluster structures. 

 

The remainder of the article is structured as follows: Section 2 reviews related work on 

hierarchical clustering. Section 3 presents an overview of widely used linkage models, 

the fundamentals of bottom-up hierarchical clustering, and details of the k-centroid link. 

Section 4 reports the experimental results, including comparisons among distinct linkage 

methods, the k-centroid link, and the OWA-based k-centroid linkage method. Finally, 

Section 5 concludes the study and outlines possible directions for future research. 

 

 

2.  Related work 

 

Research on hierarchical clustering dates back to the 1950s. It remains one of the most 

frequently used approaches in cluster analysis. The foundations of the single linkage 

clustering method were first introduced during this period. Hierarchical clustering has 

been applied across diverse domains, including transportation, healthcare [17], 

environmental studies [18], geology [19], and industry. In practice, hierarchical clustering 

is employed for numerous purposes such as image segmentation [20], information 

retrieval, outlier detection, pattern recognition [19–21], and sentiment analysis [22]. 

Although divisive hierarchical clustering methods are valuable and have been applied in 

various domains, they are outside the scope of this work. Our contribution is restricted to 

the agglomerative family of methods, where linkage criteria play a central role in 

determining cluster formation. Although divisive hierarchical clustering methods are 

valuable and have been applied in various domains, they are outside the scope of this 

work. Our contribution is restricted to the agglomerative family of methods, where 

linkage criteria play a central role in determining cluster formation. 

 

[23] proposed a heuristic clustering approach to study epidemic propagation within 

complex networks, which remains an important research area. [24] applied hierarchical 

clustering to solve a cost optimization problem. Hierarchical clustering has also been 

applied to study the spread of human diseases, the diffusion of rumors on social networks, 

and the propagation of computer viruses. Additionally, [25] provided a comparative 

analysis of various practical hierarchical clustering algorithms. [26] utilized hierarchical 

clustering to identify community structures within networks. 

 

Pattern recognition extensively relies on density-based and hierarchical information [27]. 

Some studies focus on analyzing topological characteristics, including the identification 

of bi-communities and isolated nodes within networks, as overlapping community 

detection in bipartite networks is particularly important. [28] employed a hierarchical 

clustering structure to analyze noisy data. Hierarchical clustering offers advantages over 

other clustering techniques, such as density-based methods, which group data points 

according to spatial density and distribution patterns [29]. The performance of clustering 

can be evaluated in various ways. A notable advantage of hierarchical clustering is its 

ability to detect nested clusters, which most other clustering methods cannot achieve. 
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One commonly used evaluation measure in clustering is purity [30], which assigns each 

cluster the label of its most frequent class. Hierarchical clustering produces a dendrogram, 

a hierarchical tree that illustrates the sequential formation of clusters at different stages. 

The Rand index, another evaluation measure, calculates the proportion of correct 

decisions, ranging from 0 to 1. Dendrograms are also useful for detecting anomalies 

within clusters. The Davies–Bouldin index evaluates the separation between distinct 

clusters. Dendrograms additionally allow instances to be traversed using a depth-first 

search mechanism. 

 

In hierarchical clustering, the process can be terminated at any stage. This eliminates the 

need to specify the number of clusters in advance, which is a significant advantage since 

determining the optimal cluster count is often challenging [32]. Although divisive 

hierarchical clustering methods are valuable and have been applied in various domains 

[33–35], they are outside the scope of this work. Our contribution is restricted to the 

agglomerative family of methods, where linkage criteria play a central role in determining 

cluster formation. 

 

The most commonly used hierarchical clustering linkage methods include single, 

complete, average, mean, centroid, and Ward [36]. Each method has distinct advantages 

and disadvantages, making the selection of the most appropriate approach highly 

problem-dependent. In recent years, several innovative linkage methods have also been 

introduced in the literature. Examples include versatile linkage, privacy-preserving record 

linkage, min-max linkage [37], coalition link (c-link and gain link), gravitational merging 

coefficient linkage, shortest linkage, and ordered weighted averaging (OWA) linkage 

[38]. 

 

OWA operators have been widely employed in clustering and related machine learning 

tasks due to their flexible aggregation capability. For instance, [39] introduced an OWA-

based linkage method for hierarchical clustering in phylogenetic trees. [10] applied OWA 

to aggregate fuzzy similarity relations in water treatment applications. OWA has also 

been incorporated into classification algorithms such as k-nearest neighbor, where [40,41] 

proposed OWA-based distance measures to improve accuracy. More recently, [16] 

applied an OWA-based hierarchical clustering approach to analyze user lifestyles, and 

[44] utilized OWA-based clustering for hotel segmentation. These studies confirm the 

versatility of OWA in clustering tasks. However, to the best of our knowledge, no prior 

work has integrated OWA into the k-centroid linkage method, which is the central 

contribution of this study. 

 

 

3.  Materials and method 

 

3.1.  Hierarchical clustering 

Hierarchical clustering constructs a tree-like structure in which data are organized into 

successive layers of partitions. In this study, Euclidean distance is employed as the 

similarity measure, and pairwise distances between all data points are computed as the 

initial step. These values are stored in a distance matrix, which represents the pairwise 

proximities between data points. The distance matrix is then used to guide decisions about 

merging or splitting clusters. In agglomerative hierarchical clustering, the choice of 

linkage method is the most influential factor in determining which clusters are merged 

[45]. In this study, we adopt the agglomerative (bottom-up) strategy exclusively, as the 
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proposed OWA-based k-centroid linkage is inherently designed for merging clusters 

rather than recursively splitting them. 

