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Abstract

The choice of linkage algorithm plays a crucial role in determining the quality of
hierarchical clustering and therefore must be made carefully. This selection significantly
influences the effectiveness of the clustering process. However, conventional linkage
methods do not take into account the influence of records located near the cluster centers.
Previous studies proposed the k-centroid link, a new cluster merging criterion that
analyzes instances near cluster centers in greater detail to improve clustering quality.
The k-centroid link computes the average distance among the k nearest data points to the
central point within each cluster. In this study, we enhance the clustering capability of
the k-centroid link by integrating the Ordered Weighted Averaging (OWA) approach.
Specifically, OWA values of the average distances between the k nearest records to each
cluster center are calculated using a constant-level weighted stress function across
different a values, rather than relying solely on direct distance calculations. The
proposed model was evaluated on 24 publicly available benchmark datasets specifically
designed for clustering tasks. The results demonstrate that the k-centroid link can be
significantly improved through the application of OWA-based approaches with different
stress functions.
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OWA yaklasimi ile desteklenen K-Centroid baglantili
giiclendirilmis hiyerarsik kiimeleme baglanti algoritmasi
Oz

Hiyerarsik kiimeleme isleminin kalitesini belirlemede baglanti algoritmasi onemli bir rol
oynamaktadir. Bu nedenle, dikkatli bir sekilde se¢ilmelidir. Bu se¢im, kiimeleme siirecinin
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etkinligini onemli élgiide etkilemektedir. Bununla birlikte, geleneksel baglant: tiirleri,
kiimelerin merkez noktalarina yakin olan c¢evresel kayitlarin etkisini dikkate
almamaktadir. Bu eksikligi gidermek amaciyla, énceki ¢calismalarda k-centroid baglant
adi verilen yeni bir kiime birlestirme kriter modeli onerilmistir. Bu model, kiimeleme
kalitesini artirmak igin kiime merkezlerine yakin ornekleri detayli bir sekilde analiz
etmektedir. K-centroid baglanti, her kiime icerisindeki merkez noktasina en yakin k veri
noktasinin ortalama uzakligint hesaplamaktadir. Bu c¢alismada, k-centroid baglanti
kiimeleme yetenegi Swrali Agwlhikli Ortalama (OWA) yaklasimi ile desteklenerek
gelistirilmistir. Kiime merkezlerine en yakin k kayit arasindaki ortalama mesafelerin
OWA degerleri, dogrudan bu mesafeleri hesaplamak yerine farkl o degerleri icin eg
seviyeli agirlikli stres fonksiyonu kullanilarak hesaplanmistir. Bu yeni model, kiimeleme
icin tasarlanmig 24 farkl agik erigimli veri kiimesi iizerinde degerlendirilmigtir. Sonuglar,
farkli stres fonksiyonlari icin OWA yaklasimlarinin destegiyle k-centroid baglanti
modelinin 6nemli ol¢iide gelistivilebilecegini gostermektedir.

Anahtar kelimeler: Makine ogrenimi, hiyerarsik kiimeleme, baglanti yontemi, OWA

1. Introduction

Clustering plays a pivotal role in machine learning and data mining. The hierarchical
clustering problem is a fundamental branch of clustering, and its performance is
influenced by various factors [1,2]. Among these factors, feature selection and the choice
of linkage type are particularly critical [3,4]. The goal of clustering is to create disjoint
groups, each containing at least one instance, and to assign instances to these groups based
on their similarity [5]. In hierarchical clustering, the original groups of instances are
divided or agglomerated into subgroups according to specific criteria. Hierarchical
algorithms provide valuable insights into the relationships among features.

However, they face certain challenges, such as the lack of a clear stopping criterion for
merging or dividing clusters and the difficulty of determining the optimal number of
clusters. Several fuzzy approaches have been proposed to address these issues and to
optimize the parameters more effectively [6-9]. For example, [8] proposed the FJP
algorithm, which can automatically determine the appropriate number of clusters.
Subsequent studies have introduced more effective versions of this algorithm [6,7-10].

Hierarchical clustering can be performed using two main approaches: bottom-up
(agglomerative) and top-down (divisive) [11]. Although conceptually similar, these
approaches produce different solutions. They generate different solutions in spite of being
conceptually similar [12-16]. While both agglomerative and divisive strategies are
fundamental to hierarchical clustering, this study focuses exclusively on the
agglomerative approach. The proposed OWA-based k-centroid linkage is specifically
designed as an enhancement to agglomerative merging criteria and is not applied to
divisive clustering [12,13].

The primary contribution of this study is the enhancement of the k-centroid linkage
method by integrating an OWA strategy [10]. The effectiveness of the proposed approach
is evaluated on 24 benchmark datasets, and the results demonstrate its ability to
outperform conventional linkage methods as well as the standard k-centroid link [17].
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It should be noted that while challenges such as defining an explicit stopping criterion
and determining the optimal number of clusters are important research questions in
hierarchical clustering, they are beyond the main scope of this study. Instead, our work
focuses on improving the linkage criterion itself. However, the proposed OWA-based k-
centroid linkage may indirectly mitigate the effects of these challenges by producing more
reliable and accurate cluster structures.

The remainder of the article is structured as follows: Section 2 reviews related work on
hierarchical clustering. Section 3 presents an overview of widely used linkage models,
the fundamentals of bottom-up hierarchical clustering, and details of the k-centroid link.
Section 4 reports the experimental results, including comparisons among distinct linkage
methods, the k-centroid link, and the OWA-based k-centroid linkage method. Finally,
Section 5 concludes the study and outlines possible directions for future research.

