Determinants of Liquidity Risk in Deposit Banks in Türkiye: 2012-2022 Analysis¹

Türkiye'deki Mevduat Bankalarının Likidite Riskinin Belirleyicileri: 2012-2022 Analizi

Melek Yıldız², Dagan Said Aden³

Abstract

This article identifies the bank-related and macroeconomic factors determining liquidity risk for the top 10 deposit banks, based on asset size, using panel regression analysis. The liquidity ratio (liquid assets to the total of deposits and non-deposit sources) from 2012 to 2022 is the dependent variable. The bank-related independent variables include bank size, ROA, ROE, bank capital, deposit-to-credit conversion ratio, credit size, and non-performing loans. The macroeconomic independent variables are economic growth, inflation, and the unemployment rate for the same period. Results show a positive relationship between bank size, ROE, bank capital, credit size, and economic growth with the liquidity ratio. Banks with larger assets, higher ROE, more capital, and higher credit volume have lower liquidity risk. Liquidity risk is also lower in periods of economic growth. Additionally, a negative relationship exists between ROA, deposit-to-credit conversion ratio, inflation, and liquidity risk of banks.

Keywords: Liquidity Ratio, Liquidity Risk, Deposit Banks, Panel Regression Analysis.

Öz

Bu makale, aktif büyüklüğüne göre en büyük 10 mevduat bankasının likidite riskini belirleyen banka özel ve makroekonomik faktörleri panel veri regresyon yöntemini kullanarak tespit etmeyi amaçlamaktadır. Bankaların 2012-2022 yılları arasındaki likidite rasyosu (likit varlıkların mevduatlar ve mevduat dışı kaynakların toplamına oranı) çalışmanın bağımlı değişkenini; banka büyüklüğü, ROA, ROE, banka sermayesi, mevduat-kredi dönüşüm oranı, kredi büyüklüğü ve takipteki krediler bankaya özgü bağımsız değişkenlerini; aynı dönemdeki ekonomik büyüme, enflasyon ve işsizlik oranı makroekonomik bağımsız değişkenlerini oluşturmaktadır. Analiz sonuçları banka büyüklüğü, ROE, banka sermayesi, kredi büyüklüğü ve ekonomik büyüme ile likidite oranı arasında pozitif bir ilişki olduğunu göstermektedir. Bu bulguya paralel olarak, daha yüksek varlık düzeyine sahip, yüksek özkaynak karlılığı, daha fazla sermaye ve daha yüksek kredi hacmine sahip bankaların daha düşük likidite riskine sahip olduğu söylenebilir. Ayrıca, ekonomik büyüme ortamında bankaların likidite riskinin daha düşük olduğu tespit edilmiştir. Bunun yanı sıra, analiz, ROA, mevduat-kredi dönüşüm oranı, enflasyon ile likidite oranı arasında negatif bir ilişki olduğunu ortaya koymuştur. Bu ilişkiye göre, daha yüksek aktif karlılığı ve mevduat-kredi dönüşüm oranlarına sahip bankalar daha yüksek likidite riskiyle karşı karşıyadır. Öte yandan, enflasyon oranı, bankaların likidite riskini artıran bir etkiye sahiptir.

Anahtar Kelimeler: Likidite Rasyosu, Likidite Riski, Mevduat Bankaları, Panel Veri Regresyon.

JEL Kodları: C33, G21, G32

Araştırma Makalesi [Research Paper]

Submitted: 07 / 02 / 2025 **Accepted:** 23 / 09 / 2025

¹This article is derived from the master's thesis titled "Determinants of Liquidity Risk: The Case of Turkey," written by Dagan Said Aden under the supervision of Assoc. Prof. Dr. Melek YILDIZ.

²Assoc. Prof. Dr., Çankırı Karatekin University, Department of Finance and Banking, Çankırı, Türkiye, melekyildiz@karatekin.edu.tr, ORCID: https://orcid.org/ https://orcid.org/ 0000-0002-9716-9245.

³Master's Graduate, Çankırı Karatekin University, Institute of Social Sciences, Department of Banking and Finance, Çankırı, Türkiye, dagan.said.aden@gmail.com, ORCID: https://orcid.org/ 0000-0001-8586-8615.

