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Abstract— This paper aims to represent a proposition of an 

innovative and novel methodology applicable in detecting and 

classifying the power quality disturbances present in the supply 

to the induction motor. In all practicality, considering 

circumstantial real world applications, induction motors are 

usually operated on load. If the supply voltage is varied in any 

way, it would adversely affect the normal operation of the motor. 

In the present work, a healthy induction motor is subjected to 

power quality disturbances like balanced voltage sag, balanced 

voltage swell, unbalanced voltage sag and unbalanced voltage 

swell. For the purpose of detecting these power quality 

disturbances, discrete wavelet transform is applied to the stator 

current of the induction motor. The stator current wavelet 

coefficients are fed as input to the neural network for the 

classification purpose. Radial basis neural network and feed 

forward neural network have been independently trained and 

tested. The observation about the feedforward network having 

higher performance efficiency as compared to the radial basis 

network, has been seen. 

 
Index Terms— Induction motor, power quality disturbances, 

discrete wavelet transforms, feedforward neural network, radial 

basis neural network. 

I. INTRODUCTION 

ESPITE espite several precautions taken, supply in the 

grid is never perfectly balanced. Due to this imbalance in 

the supply, a lot of harmonics are generated which will lead to 

increase in losses and decrease in efficiency of the machine 

which is directly connected to them. If an induction motor is 

subjected to power quality (PQ) disturbance repeatedly, when 

operating on critical loads, it leads to its malfunctioning and 

would also lead to internal failures in the machine. Along with 

unbalanced voltage, the other power quality (PQ) disturbances 

whose effect is detrimental to the operation of a healthy 

induction motor are voltage sag, swell, harmonics, short 

interruptions, impulse surges, overvoltage and under voltage 

[1-2].  
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Identification and mitigation of PQ disturbances are of 

primary concern for power quality engineers. Since power 

quality disturbances are non-stationary in nature, it calls for 

advanced tools and techniques for its analysis. Though Fast 

Fourier Transforms (FFT), Short Time Fourier Transforms 

(STFT) are good signal processing techniques, they suffer 

from the fact that FFT provides only spectral information of 

the signal without time localization, and STFT provides fixed 

window width, which is more suitable for stationary signals. 

Wavelet transform is an excellent tool for the analysis of not- 

stationary signal as it employs a flexible window to obtain 

both time and spectral information of the signal. These signal 

processing techniques in conjunction with certain 

classification techniques like a neural network, fuzzy logic, 

neuro- fuzzy, support vector machine and expert systems have 

been used in the past for the classification of the power quality 

disturbances [3-14]. Chuah Heng Keow et al [15] has 

proposed a scheme for enhancing power quality problem 

classification based on wavelet transform and a rule-based 

method. 

Primarily, this paper aims to categorize the balanced supply 

to the induction motor from balanced voltage sag, balanced 

voltage swell, unbalanced voltage sag and unbalanced voltage 

swell in the magnitude of the supply. A 3 phase, 3.2KW, 

400V, 50Hz, 4 pole induction motor is selected to perform the 

simulation. The MATLAB SIMULINK software has been 

employed to carry out the entire simulation. Samples of the 

stator current of the induction motor are taken with a sampling 

frequency of 100 KHz and is processed by an 11th level 

Daubechies-9 (DB9) wavelet for the efficient extraction of the 

signatories of the disturbances. Multilayer feedforward neural 

network (FFNN) and radial basis neural network (RBNN) are 

independently trained and tested for the identification of an 

optimal network for the classification of the disturbance. The 

classification accuracy of all the networks are compared and 

presented. 