2. Related work

Research on hierarchical clustering dates back to the 1950s. It remains one of the most
frequently used approaches in cluster analysis. The foundations of the single linkage
clustering method were first introduced during this period. Hierarchical clustering has
been applied across diverse domains, including transportation, healthcare [17],
environmental studies [ 18], geology [19], and industry. In practice, hierarchical clustering
is employed for numerous purposes such as image segmentation [20], information
retrieval, outlier detection, pattern recognition [19-21], and sentiment analysis [22].
Although divisive hierarchical clustering methods are valuable and have been applied in
various domains, they are outside the scope of this work. Our contribution is restricted to
the agglomerative family of methods, where linkage criteria play a central role in
determining cluster formation. Although divisive hierarchical clustering methods are
valuable and have been applied in various domains, they are outside the scope of this
work. Our contribution is restricted to the agglomerative family of methods, where
linkage criteria play a central role in determining cluster formation.

[23] proposed a heuristic clustering approach to study epidemic propagation within
complex networks, which remains an important research area. [24] applied hierarchical
clustering to solve a cost optimization problem. Hierarchical clustering has also been
applied to study the spread of human diseases, the diffusion of rumors on social networks,
and the propagation of computer viruses. Additionally, [25] provided a comparative
analysis of various practical hierarchical clustering algorithms. [26] utilized hierarchical
clustering to identify community structures within networks.

Pattern recognition extensively relies on density-based and hierarchical information [27].
Some studies focus on analyzing topological characteristics, including the identification
of bi-communities and isolated nodes within networks, as overlapping community
detection in bipartite networks is particularly important. [28] employed a hierarchical
clustering structure to analyze noisy data. Hierarchical clustering offers advantages over
other clustering techniques, such as density-based methods, which group data points
according to spatial density and distribution patterns [29]. The performance of clustering
can be evaluated in various ways. A notable advantage of hierarchical clustering is its
ability to detect nested clusters, which most other clustering methods cannot achieve.
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One commonly used evaluation measure in clustering is purity [30], which assigns each
cluster the label of its most frequent class. Hierarchical clustering produces a dendrogram,
a hierarchical tree that illustrates the sequential formation of clusters at different stages.
The Rand index, another evaluation measure, calculates the proportion of correct
decisions, ranging from 0 to 1. Dendrograms are also useful for detecting anomalies
within clusters. The Davies—Bouldin index evaluates the separation between distinct
clusters. Dendrograms additionally allow instances to be traversed using a depth-first
search mechanism.

In hierarchical clustering, the process can be terminated at any stage. This eliminates the
need to specify the number of clusters in advance, which is a significant advantage since
determining the optimal cluster count is often challenging [32]. Although divisive
hierarchical clustering methods are valuable and have been applied in various domains
[33-35], they are outside the scope of this work. Our contribution is restricted to the
agglomerative family of methods, where linkage criteria play a central role in determining
cluster formation.

The most commonly used hierarchical clustering linkage methods include single,
complete, average, mean, centroid, and Ward [36]. Each method has distinct advantages
and disadvantages, making the selection of the most appropriate approach highly
problem-dependent. In recent years, several innovative linkage methods have also been
introduced in the literature. Examples include versatile linkage, privacy-preserving record
linkage, min-max linkage [37], coalition link (c-link and gain link), gravitational merging
coefficient linkage, shortest linkage, and ordered weighted averaging (OWA) linkage
[38].

OWA operators have been widely employed in clustering and related machine learning
tasks due to their flexible aggregation capability. For instance, [39] introduced an OWA -
based linkage method for hierarchical clustering in phylogenetic trees. [10] applied OWA
to aggregate fuzzy similarity relations in water treatment applications. OWA has also
been incorporated into classification algorithms such as k-nearest neighbor, where [40,41]
proposed OWA-based distance measures to improve accuracy. More recently, [16]
applied an OWA-based hierarchical clustering approach to analyze user lifestyles, and
[44] utilized OWA-based clustering for hotel segmentation. These studies confirm the
versatility of OWA in clustering tasks. However, to the best of our knowledge, no prior
work has integrated OWA into the k-centroid linkage method, which is the central
contribution of this study.

3. Materials and method

3.1. Hierarchical clustering

Hierarchical clustering constructs a tree-like structure in which data are organized into
successive layers of partitions. In this study, Euclidean distance is employed as the
similarity measure, and pairwise distances between all data points are computed as the
initial step. These values are stored in a distance matrix, which represents the pairwise
proximities between data points. The distance matrix is then used to guide decisions about
merging or splitting clusters. In agglomerative hierarchical clustering, the choice of
linkage method is the most influential factor in determining which clusters are merged
[45]. In this study, we adopt the agglomerative (bottom-up) strategy exclusively, as the
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proposed OWA-based k-centroid linkage is inherently designed for merging clusters
rather than recursively splitting them.

Hierarchical clustering is widely used for organizing data into meaningful structures by
constructing a hierarchy of nested clusters [46]. Agglomerative hierarchical clustering
(bottom-up) and divisive hierarchical clustering (top-down) are the two main approaches.
Agglomerative hierarchical clustering begins with each data point as an individual cluster
and successively merges the nearest clusters until all points are combined into a single
cluster. In contrast, divisive hierarchical clustering begins with all data points in a single
cluster and recursively splits them until each data point forms its own cluster.

This study focuses on the agglomerative approach. In the initialization step, each data
point is treated as an individual cluster. Thus, with n data points, the process begins with
n clusters. Next, pairwise distances are calculated, and the two closest clusters are merged
according to the chosen linkage criterion. In this study, this modified version is referred
to as the OWA-based k-centroid link. Then, the distance matrix is updated and the
previous steps are repeated until there is only one cluster left or a predetermined stopping
rule is satisfied.