Introduction

Risks have been encountered in every period during which activities encompassing humans and the economy have been carried out. The fundamental risk factors that have existed throughout human history include wars, natural disasters, and pandemics. Over time, the nature of the risk phenomenon has changed: in agricultural societies, risk stemmed from climatic conditions; in industrial societies, it resulted from unexpected changes in supply and commodity prices; and in information societies, it has been associated with communication quality and global crises. Therefore, the definition of risk may vary depending on the time period and the sector in which it's evaluated (Yarız, 2012: 3).

The banking sector, which is significant and privileged in terms of national economies, has operated under public supervision and regulation since its establishment. On the other hand, the banking sector is exposed to various risks at general, sectoral, and micro levels (Yarız, 2011: 2). Banks are one of the fundamental pillars of the financial system and the largest traditional intermediaries. These institutions collect funds from surplus holders through deposits and other financial instruments, then extend credit to those in need with a certain margin. Naturally, banks, aiming to generate profits and increase their market value, encounter various risks in pursuit of these goals (Şenol et al., 2019: 102). One of the risks banks face is liquidity risk, which has the potential to trigger financial crises and is critically important for the financial soundness and sustainability of banks.

In economic theory, liquidity denotes to the capacity of an economic unit to transform their existing assets into goods, services, or alternative assets (Nikolaou, 2009: 10). According to Türküner (2016, p.3), there are three fundamental definitions of liquidity: (i) The liquidity of financial instruments refers to their ability to be quickly converted into cash while retaining their value as much as possible. (ii) Market liquidity, another definition, indicates the likelihood of buying and selling a certain volume of assets or securities in the market without causing price changes. (iii) Lastly, monetary liquidity focuses on the amount of cash in circulation and liquid assets that can be rapidly converted into money in an economy.

The probability of illiquidity indicates the presence of liquidity risk. As liquidity risk increases, the probability of illiquidity rises accordingly, leading to a decline in liquidity (Nikolaou, 2009: 5-16). Liquidity risk is a significant risk faced by the banking sector, demonstrating that a bank doesn't have sufficient liquidity to meet its obligations. This risk arises from the inability to predict when and in what amount depositors will withdraw their deposits, as well as when and how much credit customers will need. For this reason, banks must maintain an adequate level of liquid funds to sustain their lending and investment activities while also meeting depositors' demands (Çelik & Akarım, 2012: 1). Otherwise, the failure to fulfill obligations on time may lead to a loss of confidence, prompting depositors to withdraw large sums, which can impact the entire banking sector (Akan, 2008: 66).

Based on this, it can be explicitly stated that liquidity risk not only leads to the bankruptcy of financial institutions but can also create systemic risk factors, as seen in the 2008 Global Financial Crisis, potentially triggering a broader economic crisis. This is precisely why identifying the factors that determine liquidity risk remains a consistently popular topic in financial literature. Researchers and academics in finance conduct empirical studies using up-to-date data, producing findings that inspire bank management and industry regulators.

In this context, this study, which examines the bank-specific and macroeconomic determinants of liquidity risk in Türkiye during the 2012-2022 period, makes several significant contributions to the literature. In particular, the study's focus on a period that includes critical macroeconomic shocks such as the 2018 currency crisis and the COVID-19 pandemic, and the policy decisions taken as a result of these developments, is of particular importance. In this regard, the study is expected to provide more targeted and up-to-date information for policymakers.

In light of the gaps identified in the literature review, the key contributions of the study can be summarized as follows. For further details, please refer to Table 1:

- While many previous studies in the literature (Berger and Bouwman, 2009; Dinger, 2009; Ayaydın and Karaaslan, 2014; Muzır and Şeker, 2015; Singh and Sharma, 2016; Akkaya and Azimli, 2018; Ersoy and Aydın, 2018; Ahamed, 2021; Karakaş and Acar, 2022; Çakmak and Sunal, 2023; Elçeri and Karaaslan, 2023) focus on broader samples, this study offers a more specific analysis.
- Although the panel regression analysis used is common in the literature, the use of up-to-date data and the selection of a targeted sample based on clear criteria help to more clearly reveal the changing dynamics of liquidity risk and provide valuable insights.