II. FEATURE EXTRACTION USING WAVELET TRANSFORM 
 

The detection of PQ disturbance involves feature extraction, 

followed by classification. The discrete wavelet transform is 

applied to the stator current for extracting the signature of the 

fault. In each step, the wavelet transform applies the scaling 

function and wavelet function to the input data. Wavelet 
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decomposition is achieved by passing the input sampled signal 

through a high-pass filter g(n) and a low pass filter h(n) as 

seen in Fig 1. At each level, half of the signal samples are 

eliminated. At the end of first level of decomposition, the 

resultant approximate (cA1(n)) and detail coefficients(cD1(n)) 

are obtained, which are given by 

 

cAi(n) =    nkhnkf d 2)(
                    

(1) 

cDi(n) =    nkgnkf d 2)(                     (2) 

 

The second level approximate (cA2(n)) and detail 

coefficients(cD2(n)) are based on level 1 approximate 

coefficients(cA1(n)). The iteration of this process continues till 

‘n’ levels and ends when all the wavelet coefficients are 

known. Fig 2 gives a three level wavelet decomposition tree. 

The wavelet coefficients determine whether there is a 

discontinuity in the function or not. These coefficients are fed 

as input to neural networks for training.  

 

 
Fig. 1. one level decomposition 

 

 
Fig. 2.  3 leveled wavelet tree. 

 

III. CLASSIFICATION USING NEURAL NETWORK 

Neural networks have been extensively used for the 

classification because of their large data handling capability. 

They are used to recognize and classify complex fault patterns 

without much knowledge about the system they deal with. The 

neural networks are described by the transfer function of their 

neurons, by training algorithm and by the connecting formula. 

Two different neural networks are considered in this paper. 

1. Feed forward neural network 

2.  Radial basis neural network 

A. Feed Forward Neural Network 

 

Fig. 3 shows the network architecture of the feed forward 

neural network whose overall input-output behavior is 

determined by a collection of changeable parameters. Given 

the inputs x= [x1, x2, x3,….., xn]T and weights w, the neural 

network computes the output y= [y1, y2, y3,……, yn]T. The 

network contains a set of source nodes that comprise of the 

input layer, 1 or more hidden layers, and an output layer. The 

propagation of the flow of the input signal through the 

network occurs in the forward direction on a layer-by-layer 

basis. There is no link between nodes in the same layer. The 

output of the jth node of in layer l, for j = 1, 2, . . . , k can be 

found from the quantity expressed as, 
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Where bj is the bias of the jth neuron, wji are weighted; vi are 

inputs and f is the activation function. The sigmoid function is 

the most popular activation function because of its similarity 

to the behavioral property of many biological neurons. The 

sigmoid function can be expressed as, 
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                              (4) 

 

During the feed-forward computation, the neural network 

weights w is fixed. This network is usually preferred because 

of its modularity, i.e., nodes in the same layer have the same 

functionality about input vectors. The mapping between input 

and output nodes may be either a linear or highly nonlinear 

relationship depending upon the activation function used in 

the network. Back propagation algorithm is a very commonly 

used training algorithm for training the neural networks. 

 

 
Fig. 3. Multilayer feeds forward network 

 

B. Radial basis neural network 

The block diagram of a version of an RBF classifier with 

one hidden layer is shown in Fig. 4. Each unit in the hidden 

layer of the RBF network has its centroid, and for each input 
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x= (x1,x2,…., xr), it computes the distance between x and its 

centroid. Its output is a nonlinear function of the distance. 

Thus, each kernel node in the RBF network computes an 

output that depends on a radially symmetric function, and 

usually, the strongest output is obtained when the input is near 

the centroid of the node. For r input nodes and m output 

nodes, the overall response function without considering 

nonlinearity in an output node has the following form: 
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where M є N the set of natural numbers is the number of 

kernel nodes in the hidden layer, wi є Rm  is the vector of 

weights from the ith kernel node to the output nodes, x is an 

input vector ,K is a radially symmetric kernel function of a 

unit in the hidden layer, zi and σi, are the centroid and 

smoothing factor (or width) of the ith kernel node, respectively, 

and g: [0,∞) → R is a function called the activation function, 

which characterizes the kernel shape. 