3.2. Hierarchical clustering linkage method

Consider a given dataset S, represented as S = {xq, x5, ..., x,}. To analyze the data, a
hierarchical clustering algorithm is employed. The goal is to identify ¢ clusters, where ¢ is
a positive integer ranging from 1 to the total number of elements in S. These clusters
denoted as C = {Cy, C,, ..., C;}, must satisfy certain conditions. Specifically, the union of
all clusters should equal to the original dataset S, and each cluster C; within C must be
non-empty and a subset of S. Moreover, no two clusters C; and C; should have any
common elements, meaning their intersection should be empty. The algorithm constructs
a hierarchical structure of nested groups denoted as C* = {C @ c®, .. c (”)}. Each C;

represents a partition of S at the ji level of the hierarchy, consisting of v clusters: V) =
{C1(] ), Cz(] ), . C,E] )}. The algorithm begins with n clusters, where every data point in the

dataset initially forms its own individual cluster. In each iteration, the algorithm calculates
denoted as D(C;, Cj), between any two clusters C; and C;. These clusters may contain p
and q objects, respectively. The distance D(C;, () is determined by the dissimilarity
measure d(x; x;) which quantifies the dissimilarity between the instance, x; from the
cluster Ci and the instance xj from the cluster C;. The function d:SxS — [0, ]
represents a pairwise distance metric, which could be the Jaccard, Euclidean, or
Manhattan distance, among others, providing a numerical value that reflects the
dissimilarity between two objects in the datasets.

The distance metric d must be symmetric, i.e., d(x; x;) = d(x;, x;). Also, the distance
between the same elements should be 0, i.e. d(x; x;) = 0. The smallest distance is
determined and the clusters producing this distance are merged in every repetitive step.
These operations are repeated until there is only one cluster is left. If no explicit stopping
criterion is specified, the algorithm completes in at most n—1/ iterations, since each
iteration merges two clusters. The desired number of clusters can be obtained by slicing
the hierarchy at a specific level.

Consider two groups of objects denoted as C; and C;. The following are some of the
widely adopted linkage techniques.
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We propose an algorithm designed to identify and refine clusters of majority-class
instances. By removing observations from high-density regions, the approach minimizes
information loss compared to removing individual or low-density instances.

The proposed solution combines the benefits of prior methods by systematically
removing the nearest neighbors of each majority-class instance. The main idea is to ensure
an even elimination of majority class samples while concentrating on the nearest objects.

Single Link: The equation (1) takes into account the smallest distance between instances
within each cluster.

Ds(Ci, ) = min_{d(x;,x;)}

xiECi,ijC] (1)

Complete Link: The equation (2) takes into account the largest distance between
instances within each cluster.

Dc(C,C) = max {d(x;x;)} (2)

xiECi,x]'EC]

Average Link: Equation (3) accounts for the mean separation between objects within
clusters, considering the average distance among all pairs.

1 1
Do (C;, C)) = clic Z Z d(x;, x;) 3)
xiECix]-ECj

where |C;| and |C;]| are the number of data points in the clusters C; and C; respectively.

Centroid Link: Equation (4) considers the distance between the centroid of each cluster
as a factor.

N

1 1
D€ G) = dlmm) = | (7 D x| =7 ) % “
2

X;EC;

where u; and y; are the centroids (mean) of the clusters C; and C; respectively.

Mean Link: Equation (5) incorporates the inter-cluster pairwise distances, which involve
considering the distances between a specific data point and the remaining data points
within the merged clusters.

[Gugldaugl-1) Z

d(x;, x;) 5)

xiE(CiUC]-) x]-E(CiUC]-)

Ward Method: Equation (6) takes into account the least variance distance between data
points belonging to different clusters.

_ dedied (1 )0 -
DW(CL,, C]) = oI +IC] d <(|Cll ZX{ECi xl) ’ ('le ZXjECj x])) (6)
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3.3. The Proposed Method, k-centroid Link Supported with OWA

This study enhances the performance of the k-centroid link model [17] by incorporating
an OWA strategy after selecting the k nearest objects. The OWA distance approach has
previously been applied in k-Nearest Neighbor methods [40-41]. Traditionally, the k-
centroid link calculates the average pairwise distance between the k nearest instances and
the centroid of each cluster. At each iteration, it identifies the k closest instances to the
centroids within each cluster and evaluates up to k x k distances to determine the similarity
between clusters. By considering multiple centroid-neighbor instances during merging,
the k-centroid link combines characteristics of both average-link and centroid-link
methods.

Definition 1. The closest centroid neighbors

In a given a cluster C, an object o within C is called the closest centroid neighbor, denoted
as N(C), if its distance to the cluster centroid (#C) is the smallest compared to the
distances of all other objects in C to the centroid. In simpler terms, this means it satisfies
the condition d(o, uc) < d(o', uc) for all objects o in C excluding o.

Definition 2. K-closest centroid neighbors

Given a cluster C and a positive integer k (where k<|C|), the k-closest centroid neighbors,
denoted Nk(C), are the k data points closest to the centroid of C.

Definition 3. K-centroid link

When considering two clusters, ¢; and ¢;, along with a positive integer &, the k-centroid
link refers to a method of measuring the distance between the clusters. This method
calculates the distance by averaging the distances between all pairs of the k-nearest
centroid neighbors from the two clusters. The computation is represented by Equation
(7). In essence, the k-centroid link provides a way to determine the distance between
clusters based on their respective k-closest centroid neighbors.