1. Literature Review

Relevant studies in the national and international literature have been examined and evaluated using a methodological approach. As summarized in the studies below, it has been observed that the independent variables in these studies

consist of bank-related and macroeconomic indicators. Given that the studies have both a unit and time dimension, the analysis method is generally panel regression analysis. While the scope of the studies typically includes deposit banks selected based on certain criteria (such as asset size, stock exchange listing, bank size, etc.), there have also been studies that include a limited number of participation banks.

Consistent with the literature, this article aims to determine the bank-related and the macroeconomic indicators of liquidity risk for the top 10 deposit banks⁴ in terms of asset size between 2012 and 2022, using the panel regression analysis method. It is believed that this article can provide flexibility to bank management, financial experts, and financial sector regulators by helping them understand, determine, and take preventive measures against the factors that could positively or negatively affect liquidity risk of banks. Furthermore, it's expected that this article, which addresses a frequently discussed topic in the literature with up-to-date data, will provide insights for on future research and contribute to the advancement of knowledge in the field.

Table 1. Literature Review on the Topic

Author(s)	Scope	Period	Method	Findings
Berger & Bouwman (2009)	All U.S. banks	1993-2003	Panel regression analysis	The banks that create the most liquidity are large banks, holding banks, retail banks, and recently merged banks. As the bank value increases, more liquidity is created.
Dinger (2009)	378 banks from Central and Eastern European economies	1994-2004	GMM	A negative relationship has been identified between the liquidity ratio and bank size, deposit interest rate, economic growth, and GDP per capita, while a positive relationship has been found between the liquidity ratio and bank capital as well as the interbank interest rate.
Akhtar et al. (2011)	12 banks (6 conventional banks, 6 Islamic banks)	2006-2009	Panel regression analysis	In both types of banks, bank size and the net working capital-to-net assets ratio are positively but insignificantly associated with liquidity risk. However, the capital adequacy ratio in conventional banks and ROA in Islamic banks have a positive effect on liquidity risk.
Çelik & Akarım (2012)	Banks listed on the stock exchange	1998-2008	Panel regression analysis	A negative correlation was observed between liquidity risk and risky liquid assets with ROE, while a positive correlation was found between external financing and asset profitability.
Ayaydın & Karaaslan (2014)	23 banks operating in Türkiye	2003-2011	GMM	It was found that liquidity risk is positively related to profitability variables and negatively related to variables such as foreign share, ownership structure, and global financial crisis.
Muzır & Şeker (2015)	All deposit banks operating in Türkiye	2003-2009	Logistic Regression, MARS	Country risk forecasts, which are dependent on foreign trade performance, influence liquidity risk.
Laurine (2013)	15 Zimbabwean commercial banks	from March 2009 to December 2012	Panel regression analysis	Liquidity risk is negatively influenced by capital adequacy and bank size, whereas it is positively affected by interest spreads and non-performing loans.

_

⁴According to the Banking and Group Information Report (Quarterly, Latest Period Comparative Balance Sheet Information) published by The Banks Association of Türkiye in June 2024.