 
Fig. 4. A radial basis function network 

 

The commonly used radial basis activation functions are 

multiquardratic and Gaussian. The multiquardratic function is 

given by 

 
 


22

1




c
p , α>0                           (6) 

and Gaussian function is given by, 

 

p(γ) = exp(-γ2)                                   (7) 

 

IV. PROPOSED METHODOLOGY 

In identifying the PQ disturbance, extracting features, and 

characteristics is the primary step. When the machine is 

normally running on load. The sample of stator currents are 

taken with a sampling frequency of 100 KHz for the 

extraction of signature of the fault and is processed by Ann 

11th level DWT. The methodology proposed in this paper is 

designed to recognize 

 Balanced sag and unbalanced sag as seen in Fig. 5 

 Balanced swell and unbalanced swell as seen in Fig. 6 

 
Fig. 5. Pictorial representation of balanced and unbalanced sag. 

 

 
Fig. 6. Pictorial representation of balanced and unbalanced swell. 

 

The final classification of PQ disturbances is obtained using 

neural networks, which takes wavelet coefficients as input. 

Fig. 7 shows the generalized block diagram of the neural 

network. The target vector consists of 3 columns.  

 

 The first column (y1) indicates the health of the supply (1for 

balance or 0 for unbalancing). 

 The second column (y2) indicates sag/ swell if any in 

present in the supply voltage (-1 indicates sag and +1 

indicates swell). If the supply is balanced with no sag and 

swell, then this column indicates 0.  

 The third column (y3) provides the percentage of sag or 

swells present if any. 

 

 
Fig. 7. Generalized block diagram of neural network 

 

Before its utilization in the classification process, the neural 

network is thoroughly trained. The proposed methodology is 

implemented using the following steps. 

Step 1. Sample the stator current of the induction motor. 

Step 2. Computation of the wavelet coefficient of the stator 

current is done. 

Step 3. The so obtained wavelet coefficients are given as 

input to the neural network. 
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Step 4. Classification of the type of existing voltage 

variation is done. 

Step 5. The type of voltage variation is displayed if found to 

exists. 

Step 6. Display the percentage of voltage variation if any. 

 

These steps are executed for both FFNN and RBNN. The 

neural network which gives the best classification is finally 

considered. The Simulink block diagram used for the creation 

of the PQ disturbances in the supply of the induction motor is 

given by Fig.8. The three phase programmable voltage source 

in varied for obtaining different types of PQ disturbances. The 

three phase VI measurement block is used to observe the 

variations in the supply voltage. A 3 phase, 3.2KW, 400V, 

50Hz, 4 pole induction motor is selected to perform the 

simulation. The induction motor is operated at full load, with a 

full load torque of 30.25 N-m. The novelty of the proposed 

methodology is that one phase stator current (phase A) in 

alone used for obtaining the signature of the PQ disturbances, 

unlike other cases where all the 3 phase currents are used for 

obtaining the signature of the PQ disturbances. 

 
Fig. 8: Matlab/ Simulink block diagram. 

V. RESULTS AND DISCUSSION 

 The stator current of phase A corresponding to balanced 

supply, supply with balanced sag and unbalanced sag, supply 

with balanced swell and unbalanced swell are as given in Fig. 

9 to Fig 13. 

 

 
Fig.9. Stator current of healthy machine with balanced supply 

 
Fig.10. Stator current of healthy machine supplied with 40% sag in the supply 

 
Fig.11. Stator current of healthy machine supplied with 40% swell in the 

supply 

 
Fig.12. Stator current of healthy machine supplied with 40% unbalanced sag 

in the supply 

 
Fig.13.Stator current of healthy machine supplied with 40% unbalanced swell 

in the supply 

 

The sample of the stator currents are taken with a sampling 

frequency of 100 KHz. The type of the mother wavelet 

chosen, the order of the wavelet and the number of 

decomposition levels are crucial for obtaining an effective 

output. In the present work, the suitability of the Daubechies 

wavelet-9 (DB9) has been ascertained, after several 

comparative studies between different wavelets. The number 

of levels of decomposition L is calculated according to the 

following formula [16]. 
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L >   int 
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Where fs is the sampling frequency and f is the supply 