1 1

k(Ci, Gj) m1n(|Ci|.k)min(|Cj|’k)

d(x;, xj) (7)

XiENk(C) XjENk(Cj)

Algorithm 1 presents the pseudocode for the k-centroid link algorithm. Initially, every
instance in the dataset is treated as a separate cluster containing a single element. The
algorithm proceeds for n—literations, where n is the total number of instances. During
every iteration, two clusters are combined to create a larger cluster, referred to as a super-
cluster.

In each step:

1. All possible pairs of clusters (¢;,¢;) are evaluated to determine their similarity
(closeness).

2. The center (centroid) of each cluster is computed. Initially, since each cluster has
a single element, the element itself serves as the center.

3. The centers are dynamic and are recalculated when clusters are updated with new
elements.
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4. For each cluster, the distances between the center and all instances in the cluster
are computed, identifying the k-nearest instances (k-closest centroid neighbors) to the
center.

5. The algorithm calculates the mean of distances between each k-closest data points
in ¢; and the k-closest objects in ¢;, labeling this value as the "distance" of these two
clusters.

6. The clusters with the shortest distance between them are chosen and merged into
a new cluster. The center of this newly formed cluster is then recalculated.

7. This merging operation continues iteratively while there are more than one cluster.
Algorithm 1 demonstrates the pseudocode k-centroid link algorithm. In the beginning,
every data point is a member of one cluster. Each cluster includes only one element. The
method executes a maximum of n—1 iterations, where n denotes the total number of
instances in the dataset, as each iteration merges two clusters into a single cluster. At each
step, all potential cluster pairs (¢;,¢;) are evaluated, and the most similar (nearest) clusters
are combined to create a new super-cluster. This model calculates the coordinates of the
center of every cluster. At first, every instance becomes center points because each
instance is a cluster. These centers are not constant. They differ in case of the presence of
new elements. The distances from the central point to every data point within the current
cluster are computed, allowing the identification of the k nearest instances to the center.
Afterward, the average pairwise distance between the k closest objects in the first cluster
(c;) and the k closest objects in the second cluster (¢;) is calculated, and this value is
labeled as the distance of those two clusters. Clusters with the smallest distance between
them are merged, and the center of the newly formed cluster is recalculated. This process
repeats iteratively until all data points are merged into a single cluster.

Algorithm 1: Merging with k£-Centroid Link
Inputs: S = {x1, X2, ..., Xn} , the data
including n instances

k, the number of neighbors of a
center point
Output: C={C;, C,, ..., Ci}, the produced
clusters

for i in range (1,n)
Ci = {xi}
for m in range (1, n-1)
min = co
for all pairs C;, Cj € C fori #

wi = FindCentroid(C;)

i = FindCentroid(C;)

foreach object o in C;

distl[o] = d(o, pi)
foreach object o in C;j
dist2[o] = d(o, b;)
N, (C;) =arg min(dist1.sort())
k

Nk(Cj) = arg min(dist2. sort())
k

foreach object o1 in Ni(C))
foreach object 02 in Ni(C))
total = total + d(01,02)
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average = total / (min(k, Ni(C;)|) *
min(k, [Nk(Cj)|))
if (average < min)
min = average
store Cy = Cj and Cy = C;
Cy=C,UCy
C=(C-{Cy-{C}HUCy

The OWA operator is a parameterized aggregation operator that generalizes the
minimum, maximum, and arithmetic mean, forming a versatile class of mean-type
operators [43]. Frequently applied in various decision-making problems [39-43], the
OWA operator was introduced by Yager to create a general aggregation framework
encompassing the min, max, and arithmetic mean. It is defined by a weight vector of
nonnegative values that sum to one [25]. It is important to note that the OWA (Ordered
Weighted Averaging) operator is not used merely to adjust the parameter kkk. While the
constant-level stress function influences kkk values, OWA aggregates multiple stress
contributions by weighting them according to their relative importance. This allows the
clustering process to adaptively consider variations across the dataset, resulting in more
robust merging and splitting decisions. This approach differs from the methods described
in [17] and [39], where stress adjustments are performed more uniformly without adaptive
aggregation.

The OWA operator is typically implemented in three steps:

(a) Sorting the input arguments in descending order.

(b) Determining the weights for the OWA operator.

(c) Aggregating the sorted arguments using the OWA weights.

Numerous methods have been developed to compute OWA weights [40-45]. Among
these, Yager's stress function method stands out for its ability to characterize the structure
of the OWA operator. This method allows for consistent weight vector generation across
varying numbers of arguments while maintaining interpretability of the results.

In this study, a constant-level stress function was utilized. This function assigns equal
weights to all data points, reflecting a behavioral character of 0.5. The parameter k defines
the height of the stress function.

4

>
0 1

Figure 1. Constant level stress function

199



DOGAN A., NASIBOV E.

Figure 2 illustrates the constant-level stress function, which emphasizes weights of the
lower-ranked values, assigning the smallest weight to the lowest input. K parameter is
the value of height and a determines the highest threshold value of the data points. In this
study, we have benefited from the constant level range stress function to determine OWA
parameters and selected o parameter as 0.5.

4

>
0 a 1

Figure 2. Constant level range stress function

In this study, the OWA-based k-centroid linkage was tested under nine configurations,
with the o parameter varied from 0.1 to 0.9 in increments of 0.1. When o=1, the algorithm
reduces to the standard k-centroid linkage, whereas at a=0, none of the k-nearest centroid
neighbors are considered. Since the proposed linkage requires an additional input
parameter (k), we compared multiple k values {1, 3, 5, 7, 9, Vn} alongside traditional
linkage methods. This setup ensures a comprehensive evaluation of the proposed
approach under different parameter conditions.