lşıl & Özkan (2015)	Four participation banks operating in Türkiye	2006-2014	Seemingly Unrelated Regression	As the past period financing gap/total assets and total loans/total assets ratio increase, a rise in liquidity risk of participation banks is observed.
Singh & Sharma (2016)	59 Indian banks	2000-2013	Panel regression analysis	The variables that have a negative effect on liquidity are size and GDP, while the variables that have a positive effect are deposit volume, profitability, capital adequacy ratio (CAR), and inflation.
lşık & Belke (2017)	13 deposit banks listed on the stock exchange	2006-2015	Panel regression analysis	Liquidity risk is negatively related to variables including ROE, bank capital, growth in deposits, provision for loan losses, and inflation; and positively related to variables including size and economic growth.
Firuzan & Firuzan (2017)	16 banks operating in Türkiye	2009-2016	Dynamic Panel Data Model	Inflation, interest rates, GDP, net interest margin, and deposit variables increase liquidity risk.
Akkaya & Azimli (2018)	28 banks operating in Türkiye	2005-2015	Panel regression analysis	Liquidity risk is influenced by variables such as GDP, the exchange rate, the unemployment, inflation, bond issuance, the interest income-to-expense ratio, the deposit-to-total liabilities ratio, and ROA.
Ersoy & Aydın (2018)	27 deposit banks operating in Türkiye	2005-2015	Panel regression analysis	A positive relationship was found between liquidity level and capital, asset quality, and deposit level; an inverse-U relationship with size; and a negative relationship with economic growth, unemployment, and global crisis variables.
Al-Homaidi et al. (2019)	37 commercial banks that are listed on the stock exchange in India	2008-2017	Panel regression analysis	The variables that positively affect banks' liquidity are size, CAR, deposit ratio, operational efficiency, and ROA, while the variables that negatively affect it are asset quality, asset management ratio, ROE, and net interest margin. Additionally, the interest rate and exchange rate also have a significant impact on liquidity.
Ahamed (2021)	23 commercial banks in Bangladesh	2005-2018	Panel regression analysis	The factors negatively related to liquidity risk are asset size and inflation. The factors positively related to liquidity risk include ROE, CAR, GDP, domestic credit, and the loan-to-asset ratio. However, the positive relationship between ROE and CAR with liquidity risk is statistically insignificant
Akbaş (2022)	5 participation banks operating in Türkiye	2016-2019	Balanced Panel Data Method	The relationship between liquidity risk and the CAR is positive.
Karakaş & Acar (2022)	20 deposit banks operating in Türkiye during the relevant period	2002-2020	Panel regression analysis	A negative relationship between banks' liquidity and profitability ratios was found.
Çakmak & Sunal (2023)	19 deposit and 4 participation banks operating in Türkiye	2015-2021	Panel regression analysis	Relationships between liquidity level and deposit, loan-to-deposit ratio, ROE, CAR, equity and asset size, money supply, credit default swap, and Covid period were identified.

Elçeri & Karaaslan (2023)	Turkish banking sector	2011-2022	Time Series - Least Squares Estimator	A positive relationship between liquidity risk and NPL/total cash loans and cash loans/total deposits; a negative relationship with ROA, policy interest rate, CPI, and GDP variables was identified.
Güzel (2023)	15 largest deposit banks operating in Türkiye	2003-2022	Panel regression analysis	Liquidity risk is positively affected by variables such as ROE, total assets, deposit ratio, foreign exchange position, inflation rate, and economic growth; and negatively affected by credit ratio and risk, financial asset ratio, fixed asset ratio, Central Bank overnight interest rate, and exchange rate variables.
Alev (2024)	8 private deposit banks operating in Türkiye	2010-2021	Correlation Analysis And Panel regression analysis	The profitability of private deposit banks in Türkiye is negatively influenced by variables like the ratio of liquid assets to short-term liabilities and the proportion of loans to total assets.
Şahut & Afşar (2024)	Four deposit banks listed on BIST30	2013-2023	Panel regression analysis	Relationships between liquidity risk and interest rates, CDS, and the proportion of total deposits to total assets were identified.

2. Dataset, Hypotheses and Methodology

This article aims to identify the bank-related and macroeconomic factors that determine liquidity risk in banks. The sample of the study consists of the top 10 deposit banks in terms of asset size, as reported in the Bank and Group Information (Quarterly, Most Recent Comparative Balance Sheet Information) report published by the Banks Association of Türkiye for the period of June 2024 (See Table 2).

The primary rationale for composing the sample from the 10 largest deposit banks according to asset size is that these banks represent a significant portion of the assets in the Turkish banking sector and hold a determinative position in shaping the liquidity risk dynamics of the sector. Another important consideration is that these large-scale banks have systemic importance for the robustness and stability of the financial system.

At this point, the reasons for selecting the 2012–2022 period should also be specified. This period is significant because it was marked by major transformations in the Turkish economy. In particular, the 2018 currency shock impacted banks' risk structures. Additionally, fluctuations in the interest rate policies of the Central Bank of the Republic of Türkiye, the uncertainty caused by the COVID-19 pandemic in financial markets, the transformation in banks' operational processes and digital banking channels due to the pandemic, the high inflation problem in Türkiye especially after 2018, decisions by the Banking Regulation and Supervision Agency that altered banks' liquidity outlook, the expansion of credit with government support, and the increased intermediary role of public banks in this regard are among the factors influencing the choice of the 2012–2022 period.