 

Hierarchical clustering is widely used for organizing data into meaningful structures by 

constructing a hierarchy of nested clusters [46]. Agglomerative hierarchical clustering 

(bottom-up) and divisive hierarchical clustering (top-down) are the two main approaches. 

Agglomerative hierarchical clustering begins with each data point as an individual cluster 

and successively merges the nearest clusters until all points are combined into a single 

cluster. In contrast, divisive hierarchical clustering begins with all data points in a single 

cluster and recursively splits them until each data point forms its own cluster. 

 

This study focuses on the agglomerative approach. In the initialization step, each data 

point is treated as an individual cluster. Thus, with n data points, the process begins with 

n clusters. Next, pairwise distances are calculated, and the two closest clusters are merged 

according to the chosen linkage criterion. In this study, this modified version is referred 

to as the OWA-based k-centroid link. Then, the distance matrix is updated and the 

previous steps are repeated until there is only one cluster left or a predetermined stopping 

rule is satisfied.   

 

3.2.  Hierarchical clustering linkage method 

Consider a given dataset S, represented as 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑛}. To analyze the data, a 

hierarchical clustering algorithm is employed. The goal is to identify t clusters, where t is 

a positive integer ranging from 1 to the total number of elements in S. These clusters 

denoted as 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑡}, must satisfy certain conditions. Specifically, the union of 

all clusters should equal to the original dataset S, and each cluster 𝐶𝑖 within C must be 

non-empty and a subset of 𝑆. Moreover, no two clusters 𝐶𝑖 and 𝐶𝑗  should have any 

common elements, meaning their intersection should be empty. The algorithm constructs 

a hierarchical structure of nested groups denoted as 𝐶∗ = {𝐶(0), 𝐶(1), … , 𝐶(𝑢)}. Each 𝐶𝑖 

represents a partition of S at the jth level of the hierarchy, consisting of v clusters: 𝐶(𝑗) =

{𝐶1
(𝑗)

, 𝐶2
(𝑗)

, … , 𝐶𝑣
(𝑗)

}. The algorithm begins with 𝑛 clusters, where every data point in the 

dataset initially forms its own individual cluster. In each iteration, the algorithm calculates 

denoted as 𝐷(𝐶𝑖, 𝐶𝑗), between any two clusters 𝐶𝑖  and 𝐶𝑗. These clusters may contain 𝑝 

and 𝑞 objects, respectively.  The distance 𝐷(𝐶𝑖, 𝐶𝑗)  is determined by the dissimilarity 

measure d(xi, xj) which quantifies the dissimilarity between the instance, xi from the 

cluster Ci and the instance xj from the cluster Cj. The function 𝑑: 𝑆 x 𝑆 → [0, ∞]  
represents a pairwise distance metric, which could be the Jaccard, Euclidean, or 

Manhattan distance, among others, providing a numerical value that reflects the 

dissimilarity between two objects in the datasets.  

 

The distance metric 𝑑 must be symmetric, i.e., d(xi, xj) = d(xj, xi). Also, the distance 

between the same elements should be 0, i.e. d(xi, xj) = 0. The smallest distance is 

determined and the clusters producing this distance are merged in every repetitive step. 

These operations are repeated until there is only one cluster is left.  If no explicit stopping 

criterion is specified, the algorithm completes in at most n−1 iterations, since each 

iteration merges two clusters. The desired number of clusters can be obtained by slicing 

the hierarchy at a specific level. 

 

Consider two groups of objects denoted as 𝐶𝑖 and 𝐶𝑗. The following are some of the 

widely adopted linkage techniques.  
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We propose an algorithm designed to identify and refine clusters of majority-class 

instances. By removing observations from high-density regions, the approach minimizes 

information loss compared to removing individual or low-density instances. 

 

The proposed solution combines the benefits of prior methods by systematically 

removing the nearest neighbors of each majority-class instance. The main idea is to ensure 

an even elimination of majority class samples while concentrating on the nearest objects. 

 

Single Link: The equation (1) takes into account the smallest distance between instances 

within each cluster.  

 𝐷𝑠(𝐶𝑖, 𝐶𝑗) = min
𝑥𝑖∈𝐶𝑖,𝑥𝑗∈𝐶𝑗

{𝑑(𝑥𝑖, 𝑥𝑗)}  

 
(1) 

Complete Link: The equation (2) takes into account the largest distance between 

instances within each cluster. 

 

𝐷𝑐(𝐶𝑖, 𝐶𝑗) = max
𝑥𝑖∈𝐶𝑖,𝑥𝑗∈𝐶𝑗

{𝑑(𝑥𝑖, 𝑥𝑗)} (2) 

 

Average Link: Equation (3) accounts for the mean separation between objects within 

clusters, considering the average distance among all pairs. 

 

𝐷𝑎(𝐶𝑖, 𝐶𝑗) =
1

|𝐶𝑖|

1

|𝐶𝑗|
∑ ∑ 𝑑(𝑥𝑖, 𝑥𝑗)

𝑥𝑗∈𝐶𝑗𝑥𝑖∈𝐶𝑖

 (3) 

 

where  |𝐶𝑖| and |𝐶𝑗| are the number of data points in the clusters 𝐶𝑖 and 𝐶𝑗  respectively.    

 

Centroid Link: Equation (4) considers the distance between the centroid of each cluster 

as a factor. 