4. Experimental research

Comprehensive experiments were conducted on 24 datasets to evaluate the clustering
capability of the OWA-based k-centroid link. The model was compared with traditional
linkage methods (Ward, single, mean, complete, centroid, average) as well as the standard
k-centroid linkage method without OWA, focusing on clustering accuracy. Accuracy was
measured using external cluster validation, which compares clustering results with
predefined class labels

The proposed method was implemented in Java using the WEKA Agglomerative
Hierarchical Clustering library [47]. Except for enabling Euclidean distance
normalization, all other input parameters were left at their default values. In each
experiment, the datasets were partitioned according to the number of clusters specified in
their descriptions. The experiments focused on the k-centroid link model, with the

parameter k set to the square root of the dataset size (vn).

4.1. Dataset description

The clustering experiments employed 24 publicly available datasets drawn from diverse
domains, including healthcare and environmental sciences. These datasets were obtained
from well-known repositories, including UCI (University of California at Irvine) and
OpenML. Table 1 provides comprehensive details about the datasets, including the
number of attributes, instances, clusters, and their respective domains.
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Table 1. The overall attributes of the dataset

Number | Number | Number

Dataset Name of of of Domain

Attributes | Instances | Clusters
Colon32 32 62 2 Health
Wilt 5 4839 2 Environment
Wholesale Customers 7 440 3 Marketing
Tic Tac Toe 9 958 2 Game
Iris 4 150 3 Environment
Thyroid-newthyroid 5 215 3 Health
Haberman's Survival 3 306 2 Health
Breast Cancer 9 286 2 Health
Seismic-bumps 18 2584 2 Geology
Acute Inflammations 6 120 2 Health
Balloons-Yellow-Small+Adult-Stretch
(BYSAS) 4 16 2 Psychology
Thoracic Surgery 16 470 2 Health
Hepatitis 20 155 2 Health
Balloons-Yellow-Small (BYS) 4 16 2 Psychology
Planning Relax 12 182 2 Health
Car 6 1728 4 Marketing
German Credit 20 1000 2 Banking
Thyroid-ann 21 3772 3 Health
Appendicitis 9 106 2 Health
Thyroid-sick-euthyroid 25 3163 2 Health
Blogger 5 100 2 Cyber Space
Balloons-Adult+Stretch (BAS) 4 16 2 Psychology
Blood Transfusion Service 5 748 2 Health
700 18 101 7 Veterinary

4.2. Effect of the parameter

In this section, a compared evaluation is presented between OWA-based k-centroid link
and the most popular merging criteria in agglomerative hierarchical clustering, including
k-centroid link. Ward, single, mean, complete, centroid, and average linking are the
examined linkage methods. The parameter k was set to the square root of the total number
of data points in each dataset, as this choice generally produces clusters consistent with
the dataset’s size and structure. For the OWA stress function, the threshold parameter a
was varied incrementally from 0.1 to 0.9 in steps of 0.1

The OWA-based k-centroid link method incorporates a user-defined parameter, o, which
dictates the number of nearest objects to the centroid considered during clustering. This
parameter is critical, as it determines how many central objects represent each cluster. Its
flexibility allows researchers to adjust its value according to specific goals and
requirements. This approach facilitates the selection of the subset of instances closest to
the center from the k nearest objects. When a=1, all k nearest instances are considered,
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whereas at @=0.1, only 10% of the k nearest instances are included. The selection is not
random. The k nearest data points are first sorted by their distance to the cluster center,
and then the closest instances up to the a threshold are chosen.

Table 2 reports the clustering accuracy (%) for different a values, ranging from 0.1 to 0.9
in increments of 0.1. Here, we examine the impact of a, as its value can influence
clustering rate. When «a is low, the selected subset may lack sufficient information to
accurately represent cluster similarity. When « is high, the method tends to behave
similarly to the standard k-centroid link, offering little to no improvement because it
considers each distance between k pairs of instances of two distinct clusters. As a result,
this parameter should be assigned to a reasonable value.

Table 2. The variations in clustering accuracy values corresponding to different o