Table 2. Top 10 Deposit Banks by Asset Size

Bank Name	Year of Establishment	Total Assets (TRY)
Ziraat Bank	1863	4.548.225
VakıfBank	1954	3.237.503
İşbank	1924	2.886.231
Halkbank	1938	2.611.039
Garanti BBVA	1946	2.313.106
Akbank	1984	2.180.576
Yapı Kredi	1944	2.178.173
QNB Finansbank	1987	1.258.883
Denizbank	1997	1.229.166
TEB	1927	498.674

Kaynak: The Banks Association of Türkiye, Bank and Group Information (Quarterly, Most Recent Comparative Balance Sheet Information), June 2024.

The liquidity level of the banks mentioned in Table 2 between 2012 and 2022 is represented by the *liquidity ratio*, which is the ratio of liquid assets to the total of deposits and non-deposit liabilities, and this ratio has been included as the dependent variable in the model. Non-deposit liabilities include interbank market, borrowed funds, securities issued, and other sources offered to the market. A high ratio indicates that the bank can easily cover a potential reduction in deposits and non-deposit liabilities with its liquid assets. However, a decrease in this ratio suggests that the bank might face difficulties in compensating for a reduction in its deposits and non-deposit liabilities (Gürel, 2002: 62). In summary, when this ratio, used as a measure of liquidity risk, increases, liquidity risk decreases, and conversely, when the ratio decreases, liquidity risk increases. Therefore, the impact of the independent variables, which are explained below, on liquidity risk has been evaluated in this context.

The independent variables of the study consist of bank-related and macroeconomic indicators. These variables also cover the period from 2012 to 2022. Explanations regarding the independent variables are provided below.

The first of the bank-related variables, **bank size** (**scale**), is measured by the share of total assets within the sector. Asset size is an indicator of both a bank's total assets and receivables, and its total equity and liabilities, and it's an important indicator of business volume (Navruz, 2019: 167). Larger banks tend to engage more in derivative transactions, and due to these transactions, they have the potential to cover various expenses such as the employment of qualified personnel and the implementation of internal control systems (Yong et al., 2007: 13). On the other hand, because larger banks have a wider customer diversity and a larger number of customers, the number and volume of financial transactions are also higher. In particular, the large volume of deposits and loans makes larger banks more vulnerable to liquidity risk. Therefore, the share of asset size within the sector is also included as one of the bank-related variables.

The return on assets (ROA), used as a measure of bank profitability, is one of the most effective and widely used financial ratios for indicating company performance. ROA expresses how efficiently a bank generates profit with its assets. Therefore, the larger this ratio, the higher the bank's capacity to generate profit from its assets can be considered (Türkmen, 2018: 81). Another ratio that indicates the financial performance of the bank is **the return on equity (ROE)**. This ratio shows the profitability with which the funds invested by the bank's shareholders are being utilized (Düzer & Önce, 2017: 642). Similarly, one of the key indicators representing bank profitability is **the net interest margin**. Unlike the ROA and ROE ratios, the net interest margin emphasizes on the profit the bank earns from its interest-bearing activities (Reis et al., 2016: 22).

In this study, instead of the Capital Adequacy Ratio, which is frequently used to measure banks' capital strength in a standardized manner, the bank capital representing the total amount of resources available to absorb risks was used. *The bank's capital*, which is an indicator of performance, is crucial in covering and undertaking the risks of the banks (Tan, 2016: 91). Based on this, it is considered that the bank's capital is related to liquidity risk, and therefore, the bank capital variable has been included in the model.

The deposit-to-loan conversion ratio is found by comparing the total credit granted by banks to the amount of deposits collected (Yücel, 2021: 63). This ratio, which typically measures how much of the credits are funded by stable funding from households and non-financial institutions, is considered a primary indicator of liquidity risk. When credits surpass the deposit base, banks encounter a funding gap and are compelled to seek solutions in the financial markets (Van den End, 2016: 237).

The credit size variable is expressed as the ratio of total loans to total assets, whereas the non-performing loans (NPL) variable is determined by the share of NPL in total loans. Despite the positive correlation between the volume of loans issued and interest income, banks may face circumstances where loans remain unpaid due to various factors. Non-payment of loans leads to a deterioration in asset quality, which in turn results in liquidity risk. This is because an increase in NPL means that the bank has not been able to collect from its customers and there is no cash inflow to the bank. On the other hand, due to the deposits entrusted to the bank, customers' requests for withdrawal create an obligation for the bank to meet this demand. It's precisely at this point that banks are likely to face liquidity issues (Zengin & Yüksel, 2016: 83).