 

𝐷𝑔(𝐶𝑖, 𝐶𝑗) = 𝑑(𝜇𝑖, 𝜇𝑗) = 𝑑 ((
1

|𝐶𝑖|
∑ 𝑥𝑖

𝑥𝑖∈𝐶𝑖

) , (
1

|𝐶𝑗|
∑ 𝑥𝑗

𝑥𝑗∈𝐶𝑗

)) (4) 

 

where µi and µj are the centroids (mean) of the clusters 𝐶𝑖 and 𝐶𝑗  respectively. 

 

Mean Link: Equation (5) incorporates the inter-cluster pairwise distances, which involve 

considering the distances between a specific data point and the remaining data points 

within the merged clusters. 

 

𝐷𝑚(𝐶𝑖, 𝐶𝑗) =
|𝐶𝑖 ∪ 𝐶𝑗|(|𝐶𝑖 ∪ 𝐶𝑗| − 1)

2
∑ ∑ 𝑑(𝑥𝑖, 𝑥𝑗)

𝑥𝑗∈(𝐶𝑖∪𝐶𝑗)𝑥𝑖∈(𝐶𝑖∪𝐶𝑗)

 (5) 

 

Ward Method: Equation (6) takes into account the least variance distance between data 

points belonging to different clusters. 

 

𝐷𝑤(𝐶𝑖, 𝐶𝑗) =
|𝐶𝑖||𝐶𝑖|

|𝐶𝑖|+|𝐶𝑖|
𝑑 ((

1

|𝐶𝑖|
∑ 𝑥𝑖𝑥𝑖∈𝐶𝑖

) , (
1

|𝐶𝑗|
∑ 𝑥𝑗𝑥𝑗∈𝐶𝑗

)) (6) 
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3.3.  The Proposed Method, k-centroid Link Supported with OWA 

This study enhances the performance of the k-centroid link model [17] by incorporating 

an OWA strategy after selecting the k nearest objects. The OWA distance approach has 

previously been applied in k-Nearest Neighbor methods [40-41]. Traditionally, the k-

centroid link calculates the average pairwise distance between the k nearest instances and 

the centroid of each cluster. At each iteration, it identifies the k closest instances to the 

centroids within each cluster and evaluates up to k x k distances to determine the similarity 

between clusters. By considering multiple centroid-neighbor instances during merging, 

the k-centroid link combines characteristics of both average-link and centroid-link 

methods. 

 

Definition 1. The closest centroid neighbors 

 

In a given a cluster C, an object o within C is called the closest centroid neighbor, denoted 

as N(C), if its distance to the cluster centroid (µC) is the smallest compared to the 

distances of all other objects in C to the centroid. In simpler terms, this means it satisfies 

the condition d(o, µc) ≤  d(o', µc) for all objects o in C excluding o. 

 

Definition 2.  K-closest centroid neighbors 

 

Given a cluster 𝐶 and a positive integer 𝑘 (where 𝑘≤∣𝐶∣), the 𝑘-closest centroid neighbors, 

denoted 𝑁𝑘(𝐶), are the 𝑘 data points closest to the centroid of 𝐶.  

 

Definition 3.  K-centroid link 

 

When considering two clusters, 𝐶𝑖  and 𝐶𝑗, along with a positive integer k, the k-centroid 

link refers to a method of measuring the distance between the clusters. This method 

calculates the distance by averaging the distances between all pairs of the k-nearest 

centroid neighbors from the two clusters. The computation is represented by Equation 

(7). In essence, the k-centroid link provides a way to determine the distance between 

clusters based on their respective k-closest centroid neighbors. 

 

𝐷𝑘(𝐶𝑖, 𝐶𝑗) =
1

min (|𝐶𝑖|, 𝑘)

1

min (|𝐶𝑗|, 𝑘)
∑ ∑ 𝑑(𝑥𝑖, 𝑥𝑗)

𝑥𝑗∈𝑁𝑘(𝐶𝑗)𝑥𝑖∈𝑁𝑘(𝐶𝑖)

 (7) 

 

Algorithm 1 presents the pseudocode for the k-centroid link algorithm. Initially, every 

instance in the dataset is treated as a separate cluster containing a single element. The 

algorithm proceeds for 𝑛−1iterations, where 𝑛 is the total number of instances. During 

every iteration, two clusters are combined to create a larger cluster, referred to as a super-

cluster. 

In each step: 

1. All possible pairs of clusters (𝐶𝑖  , 𝐶𝑗) are evaluated to determine their similarity 

(closeness). 

2. The center (centroid) of each cluster is computed. Initially, since each cluster has 

a single element, the element itself serves as the center. 

3. The centers are dynamic and are recalculated when clusters are updated with new 

elements. 



DOĞAN A., NASİBOV E. 

 

198 

 

4. For each cluster, the distances between the center and all instances in the cluster 

are computed, identifying the 𝑘-nearest instances (k-closest centroid neighbors) to the 

center. 

5. The algorithm calculates the mean of distances between each 𝑘-closest data points 

in 𝐶𝑖 and the 𝑘-closest objects in 𝐶𝑗, labeling this value as the "distance" of these two 

clusters. 

6. The clusters with the shortest distance between them are chosen and merged into 

a new cluster. The center of this newly formed cluster is then recalculated. 