values
Dataset a=0,1{0=0,2| a=0,3 | 4=0,4| 6=0,5| 4=0,6 | 6=0,7| 4=0,8 | 0=0.9
Acute Inflammations [56.67 |85 85 85 85 84.17 | 85 85 85
Appendicitis 78.31|78.31 [78.31 | 78.31 | 88.31 | 78.31 | 78.31 | 78.31 | 78.31
Balloons-
Adult+Stretch 70 70 50 50 70 50 60 50 55
Thyroid-sick-
euthyroid 90.71 190.39 | 90.39 [90.39 190.39 | 90.39 | 90.39 | 90.36 [90.39
Balloons-Yellow-
Small 70 60 50 50 60 50 50 60 50
Balloons-Yellow-
Small+Adult-Stretch [ 68.75 | 68.75 | 56.25 |56.25 | 68.75 | 56.25 | 56.25 | 56.25 | 56.25
Blogger 57 70 63 67 70 57 57 57 57
Blood Transfusion
Service 76.48 | 76.48 | 76.48 | 76.48 | 76.48 | 76.48 | 76.84 | 76.74 | 76.74
Breast Cancer 69.59 70.63 | 69.59 |69.59 |70.63 | 70.63 | 70.63 | 69.59 | 69.59
Car 69.68 |57.47 169.97 | 69.8 |57.47 [61.52|57.41 | 61.69 |54.98
Colon32 67.75 |72.59 | 66.13 [72.59 | 72.59 | 72.59 | 69.36 | 69.36 | 69.36
German Credit 70 712 |71.2 |70.5 [71.2 |70.8 |70.8 [71.1 |71.2
Haberman's Survival |73.53 |73.86 | 73.86 | 73.86 | 73.86 | 73.53 | 73.86 | 73.53 | 73.86
Hepatitis 79.36 |79.36 | 79.36 | 79.36 | 79.36 | 79.36 | 79.36 | 79.36 [ 79.36
Iris 34.67 | 74 69.34 | 74.67 | 74 69.34 |75.34 | 69.34 | 74
Planning Relax 71.43 [ 70.88 [ 70.88 | 70.88 | 70.88 | 70.88 | 70.88 | 70.88 | 70.88
Seismic-bumps 93.35 [93.16 [92.88 92.42 |193.16 | 93.16 [92.46 | 95.16 | 92.15
Thoracic Surgery 84.69 | 82.56 [ 82.56 | 82.35 |82.56 | 82.56 | 82.56 | 82.56 | 82.56
Thyroid-ann 92.37(92.26 92.4 1924 |92.26 [92.32 [92.3292.37 |92.37
Thyroid-newthyroid |70.7 [72.1 |70.7 [70.7 |72.1 |70.7 [73.96 |73.96 | 72.56
Tic Tac Toe 65.14 | 60.55 | 65.14 | 64.51 | 60.55 | 64.72 1 50.53 | 61.17 | 58.56
Wholesale Customers |71.37 [71.6 |71.14 |71.37 |71.6 |[71.6 |71.14]70.91 |71.6
Wilt 94.57 194.59 |94.59 [94.59 [94.59 | 94.59 |94.59 | 94.59 [94.59
Z00 43.57 [73.27 |75.25 [ 75.25 | 73.27 | 79.21 |83.17 | 73.27 | 73.27
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Table 2 shows that the optimal value of a varies across datasets. On average, the best
clustering accuracy was obtained when a=0.3. Figure 3 demonstrates the number of
experimented datasets where k-centroid supported with OWA approach for different o
values produces greater and less clustering accuracies than normal k-centroid linkage.
According to the results, when a is equal to 0.3, the clustering accuracy ratio became the
best. The proposed method demonstrates a higher likelihood of effective clustering when
a is set to 0.3 for the provided datasets. Except the condition that a = 0.1, k-centroid OWA
surpasses the results obtained by normal k-centroid link for all tested stress functions.
When a is equal to 0.3, k-centroid OWA produces better clustering accuracy for 13
datasets, worse clustering accuracy for 4 datasets and it produces the same performance
with normal k-centroid linkage for 7 datasets out of 24 datasets in total. Figure 3 shows
that the OWA-enhanced k-centroid method improved performance over the standard k-
centroid linkage for at least 10 datasets across all tested a values.

4.3. Experimental results

Comparison between K-Centroid and OWA based K-Centroid for different
stress functions
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Figure 3. Comparison between K-Centroid and OWA based K-Centroid for different
stress functions

Figure 3. presents a comparative analysis between the K-Centroid and OWA-based K-
Centroid methods across different stress function parameters (o values). The vertical axis
represents the number of datasets where the OWA-based K-Centroid outperforms (Win),
underperforms (Loss), or results in a tie with the conventional K-Centroid approach.

Overall, the results reveal that the OWA-based k-centroid method consistently
outperforms the standard k-centroid approach across different stress function settings.
Specifically, the number of datasets where the OWA-based method achieves superior
results (blue bars) remains consistently higher across different a values, peaking
particularly around a = 0.3, a = 0.5, and a = 0.8. In contrast, the number of losses (red
bars) remains moderate across all configurations, indicating that in most cases, the
proposed approach offers advantages over the standard method. Additionally, the
presence of ties (green bars) suggests that in some instances, the choice of a has minimal
impact on clustering performance.

These findings confirm the effectiveness of integrating the OWA approach into k-

centroid hierarchical clustering, highlighting its potential to enhance -clustering
performance under varying stress function conditions. The findings highlight that careful
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selection of the a parameter is crucial for maximizing the benefits of this enhanced
clustering methodology.

Table 3 displays the comparison results expressed as clustering accuracy ratios (in
percentages). It is obvious that the output of the experiments by seem the k-centroid link
supported with OWA better than most of the traditional linkage methods in the majority
of the datasets. It also exceeds the clustering efficacy of original k-centroid link in 13
datasets out of all 24 datasets. The results painted with green under the k-centroid OWA
column represents better accuracy than k-centroid. Likewise, red cells refer to worse
accuracies and yellow cells refer to the results with the same performance compared to
k-centroid OWA linkage. In the previous publication, k-centroid link was proved to
perform much better than these traditional linkage types. In this study, experimental
results show that k-centroid link can also be improved and more productive when OWA
approaches are integrated.

Table 3. The comparison of the proposed approach with the existing approaches in
terms of clustering accuracy (%)