The macroeconomic indicators are also used in this article. The first of these is **economic growth**. Economic growth theory, which encompasses efforts to understand and explain changes in countries' economic production and income levels (such as endogenous and exogenous economic growth theories), focuses on the factors supporting long-term growth, capital accumulation, technological innovations, and productivity improvements. A significant increase in the level of economic growth contributes to the overall efficiency of the economy. At this point, businesses increase their investments during the growth process, and households and businesses demand more credit. This situation puts pressure on banks to provide funding, making it essential for banks to manage liquidity risk carefully (Hidayat, 2024: 20). Another macroeconomic variable is *inflation*. During periods of high inflation, the central bank increases interest rates to

control inflation, which raises the financing costs for banks and can restrict access to liquidity. The decline in the value of money reduces the real value of debt while increasing credit risk. On the other hand, the decrease in the value of money can also affect the amount of deposits collected and the real value of those deposits. All these changes are reflected in the liquidity position of banks (Hidayat, 2024: 20). The last of the macroeconomic variables is the *unemployment rate*. According to Hackethal et al. (2010), a high unemployment rate indicates a deterioration in the overall economic conditions. This situation leads to a reduction in liquidity. At the same time, a high unemployment rate causes credit customers to experience income loss, and banks face pressure to cover this gap (Laštůvková, 2016: 972-973).

The formulas of the dependent and independent variables mentioned above, along with the data source, are presented in Table 3.

Table 3. Explanations of the Variables Used in the Article

		Dependent Variable	
Code	Variable Name	Formula	Source
LR	Liquidity Ratio	Liquid Assets / (Deposits + Non-deposit Liabilities)	The Banks Association of Türkiye
	Indep	endent Variables: Bank-Related	
BS	Bank Size	Share of total assets within the sector	
ROA	Profitability (ROA)	Average Return on Assets	
ROE	Profitability (ROE)	Average Return on Equity	
NIM	Net Interest Margin	(Interest Income - Interest Expenses) / Total Assets	The Banks Association of
BC	Bank Capital	Equity / Total Assets	Türkiye
DCR	Deposit-to-loan conversion ratio	Total Credit / Total Deposit	•
CS	Credit Size	Total Credit / Total Assets	
NPL	Non-performing Loans (NPL)	NPL divided by Total Loans	'
	Indepe	ndent Variables: Macroeconomic	
EG	Economic Growth	Annual GDP growth rate	World Bank
INF	Inflation	Annual inflation rate (CPI)	Turkish Statistical Institute (TurkStat)
UR	Unemployment Rate	Percentage of unemployed individuals in the labor force	Turkish Statistical Institute (TurkStat)

The hypotheses developed through literature review regarding the variables whose theoretical framework and formulas are presented within the scope of the study are shown in Table 4.

Table 4. Hypotheses with Relevant Literature References

Hypothese	References
BS ─→ LR	Akhtar et al. (2011), Moussa (2015), Singh and Sharma (2016), Zengin and Yüksel (2016), Al- Homaidi et al. (2019), Ahamed (2021), Güzel (2023)
ROA ─→ LR	Akhtar et al. (2011), Moussa (2015), Singh and Sharma (2016), Zengin and Yüksel (2016), Al- Homaidi et al. (2019), Elçeri and Karaaslan (2023)
ROE → LR	Akhtar et al. (2011), Moussa (2015), Al-Homaidi et al. (2019), Ahamed (2021), Güzel (2023)
BC → LR	Moussa (2015), Diep and Nguyen (2017), Al-Homaidi et al. (2019), Güzel (2023)
DCR ──→ LR	Moussa (2015), Wójcik-Mazur and Szajt (2015), Diep and Nguyen (2017), Elçeri and Karaaslan (2023)