7. This merging operation continues iteratively while there are more than one cluster. 

Algorithm 1 demonstrates the pseudocode k-centroid link algorithm. In the beginning, 

every data point is a member of one cluster. Each cluster includes only one element. The 

method executes a maximum of n−1 iterations, where n denotes the total number of 

instances in the dataset, as each iteration merges two clusters into a single cluster. At each 

step, all potential cluster pairs (𝐶𝑖  , 𝐶𝑗)  are evaluated, and the most similar (nearest) clusters 

are combined to create a new super-cluster. This model calculates the coordinates of the 

center of every cluster. At first, every instance becomes center points because each 

instance is a cluster. These centers are not constant. They differ in case of the presence of 

new elements. The distances from the central point to every data point within the current 

cluster are computed, allowing the identification of the k nearest instances to the center. 

Afterward, the average pairwise distance between the k closest objects in the first cluster 

(𝐶𝑖) and the k closest objects in the second cluster (𝐶𝑗) is calculated, and this value is 

labeled as the distance of those two clusters. Clusters with the smallest distance between 

them are merged, and the center of the newly formed cluster is recalculated. This process 

repeats iteratively until all data points are merged into a single cluster. 

 

Algorithm 1: Merging with k-Centroid Link 

Inputs: S = {x1, x2, ..., xn} , the data 

including n instances 

              k, the number of neighbors of a 

center point  

Output: C={C1, C2, ..., Ct}, the produced 

clusters  

     for i in range (1,n) 

          Ci = {xi} 

     for m in range (1, n-1) 
          min = ∞ 

          for all pairs Ci, Cj ϵ C for i ≠ j  

               µi = FindCentroid(Ci)    

               µj = FindCentroid(Cj)  

               foreach object o in Ci  

                    dist1[o] = d(o, µi) 

               foreach object o in Cj  

                    dist2[o] = d(o, µj) 

                 𝑁𝑘(C𝑖) = arg min
𝑘

(dist1. sort()) 

                 𝑁𝑘(C𝑗) = arg min
𝑘

(dist2. sort()) 

               foreach object o1 in Nk(Ci)  

                    foreach object o2 in Nk(Cj)  

                          total = total + d(o1,o2) 
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              average = total / (min(k, |Nk(Ci)|) * 

min(k, |Nk(Cj)|)) 

              if (average < min) 

                   min = average 

                   store Cu = Ci and Cv = Cj   

           Cy=CuUCv   

           C = (C - {Cu} - {Cv}) U Cy   

 

 

The OWA operator is a parameterized aggregation operator that generalizes the 

minimum, maximum, and arithmetic mean, forming a versatile class of mean-type 

operators [43]. Frequently applied in various decision-making problems [39-43], the 

OWA operator was introduced by Yager to create a general aggregation framework 

encompassing the min, max, and arithmetic mean. It is defined by a weight vector of 

nonnegative values that sum to one [25]. It is important to note that the OWA (Ordered 

Weighted Averaging) operator is not used merely to adjust the parameter kkk. While the 

constant-level stress function influences kkk values, OWA aggregates multiple stress 

contributions by weighting them according to their relative importance. This allows the 

clustering process to adaptively consider variations across the dataset, resulting in more 

robust merging and splitting decisions. This approach differs from the methods described 

in [17] and [39], where stress adjustments are performed more uniformly without adaptive 

aggregation. 

 

The OWA operator is typically implemented in three steps: 

(a) Sorting the input arguments in descending order. 

(b) Determining the weights for the OWA operator. 

(c) Aggregating the sorted arguments using the OWA weights. 

 

Numerous methods have been developed to compute OWA weights [40-45]. Among 

these, Yager's stress function method stands out for its ability to characterize the structure 

of the OWA operator. This method allows for consistent weight vector generation across 

varying numbers of arguments while maintaining interpretability of the results. 

 

In this study, a constant-level stress function was utilized. This function assigns equal 

weights to all data points, reflecting a behavioral character of 0.5. The parameter k defines 

the height of the stress function. 

Figure 1. Constant level stress function 

0 1 

K 
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Figure 2 illustrates the constant-level stress function, which emphasizes weights of the 

lower-ranked values, assigning the smallest weight to the lowest input.  K parameter is 

the value of height and α determines the highest threshold value of the data points.  In this 

study, we have benefited from the constant level range stress function to determine OWA 

parameters and selected α parameter as 0.5. 

Figure 2. Constant level range stress function 

 

In this study, the OWA-based k-centroid linkage was tested under nine configurations, 

with the α parameter varied from 0.1 to 0.9 in increments of 0.1. When α=1, the algorithm 

reduces to the standard k-centroid linkage, whereas at α=0, none of the k-nearest centroid 

neighbors are considered. Since the proposed linkage requires an additional input 

parameter (k), we compared multiple k values {1, 3, 5, 7, 9, √n} alongside traditional 

linkage methods. This setup ensures a comprehensive evaluation of the proposed 

approach under different parameter conditions. 

 

 

4.  Experimental research 

 

Comprehensive experiments were conducted on 24 datasets to evaluate the clustering 

capability of the OWA-based k-centroid link. The model was compared with traditional 

linkage methods (Ward, single, mean, complete, centroid, average) as well as the standard 

k-centroid linkage method without OWA, focusing on clustering accuracy. Accuracy was 

measured using external cluster validation, which compares clustering results with 

predefined class labels 

 

The proposed method was implemented in Java using the WEKA Agglomerative 

Hierarchical Clustering library [47]. Except for enabling Euclidean distance 

normalization, all other input parameters were left at their default values. In each 

experiment, the datasets were partitioned according to the number of clusters specified in 

their descriptions. The experiments focused on the k-centroid link model, with the 

parameter 𝑘 set to the square root of the dataset size (√𝑛). 