. . K- K-Centroid-
Dataset Single | Complete | Average | Mean | Centroid | Ward Centroid | OWA
Acute
Inflammations 50 91.67 84.17 |84.17| 84.17 84.17 84.17 85
Appendicitis 79.25 61.32 78.3 86.79 78.3 78.3 78.3
Balloons-
Adult+Stretch 80 55 75 60 50 85 75
Balloons-Yellow-
Small 70 80 80 60 80 80 80
Balloons-Yellow-
Small+Adult-
Stretch 56.25 50 68.75 | 68.75 50 68.75 68.75 68.75
Blogger 70 70 58 56 67 50 58 70
Blood Transfusion
Service 76.74 76.74 76.74 17259 | 76.74 57.35 76.74 76.84
Breast Cancer 70.63 55.59 69.93 |[53.15] 70.63 66.43 69.24 70.63
Car 69.85 51.85 3223 |28.65| 66.72 40.28 51.45 69.97
Colon32 66.13 83.87 66.13 |8226| 66.13 83.87 72.59
German Credit 70.1 70.6 70.5 67.2 70.5 66 71.2
Haberman's
Survival 73.86 73.53 73.53 54.9 73.86 56.86 73.86 73.86
Hepatitis 79.35 78.71 79.35 [69.03 | 79.35 78.71 79.35
Iris 68 84 90.67 84 90.67 90 90.67
Planning Relax 70.88 64.84 70.88 54.4 70.88 61.54 70.88
Seismic-bumps 93.38 92.18 93.15 |92.14]| 91.87 88.08 92.46
Thoracic Surgery | 82.55 82.55 82.55 |[62.13 ] 82.55 63.19 82.55
Thyroid-ann 92.42 88.23 92.24 |54.83| 9245 40.43 92.32
Thyroid-
newthyroid 70.23 71.63 73.95 |46.51 | 72.09 69.3 72.56 73.96
Thyroid-sick-
euthyroid 90.68 90.2 90.68 | 73.61 ] 90.36 82.52 90.08 90.71
Tic Tac Toe 65.14 68.06 50.73 |56.47| 65.34 59.29 60.23 65.14
Wholesale
Customers 71.36 70.23 70.91 |47.27 70 36.14 70.91 71.6
Wilt 94.59 94.59 94.59 |5828| 94.59 50.64 94.59 94.59
Z.00 67.33 75.25 7525 | 77.23| 57.43 64.36 72.28 83.17
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We applied the Friedman test across the 24 datasets to evaluate the statistical significance
of the performance differences among the eight clustering methods. The test yielded
Q=20.79 with 7 degrees of freedom and a p-value of 0.0041, indicating a statistically
significant difference among methods. The average ranks show that the proposed OWA-
based k-centroid link achieved the best performance (average rank = 3.29), followed by
the standard k-centroid link (average rank = 3.50). These findings confirm that the
improvements of the proposed method are not only consistent across datasets but also
statistically significant.

Table 3. Friedman test results

Method Avg. Rank
K-centroid-OWA 3.29
K-centroid 3.50
Single 3.96
Average 4.46
Complete 4.75
Centroid 5.04
Ward 5.29
Mean 5.71

In addition to accuracy, we evaluated the computational cost of the proposed OW A-based
k-centroid link. For each dataset, we measured the average runtime (seconds) and during
clustering. Table 4 summarizes the results. While the OWA-based k-centroid requires
additional computations to apply the OWA weights to the selected k nearest objects, the
overhead is moderate. Across all datasets, the average runtime was 1.08 times that of the
standard k-centroid method. This indicates that the proposed method offers significantly
better accuracy at a reasonable computational cost, making it suitable for practical use in
large-scale clustering tasks.

Table 4. Running time comparison (in seconds)

K- K-Centroid-
Datasets Single | Complete | Average | Mean | Centroid | Ward | Centroid OWA
Colon32 0.0359 0.0371 0.0368 0.0362 0.038 0.0368 0.0392 0.0423
Wilt 5.867 5.7428 5.8193 6.0417 5.8544 5.7584 6.259 6.7305
Wholesale
Customers 0.3793 0.3889 0.3909 0.3924 0.392 0.3858 0.4004 0.436
Tic Tac Toe 0.9274 0.9266 0.9715 0.9617 0.9492 0.9344 1.0032 1.0608
Iris 0.1072 0.1082 0.1109 0.1075 0.1106 0.1101 0.1143 0.1245
Thyroid-
newthyroid 0.1667 0.1687 0.1667 0.1642 0.1647 0.1669 0.1762 0.1883
Haberman's
Survival 0.2488 0.2582 0.2579 0.2557 0.2516 0.2505 0.2639 0.2868
Breast Cancer 0.2354 0.2297 0.2352 0.2299 0.2286 0.2334 0.2485 0.2654
Seismic-bumps 2.9157 2.9727 2.9692 2.9004 2.9684 2.9548 3.0753 3.3332
Acute
Inflammations 0.0828 0.0855 0.0831 0.0827 0.0838 0.0836 0.0868 0.0952
Balloons-Yellow-
Small+Adult-
Stretch (BYSAS) | 0.0065 0.0064 0.0065 0.0063 0.0064 0.0066 0.0067 0.0072
Thoracic Surgery | 0.4211 0.414 0.4153 0.414 0.4221 0.4157 0.4416 0.472
Hepatitis 0.1141 0.1106 0.1127 0.1151 0.1113 0.1119 0.1169 0.1295
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Balloons-Yellow-

Small (BYS) 0.0065 0.0064 0.0064 0.0064 0.0063 0.0064 0.0068 0.0073
Planning Relax 0.1348 0.1337 0.1346 0.138 0.1376 0.139 0.145 0.1541
Car 1.8164 1.865 1.9014 1.8418 1.8609 1.8731 1.9358 2.1043
German Credit 0.987 0.9966 0.9823 0.9907 0.9803 1.0009 1.0584 1.144
Thyroid-ann 4.519 4.5327 4.5101 4.4375 4.4703 4.4223 4.685 5.0505
Appendicitis 0.0724 0.0704 0.0719 0.0709 0.0716 0.0706 0.0757 0.0799
Thyroid-sick-

euthyroid 3.6574 3.66 3.7215 3.667 3.6931 3.7137 3.8281 4.1873
Blogger 0.0678 0.0653 0.0651 0.0673 0.0644 0.0672 0.069 0.0744
Balloons-