CS → LR	Moussa (2015), Al-Homaidi et al. (2019), Güzel (2023)
NPL → LR	Waemustafa and Sukri (2016), Zengin and Yüksel (2016), Elçeri and Karaaslan (2023), Güzel (2023)
EG → LR	Moussa (2015), Singh and Sharma (2016), Zengin and Yüksel (2016), Ahamed (2021), Güzel (2023)
INF → LR	Moussa (2015), Singh and Sharma (2016), Zengin and Yüksel (2016), Ahamed (2021), Güzel (2023)
UR → LR	Singh and Sharma (2016), Zengin and Yüksel (2016), Akkaya and Azimli (2018), Ersoy and Aydın (2018)

In accordance with the objective of the study, the logarithm of the variables expressed in percentage terms, used in the established model, was taken. The model was tested using the panel regression analysis method with the Eviews 13 and Stata/IC 12.0 software packages. The procedural steps of the applied analysis method are explained below.

- After the panel data was created, descriptive statistics were calculated.
- A cross-sectional dependence test was conducted for each variable. Cross-sectional dependence, also referred
 to as inter-unit correlation, indicates the relationship between the error terms computed for each unit in the
 panel data model. To establish the correct model, a cross-sectional dependence test must be performed
 (Yerdelen Tatoğlu, 2021: 9). In this article, cross-sectional dependence was tested using the Breusch-Pagan
 LM, Pesaran scaled LM, Bias-corrected scaled LM, and Pesaran CD tests.
- A unit root test was conducted to determine the appropriate analysis method for the panel data set. However, since the cross-sectional dependence test revealed the existence of cross-sectional dependence among units, the CIPS statistic, one of the second-generation unit root tests, was used. The first differences of non-stationary variables at the level were taken, and the unit root test was repeated. While variables that were stationary at the level were included in the model with their original values, variables that became stationary after differencing were included in the model using their first differences.
- Following the unit root test, the steps of panel regression analysis were implemented. However, in panel data
 consisting of multiple units and time periods, each unit or time period may have unique characteristics.
 Variables reflecting the characteristics of the units are referred to as unit effects, while variables reflecting the
 characteristics of the time periods are referred to as time effects (Yerdelen Tatoğlu, 2021: 5). Therefore, the first
 step of the analysis was to determine the presence or absence of unit effects, time effects, or both in the model.
- After determining that the model is two-way, meaning it includes both unit and time effects, the next step was to decide whether it should be estimated using random or fixed effects. For this purpose, the Hausman test was conducted. According to the test results, the regression model was estimated using the fixed effects model under the assumption that both unit and time effects are present. From a methodological perspective, it is prudent to anticipate and clarify a potential question from readers regarding whether macroeconomic variables can be included in the model, given that they are the same for all banks within the same year but vary across different years. The fixed effects model, which eliminates variables that are entirely invariant across units over time, does not exclude variables that vary across time, even if they are identical across all units in a specific year. According to Greene (2012: 404-405), in fixed effects models, variables that remain constant across both units and time are automatically absorbed by individual fixed effects, and thus their coefficients cannot be estimated separately. However, variables that vary over time - even if identical across all units within a given year - can be included in the model and their coefficients reliably estimated due to their temporal variation. Indeed, Yerdelen Tatoğlu (2021:10), referencing the work of Baltagi and Levin (1992), provides an example related to panel data. In this example, it is emphasized that factors which do not vary across units but change over time (e.g., cigarette advertisements) can be controlled for by including them in panel models. Similarly, in this study, the macroeconomic variables included in the model (inflation, economic growth, and unemployment rate) are common across all banks within the same year, but vary over time. Therefore, following Greene (2012) and Yerdelen Tatoğlu (2021), these time-varying macroeconomic variables were appropriately included in the fixed effects model without violating its assumptions. Their coefficients were successfully estimated, and their impact on banks' liquidity risk was analyzed.

3. Findings of the Study

Under this section, after presenting the findings related to descriptive statistics, cross-sectional dependence tests, and unit root tests, the results of the panel regression model are provided.

3.1. Descriptive Statistics, Cross-Sectional Dependence, and Unit Root Test Results

Descriptive statistics for the variables used in the study have been calculated. Additionally, each variable was subjected to a cross-sectional dependence test, and based on the results, an appropriate unit root test was selected and applied. The results of these tests are presented in Table 5.