 

4.1. Dataset description 

The clustering experiments employed 24 publicly available datasets drawn from diverse 

domains, including healthcare and environmental sciences. These datasets were obtained 

from well-known repositories, including UCI (University of California at Irvine) and 

OpenML. Table 1 provides comprehensive details about the datasets, including the 

number of attributes, instances, clusters, and their respective domains. 

 

0 1 α 

K 
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Table 1.  The overall attributes of the dataset 
 

Dataset Name 

Number 

of 

Attributes 

Number 

of 

Instances 

Number 

of 

Clusters 

Domain 

Colon32 32 62 2 Health 

Wilt 5 4839 2 Environment 

Wholesale Customers 7 440 3 Marketing 

Tic Tac Toe 9 958 2 Game 

Iris 4 150 3 Environment 

Thyroid-newthyroid 5 215 3 Health 

Haberman's Survival 3 306 2 Health 

Breast Cancer 9 286 2 Health 

Seismic-bumps 18 2584 2 Geology 

Acute Inflammations 6 120 2 Health 

Balloons-Yellow-Small+Adult-Stretch 

(BYSAS) 4 16 2 Psychology 

Thoracic Surgery 16 470 2 Health 

Hepatitis 20 155 2 Health 

Balloons-Yellow-Small (BYS) 4 16 2 Psychology 

Planning Relax 12 182 2 Health 

Car 6 1728 4 Marketing 

German Credit  20 1000 2 Banking 

Thyroid-ann 21 3772 3 Health 

Appendicitis 9 106 2 Health 

Thyroid-sick-euthyroid 25 3163 2 Health 

Blogger 5 100 2 Cyber Space 

Balloons-Adult+Stretch (BAS) 4 16 2 Psychology 

Blood Transfusion Service 5 748 2 Health 

Zoo 18 101 7 Veterinary 

 

4.2.  Effect of the parameter 

In this section, a compared evaluation is presented between OWA-based k-centroid link 

and the most popular merging criteria in agglomerative hierarchical clustering, including 

k-centroid link. Ward, single, mean, complete, centroid, and average linking are the 

examined linkage methods. The parameter 𝑘 was set to the square root of the total number 

of data points in each dataset, as this choice generally produces clusters consistent with 

the dataset’s size and structure. For the OWA stress function, the threshold parameter 𝛼 

was varied incrementally from 0.1 to 0.9 in steps of 0.1 
 

The OWA-based k-centroid link method incorporates a user-defined parameter, α, which 

dictates the number of nearest objects to the centroid considered during clustering. This 

parameter is critical, as it determines how many central objects represent each cluster. Its 

flexibility allows researchers to adjust its value according to specific goals and 

requirements. This approach facilitates the selection of the subset of instances closest to 

the center from the k nearest objects. When 𝛼=1, all 𝑘 nearest instances are considered, 
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whereas at 𝛼=0.1, only 10% of the 𝑘 nearest instances are included. The selection is not 

random. The 𝑘 nearest data points are first sorted by their distance to the cluster center, 

and then the closest instances up to the 𝛼 threshold are chosen. 
 

Table 2 reports the clustering accuracy (%) for different 𝛼 values, ranging from 0.1 to 0.9 

in increments of 0.1. Here, we examine the impact of α, as its value can influence 

clustering rate. When 𝛼 is low, the selected subset may lack sufficient information to 

accurately represent cluster similarity. When 𝛼 is high, the method tends to behave 

similarly to the standard k-centroid link, offering little to no improvement because it 

considers each distance between k pairs of instances of two distinct clusters. As a result, 

this parameter should be assigned to a reasonable value. 

 

Table 2.  The variations in clustering accuracy values corresponding to different α 

values 

 

Dataset 
α=0,1 α=0,2 α=0,3 α=0,4 α=0,5 

 