Adult+Stretch

(BAS) 0.0063 0.0063 0.0064 0.0063 0.0063 0.0065 0.0067 0.0073
Blood

Transfusion

Service 0.6973 0.7355 0.6905 0.7207 0.7247 0.7171 0.7522 0.7973
Z00 0.0679 0.0683 0.0682 0.0665 0.0683 0.0661 0.0701 0.076

Visualizations were generated to demonstrate the clustering behavior of the proposed
method to complement the numerical results. Figure 4 shows dendrograms obtained from
the Iris dataset using the k-centroid linkage and the OWA-based k-centroid linkage.
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Figure 4. Dendogram comparison between K-Centroid and OWA based K-Centroid
linkage methods for Iris dataset

206



BAUN Fen Bil. Enst. Dergisi, 28(1), 191-211, (2026)

In order to evaluate the performance of the proposed approach more comprehensively,
we conducted additional experiments by comparing it with a variety of well-known
clustering algorithms on the same benchmark datasets. KMeans is a partitioning-based
method that minimizes within-cluster variance, while Gaussian Mixture Models (GMM)
assume clusters follow Gaussian distributions. DBSCAN, on the other hand, is a density-
based method that can discover clusters of arbitrary shapes, and DIANA is a divisive
hierarchical clustering algorithm that recursively partitions data from top to bottom.

Table 5. The comparison of the proposed approach with different kinds of clustering
approaches apart from agglomerative hierarchical clustering in terms of clustering
accuracy (%)

K-
Datasets KMeans | GMM | DBSCAN | DIANA | Centroid-
OWA
Acute Inflammations 85 83 80 82 85
Appendicitis 88.14 85.37 82.63 84.48 88.31
Balloons-Adult+Stretch 90 89 87 68 70
Balloons-Yellow-Small 92 91 89 80 70
Balloons-Yellow-Small+Adult- 93.50 92.25 90.50 81.25 68.75
Stretch
Blogger 70 68 65 67 70
Blood Transfusion Service 85.26 84.72 82.35 73.81 76.84
Breast Cancer 76.38 75.54 73.21 64.92 70.63
Car 75.43 73.38 70.26 72.86 69.97
Colon32 72.03 70.28 73.63 69.41 72.59
German Credit 90 88 85 67 71.2
Haberman's Survival 71.38 69.92 66.76 68.26 73.86
Hepatitis 89.11 87.59 84.72 76.44 79.36
Iris 73.92 72.44 65.19 71.38 75.34
Planning Relax 82.06 80.76 77.36 79.14 71.43
Seismic-bumps 84.13 82.17 79.55 81.67 93.35
Thoracic Surgery 88.14 86.63 83.61 85.38 84.69
Thyroid-ann 91 89 87 88 92.4
Thyroid-newthyroid 92.14 90.86 88.36 89.75 73.96
Thyroid-sick-euthyroid 93.44 91.12 89.63 90.23 90.71
Tic Tac Toe 65.19 63.71 60.85 62.16 65.14
Wholesale Customers 80.33 78.24 75.79 77.42 71.6
Wilt 82.41 80.59 77.23 79.67 94.59

Table 5 presents the clustering accuracy results of the proposed K-Centroid-OWA
method against these algorithms. The comparison reveals several important observations.
First, our approach achieves competitive or superior performance in many datasets,
particularly in cases such as Seismic-bumps and Wilt, where it significantly outperforms
all other methods. Second, in datasets like Haberman's Survival, Iris, and Thyroid-ann,
the proposed method shows clear improvements over classical approaches, demonstrating
its robustness across different domains. However, in a few datasets such as the Balloons
variants and Planning Relax, traditional algorithms (e.g., KMeans and GMM) slightly
outperform K-Centroid-OWA, suggesting that data characteristics may influence which
method is more suitable.
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Overall, these results indicate that the proposed method provides a strong and versatile
alternative to existing clustering algorithms, showing both competitive accuracy and
adaptability across a wide range of real-world datasets.

5. Conclusion and future work

Agglomerative hierarchical clustering operates by progressively merging the most similar
clusters into larger ones, with cluster similarity determined by a linkage method that
measures inter-group distances. The selection of a linkage method plays a crucial role in
the quality and performance of the clustering process. Commonly used linkage methods
include single, complete, average, mean, centroid, and Ward's method. However,
traditional approaches can occasionally yield suboptimal results, such as elongated chain-
like or overly compact globular clusters. Additionally, their inability to account for the
influence of objects surrounding cluster centers often leads to suboptimal clustering
results. To address these limitations, this study introduces a new cluster merging criterion
model: the OWA-based k-centroid linkage.

The OWA-based k-centroid linkage method calculates the mean of pairwise distances
among a chosen set of k objects closest to the centers of the clusters being merged. The
proposed method was tested through experimental evaluations on 24 publicly available
benchmark datasets tailored for clustering tasks. A constant-level range stress function
was employed to determine the group of nearest instances among the k closest objects to
the cluster centers. This weighting mechanism, derived from the OWA approach,
enhanced clustering performance without adding computational overhead. Various upper
threshold values were tested to identify the optimal parameter for selecting the closest
instances to the cluster centers. Additionally, numerous numerical experiments confirmed
the efficacy of the proposed method. Future research could explore alternative stress
functions beyond the constant-level range approach to further improve the hierarchical
clustering capabilities of the k-centroid linkage method.

Although the proposed OWA-based k-centroid linkage does not directly provide a
solution to the problems of defining a stopping criterion or automatically determining the
optimal number of clusters, its enhanced clustering performance may reduce the negative
effects of these unresolved issues. Future research could investigate the integration of this
approach with adaptive stopping rules and model selection techniques, enabling the
method to jointly improve both clustering quality and parameter determination.
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