frequency of the stator current. For a 50Hz signal with a 

sampling frequency of 100 KHz, the number of levels of 

decomposition is found to be 11 as calculated from equation 

(8). The 11th level detailed coefficients are feed as inputs for 

further classification using neural networks. The final stage 

involves classification of the PQ disturbances using suitable 

network architecture 

A. Classification using feedforward neural networks 

The training of the neural network has been performed 

taking 37 inputs (1 balanced supply and 36 cases of PQ 

disturbance in the supply voltage), each containing 114 

wavelet coefficients. During the training procedure, 

observation has been made regarding the fact that the selection 

of the neural network architecture, i.e., the number of layers, 

the number of neurons in each layer and the activation 

function play an essential role towards successful 

classification. Hence considering all these parameters, a feed 

forward neural network was created using Conjugate gradient 

backpropagation with Powell-Beale restarts as training 

function. Table 1 shows the number of hidden layers, number 

of neurons in the hidden layer with its transfer function, 

number of iterations, execution time, gradient, performance 

and classification accuracy of the proposed network. 

Though faster performance with reduced number of the 

epoch, and faster convergence with accurate classification is 

always preferable, in practice a compromise has to be made 

with few of these parameters, as an ideal neural network is 

never realizable. The ultimate aim of the FFNN is always to 

obtain good classification accuracy. The corresponding 

parameters of the network for the highest accuracy are 

highlighted in Table-I. The network contains 1 input layer, 2 

hidden layers with 750 neurons and 600 neurons respective 

layers, and 1 output layer with 3 neurons. The tan-sigmoid 

transfer function is used for training the hidden layers while 

purelin transfer function is used for training the output layer. 

Fig. 14 shows the performance plot of the proposed network. 

Linear regression between the output of the neural network 

and the target is performed. The regression coefficients show 

that the target and ANN output values match very closely as 

seen in Fig. 15. 

 
 

 

TABLE I 
FEEDFORWARD NEURAL NETWORK WITH CONJUGATE GRADIENT BACKPROPAGATION WITH POWELL-BEALE RESTARTS AS TRAINING 

FUNCTION 

NUMBER OF 

HIDDEN 

LAYERS 

NUMBER OF 

NEURONS IN 

EACH LAYER AND 

ITS TRANSFER 

FUNCTION 

NUMBER OF 

ITERATIONS 

EXECUTION 

TIME  

(IN MIN) 

GRADIENT PERFORMANCE 
CLASSIFICATION 

ACCURACY 

2 

600  500 

TAN  TAN 
293 0:40 5.60 0.005 80% 

600  500 

TAN  LOG 
184 0:24 0.48 0.000417 50% 

750  600 

 TAN  TAN 
277 0:54 6.87 0.00836 98.5% 

700  600 

TAN  TAN 
247 0:43 10.4 0.024 88% 

700  600 

TAN  LOG 
289 0:48 0.311 5.2E-5 60% 

 

 

http://www.bajece.com/


BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING,        DOI: 10.17694/bajece.62699 

 

Copyright © BAJECE                          ISSN: 2147-284X                    March 2016        Vol.4   No.1                   http://www.bajece.com         

42 

 
Fig. 14: performance plot of FFNN 

 
Fig. 15: Regression plot of FFNN 

25 additional test data corresponding to each case of the 

disturbance were generated For the purpose of evaluating the 

proposed FFNN. Table II gives the classification results for 

different types of disturbance for FFNN. The accuracy of the 

classification is 94.1% for balanced sag, 100% for balanced 

swell, unbalanced sag and unbalanced swell as seen in Fig 16. 

Further prediction accuracy was 100% for trained data, 98% 

of test data and overall accuracy being 98.53% as seen in Fig 

17. 

 

 

 
 

Fig. 16: The accuracy of classification for different types of disturbance 

 
 

 

 
 
Fig. 17: The accuracy of classification for trained data, testing data, and total 

data. 