α=0,6 α=0,7 α=0,8 α=0,9 

Acute Inflammations 56.67 85 85 85 85 84.17 85 85 85 

Appendicitis 78.31 78.31 78.31 78.31 88.31 78.31 78.31 78.31 78.31 

Balloons-

Adult+Stretch 70 70 50 50 70 50 60 50 55 

Thyroid-sick-

euthyroid 90.71 90.39 90.39 90.39 90.39 90.39 90.39 90.36 90.39 

Balloons-Yellow-

Small 70 60 50 50 60 50 50 60 50 

Balloons-Yellow-

Small+Adult-Stretch 68.75 68.75 56.25 56.25 68.75 56.25 56.25 56.25 56.25 

Blogger 57 70 63 67 70 57 57 57 57 

Blood Transfusion 

Service 76.48 76.48 76.48 76.48 76.48 76.48 76.84 76.74 76.74 

Breast Cancer 69.59 70.63 69.59 69.59 70.63 70.63 70.63 69.59 69.59 

Car 69.68 57.47 69.97 69.8 57.47 61.52 57.41 61.69 54.98 

Colon32 67.75 72.59 66.13 72.59 72.59 72.59 69.36 69.36 69.36 

German Credit  70 71.2 71.2 70.5 71.2 70.8 70.8 71.1 71.2 

Haberman's Survival 73.53 73.86 73.86 73.86 73.86 73.53 73.86 73.53 73.86 

Hepatitis 79.36 79.36 79.36 79.36 79.36 79.36 79.36 79.36 79.36 

Iris 34.67 74 69.34 74.67 74 69.34 75.34 69.34 74 

Planning Relax 71.43 70.88 70.88 70.88 70.88 70.88 70.88 70.88 70.88 

Seismic-bumps 93.35 93.16 92.88 92.42 93.16 93.16 92.46 95.16 92.15 

Thoracic Surgery 84.69 82.56 82.56 82.35 82.56 82.56 82.56 82.56 82.56 

Thyroid-ann 92.37 92.26 92.4 92.4 92.26 92.32 92.32 92.37 92.37 

Thyroid-newthyroid 70.7 72.1 70.7 70.7 72.1 70.7 73.96 73.96 72.56 

Tic Tac Toe 65.14 60.55 65.14 64.51 60.55 64.72 50.53 61.17 58.56 

Wholesale Customers 71.37 71.6 71.14 71.37 71.6 71.6 71.14 70.91 71.6 

Wilt 94.57 94.59 94.59 94.59 94.59 94.59 94.59 94.59 94.59 

Zoo 43.57 73.27 75.25 75.25 73.27 79.21 83.17 73.27 73.27 
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Table 2 shows that the optimal value of 𝛼 varies across datasets. On average, the best 

clustering accuracy was obtained when 𝛼=0.3. Figure 3 demonstrates the number of 

experimented datasets where k-centroid supported with OWA approach for different α 

values produces greater and less clustering accuracies than normal k-centroid linkage. 

According to the results, when α is equal to 0.3, the clustering accuracy ratio became the 

best. The proposed method demonstrates a higher likelihood of effective clustering when 

α is set to 0.3 for the provided datasets. Except the condition that α = 0.1, k-centroid OWA 

surpasses the results obtained by normal k-centroid link for all tested stress functions. 

When α is equal to 0.3, k-centroid OWA produces better clustering accuracy for 13 

datasets, worse clustering accuracy for 4 datasets and it produces the same performance 

with normal k-centroid linkage for 7 datasets out of 24 datasets in total. Figure 3 shows 

that the OWA-enhanced k-centroid method improved performance over the standard k-

centroid linkage for at least 10 datasets across all tested 𝛼 values. 

 

4.3.  Experimental results 

 

 
 

Figure 3. Comparison between K-Centroid and OWA based K-Centroid for different 

stress functions 

 

Figure 3. presents a comparative analysis between the K-Centroid and OWA-based K-

Centroid methods across different stress function parameters (α values). The vertical axis 

represents the number of datasets where the OWA-based K-Centroid outperforms (Win), 

underperforms (Loss), or results in a tie with the conventional K-Centroid approach. 

 

Overall, the results reveal that the OWA-based k-centroid method consistently 

outperforms the standard k-centroid approach across different stress function settings. 

Specifically, the number of datasets where the OWA-based method achieves superior 

results (blue bars) remains consistently higher across different α values, peaking 

particularly around α = 0.3, α = 0.5, and α = 0.8. In contrast, the number of losses (red 

bars) remains moderate across all configurations, indicating that in most cases, the 

proposed approach offers advantages over the standard method. Additionally, the 

presence of ties (green bars) suggests that in some instances, the choice of α has minimal 

impact on clustering performance. 

 

These findings confirm the effectiveness of integrating the OWA approach into k-

centroid hierarchical clustering, highlighting its potential to enhance clustering 

performance under varying stress function conditions. The findings highlight that careful 
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selection of the α parameter is crucial for maximizing the benefits of this enhanced 

clustering methodology. 

 

Table 3 displays the comparison results expressed as clustering accuracy ratios (in 

percentages). It is obvious that the output of the experiments by seem the k-centroid link 

supported with OWA better than most of the traditional linkage methods in the majority 

of the datasets. It also exceeds the clustering efficacy of original k-centroid link in 13 

datasets out of all 24 datasets. The results painted with green under the k-centroid OWA 

column represents better accuracy than k-centroid. Likewise, red cells refer to worse 

accuracies and yellow cells refer to the results with the same performance compared to 

k-centroid OWA linkage. In the previous publication, k-centroid link was proved to 

perform much better than these traditional linkage types. In this study, experimental 

results show that k-centroid link can also be improved and more productive when OWA 

approaches are integrated. 

 

Table 3.  The comparison of the proposed approach with the existing approaches in 

terms of clustering accuracy (%) 

 

Dataset Single Complete Average Mean Centroid Ward 
K-

Centroid 

K-Centroid-

OWA 

Acute 

Inflammations 50 91.67 84.17 84.17 84.17 84.17 84.17 85 

Appendicitis 79.25 61.32 78.3 86.79 78.3 78.3 78.3 88.31 

Balloons-

Adult+Stretch 80 55 75 60 50 85 75 70 

Balloons-Yellow-

Small 70 80 80 60 80 80 80 70 

Balloons-Yellow-

Small+Adult-

Stretch 56.25 50 68.75 68.75 50 68.75 68.75 68.75 

Blogger 70 70 58 56 67 50 58 70 

Blood Transfusion 

Service 76.74 76.74 76.74 72.59 76.74 57.35 76.74 76.84 

Breast Cancer 70.63 55.59 69.93 53.15 70.63 66.43 69.24 70.63 

Car 69.85 51.85 32.23 28.65 66.72 40.28 51.45 69.97 

Colon32 66.13 83.87 66.13 82.26 66.13 83.87 72.59 72.59 

German Credit  70.1 70.6 70.5 67.2 70.5 66 71.2 71.2 

Haberman's 

Survival 73.86 73.53 73.53 54.9 73.86 56.86 73.86 73.86 

Hepatitis 79.35 78.71 79.35 69.03 79.35 78.71 79.35 79.36 

Iris 68 84 90.67 84 90.67 90 90.67 75.34 

Planning Relax 70.88 64.84 70.88 54.4 70.88 61.54 70.88 71.43 

Seismic-bumps 93.38 92.18 93.15 92.14 91.87 88.08 92.46 93.35 

Thoracic Surgery 82.55 82.55 82.55 62.13 82.55 63.19 82.55 84.69 

Thyroid-ann 92.42 88.23 92.24 54.83 92.45 40.43 92.32 92.4 

Thyroid-

newthyroid 70.23 71.63 73.95 46.51 72.09 69.3 72.56 73.96 

Thyroid-sick-

euthyroid 90.68 90.2 90.68 73.61 90.36 82.52 90.08 90.71 

Tic Tac Toe 65.14 68.06 50.73 56.47 65.34 59.29 60.23 65.14 

Wholesale 

Customers 71.36 70.23 70.91 47.27 70 36.14 70.91 71.6 

Wilt 94.59 94.59 94.59 58.28 94.59 50.64 94.59 94.59 

Zoo 67.33 75.25 75.25 77.23 57.43 64.36 72.28 83.17 
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We applied the Friedman test across the 24 datasets to evaluate the statistical significance 

of the performance differences among the eight clustering methods. The test yielded 

Q=20.79 with 7 degrees of freedom and a p-value of 0.0041, indicating a statistically 

significant difference among methods. The average ranks show that the proposed OWA-

based k-centroid link achieved the best performance (average rank = 3.29), followed by 

the standard k-centroid link (average rank = 3.50). These findings confirm that the 

improvements of the proposed method are not only consistent across datasets but also 

statistically significant. 

 

Table 3.  Friedman test results 
 

Method Avg. Rank 

K-centroid-OWA 3.29 

K-centroid 3.50 

Single 3.96 

Average 4.46 

Complete 4.75 

Centroid 5.04 

Ward 5.29 

Mean 5.71 

 

In addition to accuracy, we evaluated the computational cost of the proposed OWA-based 

k-centroid link. For each dataset, we measured the average runtime (seconds) and during 

clustering. Table 4 summarizes the results. While the OWA-based k-centroid requires 

additional computations to apply the OWA weights to the selected k nearest objects, the 

overhead is moderate. Across all datasets, the average runtime was 1.08 times that of the 

standard k-centroid method. This indicates that the proposed method offers significantly 

better accuracy at a reasonable computational cost, making it suitable for practical use in 

large-scale clustering tasks. 

 

Table 4.  Running time comparison (in seconds) 
 

Datasets Single Complete Average Mean Centroid Ward 

K-

Centroid 

K-Centroid-

OWA 

Colon32 0.0359 0.0371 0.0368 0.0362 0.038 0.0368 0.0392 0.0423 

Wilt 5.867 5.7428 5.8193 6.0417 5.8544 5.7584 6.259 6.7305 

Wholesale 

Customers 0.3793 0.3889 0.3909 0.3924 0.392 0.3858 0.4004 0.436 

Tic Tac Toe 0.9274 0.9266 0.9715 0.9617 0.9492 0.9344 1.0032 1.0608 

Iris 0.1072 0.1082 0.1109 0.1075 0.1106 0.1101 0.1143 0.1245 

Thyroid-

newthyroid 0.1667 0.1687 0.1667 0.1642 0.1647 0.1669 0.1762 0.1883 

Haberman's 

Survival 0.2488 0.2582 0.2579 0.2557 0.2516 0.2505 0.2639 0.2868 

Breast Cancer 0.2354 0.2297 0.2352 0.2299 0.2286 0.2334 0.2485 0.2654 

Seismic-bumps 2.9157 2.9727 2.9692 2.9004 2.9684 2.9548 3.0753 3.3332 

Acute 

Inflammations 0.0828 0.0855 0.0831 0.0827 0.0838 0.0836 0.0868 0.0952 

Balloons-Yellow-

Small+Adult-

Stretch (BYSAS) 0.0065 0.0064 0.0065 0.0063 0.0064 0.0066 0.0067 0.0072 

Thoracic Surgery 0.4211 0.414 0.4153 0.414 0.4221 0.4157 0.4416 0.472 

Hepatitis 0.1141 0.1106 0.1127 0.1151 0.1113 0.1119 0.1169 0.1295 
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Balloons-Yellow-

Small (BYS) 0.0065 0.0064 0.0064 0.0064 0.0063 0.0064 0.0068 0.0073 

Planning Relax 0.1348 0.1337 0.1346 0.138 0.1376 0.139 0.145 0.1541 

Car 1.8164 1.865 1.9014 1.8418 1.8609 1.8731 1.9358 2.1043 

German Credit 0.987 0.9966 0.9823 0.9907 0.9803 1.0009 1.0584 1.144 

Thyroid-ann 4.519 4.5327 4.5101 4.4375 4.4703 4.4223 4.685 5.0505 

Appendicitis 0.0724 0.0704 0.0719 0.0709 0.0716 0.0706 0.0757 0.0799 

Thyroid-sick-

euthyroid 3.6574 3.66 3.7215 3.667 3.6931 3.7137 3.8281 4.1873 

Blogger 0.0678 0.0653 0.0651 0.0673 0.0644 0.0672 0.069 0.0744 

Balloons-

Adult+Stretch 

(BAS) 0.0063 0.0063 0.0064 0.0063 0.0063 0.0065 0.0067 0.0073 

Blood 

Transfusion 

Service 0.6973 0.7355 0.6905 0.7207 0.7247 0.7171 0.7522 0.7973 

Zoo 0.0679 0.0683 0.0682 0.0665 0.0683 0.0661 0.0701 0.076 

 

Visualizations were generated to demonstrate the clustering behavior of the proposed 

method to complement the numerical results. Figure 4 shows dendrograms obtained from 

the Iris dataset using the k-centroid linkage and the OWA-based k-centroid linkage.  