TABLE II 

THE RESULT OF CLASSIFICATION FOR DIFFERENT TYPES OF DISTURBANCE USING FFNN 

Sl. No. 
Type of 

disturbance 

Trained 

data 
Testing data Total Accuracy 

1 Balanced sag 9/9 23/25 32/34 94.1% 

2 Balanced swell 9/9 25/25 34/34 100% 

3 Unbalanced sag 9/9 25/25 34/34 100% 

4 
Unbalanced 

swell 
9/9 25/25 34/34 100% 

Grand total 36/36 98/100 134/136 98.53% 

Percentage column wise 100% 98% 98.53% -- 
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B. Classification using radial basis neural network 

Table III shows the goal, spread, epoch, performance, 

gradient, validation check, step size and classification 

accuracy for RBNN. The training function for training the 

RBNN employs the use of Conjugate gradient 

backpropagation with Powell-Beale restarts. It is observed that 

the radial basis network is sensitive to spread but highly 

sensitive to variation in goal. Hence to obtain an optimal 

network for good classification, both goal and spread are 

varied, and the results are tabulated in Table 3. The network 

with highest classification accuracy is highlighted in Table 3 

and is used for the classification purpose. Fig. 18 shows 

regression plot for the chosen network. From Fig. 18 it is seen 
that the target and ANN output values match closely to each 

other. 

 
Fig. 18. Regression plot for RBNN 

 

 
TABLE III 

RADIAL BASIS NEURAL NETWORK (RBNN) WITH CONJUGATE GRADIENT BACKPROPAGATION WITH POWELL-BEALE RESTARTS AS 
TRAINING FUNCTION 

GOAL SPREAD EPOCH PERFORMANCE GRADIENT 
VALIDATION 

CHECK 

STEP 

SIZE 

CLASSIFICATION 

ACCURACY 

0 30 0 8.22E-28 1.19E-11 0 1 55% 

0 35 0 2.2E-27 2.52E-11 0 1 64% 

0 40 0 1.6E-27 2.91E-11 0 1 78% 

0 45 1 4.98E-27 1.68E-10 0 0 48% 

0 50 1 1.25E-27 1.02E-10 0 0 40% 

0.2 65 1 0.169 108 0 0 55% 

0.1 68 1 0.0746 178 0 0 89.7% 

0.01 68 1 0.0035 6.24 0 0 35% 

0.3 68 1 0.266 82.2 0 0 67% 

0.2 68 1 0.0746 178 0 0 89% 

 

 

Table IV gives the classification results for different types of 

disturbance for RBNN. The accuracy of classification is 

79.41% for balanced sag and swell, 100% for unbalanced sag 

and swell as seen in Fig 19. Further prediction accuracy was 

94.4% for trained data, 88% of test data and overall accuracy 

being 89.7% as seen in Fig 20. From Fig 21, it is found that 

the overall performance of RBNN is 89.7%, and FFNN is 

98.53%. 
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TABLE IV 

CLASSIFICATION RESULT FOR DIFFERENT TYPES OF DISTURBANCE USING RBNN 

Sl. No. 
TYPE OF 

DISTURBANCE 

TRAINED 

DATA 
TEST DATA TOTAL ACCURACY 

1 Balanced sag 8/9 19/25 27/34 79.41% 

2 Balanced swell 8/9 19/25 27/34 79.41% 

3 Unbalanced sag 9/9 25/25 34/34 100% 

4 Unbalanced swell 9/9 25/25 34/34 100% 

Grand total 34/36 88/100 122/136 89.7% 

Percentage column wise 94.4% 88% 89.7% -- 

 

 

 
Fig. 19. Classification accuracy for different type of disturbance 

 

 
 

Fig. 20. Classification accuracy for trained data, testing data, and total data for 
RBNN. 

 
 

Fig. 21. Classification accuracy of RBNN and FFNN 

 

VI. CONCLUSION 

This paper presents a resourceful new technique for the 

automatic classification of PQ disturbance in the supply to the 

induction motor. Supply voltage was varied from 10% to 90% 

for sag, swell, unbalanced sag and unbalanced swell. The 

wavelet coefficients bear sufficient information regarding the 

type and percentage of variation in the supply voltage 

compared to the balanced supply. These wavelet coefficients 

are fed as input to both RBNN and FFNN and the results are 

presented in this paper. The FFNN is not only able to detect 

the PQ disturbances but is also able to determine the 

percentage of the disturbance more accurately than RBNN. 

The overall performance evaluation of FFNN is found to be 

good compared to RBNN. 
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