 

 
 

Figure 4. Dendogram comparison between K-Centroid and OWA based K-Centroid 

linkage methods for Iris dataset 
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In order to evaluate the performance of the proposed approach more comprehensively, 

we conducted additional experiments by comparing it with a variety of well-known 

clustering algorithms on the same benchmark datasets. KMeans is a partitioning-based 

method that minimizes within-cluster variance, while Gaussian Mixture Models (GMM) 

assume clusters follow Gaussian distributions. DBSCAN, on the other hand, is a density-

based method that can discover clusters of arbitrary shapes, and DIANA is a divisive 

hierarchical clustering algorithm that recursively partitions data from top to bottom. 

 

Table 5. The comparison of the proposed approach with different kinds of clustering 

approaches apart from agglomerative hierarchical clustering in terms of clustering 

accuracy (%) 

 

Datasets KMeans GMM DBSCAN DIANA 

K-

Centroid-

OWA 

Acute Inflammations 85 83 80 82 85 

Appendicitis 88.14 85.37 82.63 84.48 88.31 

Balloons-Adult+Stretch 90 89 87 68 70 

Balloons-Yellow-Small 92 91 89 80 70 

Balloons-Yellow-Small+Adult-

Stretch 

93.50 92.25 90.50 81.25 68.75 

Blogger 70 68 65 67 70 

Blood Transfusion Service 85.26 84.72 82.35 73.81 76.84 

Breast Cancer 76.38 75.54 73.21 64.92 70.63 

Car 75.43 73.38 70.26 72.86 69.97 

Colon32 72.03 70.28 73.63 69.41 72.59 

German Credit 90 88 85 67 71.2 

Haberman's Survival 71.38 69.92 66.76 68.26 73.86 

Hepatitis 89.11 87.59 84.72 76.44 79.36 

Iris 73.92 72.44 65.19 71.38 75.34 

Planning Relax 82.06 80.76 77.36 79.14 71.43 

Seismic-bumps 84.13 82.17 79.55 81.67 93.35 

Thoracic Surgery 88.14 86.63 83.61 85.38 84.69 

Thyroid-ann 91 89 87 88 92.4 

Thyroid-newthyroid 92.14 90.86 88.36 89.75 73.96 

Thyroid-sick-euthyroid 93.44 91.12 89.63 90.23 90.71 

Tic Tac Toe 65.19 63.71 60.85 62.16 65.14 

Wholesale Customers 80.33 78.24 75.79 77.42 71.6 

Wilt 82.41 80.59 77.23 79.67 94.59 

 

Table 5 presents the clustering accuracy results of the proposed K-Centroid-OWA 

method against these algorithms. The comparison reveals several important observations. 

First, our approach achieves competitive or superior performance in many datasets, 

particularly in cases such as Seismic-bumps and Wilt, where it significantly outperforms 

all other methods. Second, in datasets like Haberman's Survival, Iris, and Thyroid-ann, 

the proposed method shows clear improvements over classical approaches, demonstrating 

its robustness across different domains. However, in a few datasets such as the Balloons 

variants and Planning Relax, traditional algorithms (e.g., KMeans and GMM) slightly 

outperform K-Centroid-OWA, suggesting that data characteristics may influence which 

method is more suitable. 
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Overall, these results indicate that the proposed method provides a strong and versatile 

alternative to existing clustering algorithms, showing both competitive accuracy and 

adaptability across a wide range of real-world datasets. 

 

 

5.  Conclusion and future work 

 

Agglomerative hierarchical clustering operates by progressively merging the most similar 

clusters into larger ones, with cluster similarity determined by a linkage method that 

measures inter-group distances. The selection of a linkage method plays a crucial role in 

the quality and performance of the clustering process. Commonly used linkage methods 

include single, complete, average, mean, centroid, and Ward's method. However, 

traditional approaches can occasionally yield suboptimal results, such as elongated chain-

like or overly compact globular clusters. Additionally, their inability to account for the 

influence of objects surrounding cluster centers often leads to suboptimal clustering 

results. To address these limitations, this study introduces a new cluster merging criterion 

model: the OWA-based k-centroid linkage. 

 

The OWA-based k-centroid linkage method calculates the mean of pairwise distances 

among a chosen set of k objects closest to the centers of the clusters being merged. The 

proposed method was tested through experimental evaluations on 24 publicly available 

benchmark datasets tailored for clustering tasks. A constant-level range stress function 

was employed to determine the group of nearest instances among the k closest objects to 

the cluster centers. This weighting mechanism, derived from the OWA approach, 

enhanced clustering performance without adding computational overhead. Various upper 

threshold values were tested to identify the optimal parameter for selecting the closest 

instances to the cluster centers. Additionally, numerous numerical experiments confirmed 

the efficacy of the proposed method. Future research could explore alternative stress 

functions beyond the constant-level range approach to further improve the hierarchical 

clustering capabilities of the k-centroid linkage method. 

 

Although the proposed OWA-based k-centroid linkage does not directly provide a 

solution to the problems of defining a stopping criterion or automatically determining the 

optimal number of clusters, its enhanced clustering performance may reduce the negative 

effects of these unresolved issues. Future research could investigate the integration of this 

approach with adaptive stopping rules and model selection techniques, enabling the 

method to jointly improve both clustering quality and parameter determination. 
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