Table 5. Findings Related To Descriptive Statistics

Variables	Mean	Standard	Minimum	Maximum	Cross-Sectional	Unit Root	Unit Root
		Deviation			Dependence Cross-sectional	Test I(0)	Test I(1)
LR	1.40495	0.15436	0.99958	1.68973	dependence exists	Stationary	-
BS	0.87878	0.23525	0.32180	1.24616	Cross-sectional dependence exists	Non- stationary	Stationary
ROA	0.16482	0.21829	-0.71964	0.82793	Cross-sectional dependence exists	Non- stationary	Stationary
ROE	1.15439	0.19549	0.54268	1.75927	Cross-sectional dependence exists	Non- stationary	Stationary
NIM	0.40802	0.17693	-0.26758	0.81583	Cross-sectional dependence exists	Non- stationary	Non- stationary
ВС	1.00760	0.09430	0.68366	1.17855	Cross-sectional dependence exists	Non- stationary	Stationary
DCR	2.00804	0.05635	1.77843	2.09162	Cross-sectional dependence exists	Stationary	-
CS	1.79547	0.03688	1.64202	1.86892	Cross-sectional dependence exists	Non- stationary	Stationary
NPL	0.54703	0.20485	0.03419	1.01905	Cross-sectional dependence exists	Non- stationary	Stationary
EG	0.63054	0.31215	-0.09691	1.05690	Cross-sectional dependence exists	Stationary	-
INF	1.11162	0.27449	0.87448	1.85919	Cross-sectional dependence exists	Stationary	-
UR	1.03170	0.06250	0.91907	1.13767	Cross-sectional dependence exists	Stationary	-

In order to obtain more robust results when testing for cross-sectional dependence of the variables used in the study, four different tests were applied, as done by Yıldırım and Kaya (2021). The first of these is the Breusch-Pagan LM test, the most well-known panel data cross-sectional dependence test. However, this test may provide erroneous results in panel data with a large cross-sectional dimension. Therefore, the Pesaran scaled LM test, proposed by Pesaran (2004) as an alternative to the Breusch-Pagan LM test, was also applied. To address the dimensional distortions in the Lagrange Multiplier (LM) statistics used by these two tests, the Pesaran CD test, developed by Pesaran (2004), was also

applied. Finally, the Bias-corrected scaled LM test, which takes into account asymptotic deviation correction, was used. Thus, the cross-sectional dependence of the variables was thoroughly investigated (Yıldırım and Kaya, 2021: 272-273)

Since cross-sectional dependence exists in each of the variables in the model, the second-generation unit root test, the CIPS statistic, was applied in the panel unit root test phase. In this test, the stationarity decision is made based on the CIPS statistic and critical values. If the absolute value of the CIPS statistic is greater than the critical values given at the 10%, 5%, and 1% confidence levels, the series is considered stationary, meaning it does not have a unit root (Yerdelen Tatoğlu, 2020: 87). According to the test results, the liquidity ratio (LR) variable is stationary at the 99% level, while the deposit-to-credit conversion ratio (DCR), economic growth (EG), inflation (INF), and unemployment (UR) variables are stationary at the 95% confidence level. The variables of ROA, ROE, bank capital (BC), and non-performing loans (NPL) are stationary at the 99% confidence level, while the credit size (CS) variable is stationary at the 95% level, and the bank size (BS) variable becomes stationary at the 90% confidence level when first differenced. The net interest margin (NIM) variable did not become stationary either at the level or after first differencing, so it was excluded from the model in the subsequent steps. The variables that became stationary after first differencing were included in the model in their first differenced form.

3.2. Findings Related To Panel Data Model Selection

In panel data analysis, identifying the effects of individual units and time periods is essential to obtain robust, reliable, and unbiased estimation outcomes (Bozkurt and Akman, 2016: 277). Therefore, several tests were conducted within the scope of the study, and the results are summarized in Table 6. According to the test results in Table 6, both unit and time effects are present in the panel data model. In other words, the model is two-way.

Table 6. Summary of Test Results Conducted Within The Scope of The Study

Tests	(1) LR Test	(2) F Test	(3) LR Test	(4) LM Test	(5) ALM Test	(6) Score Test	(7) LR Test
Regression Model	Random Unit and Time Effects	Fixed Effects Model	Random Effects ML Model	Random Effects GLS Model	Random Effects GLS Model	Random Effects ML Model	Random Time Effects ML Model
		Р	anel I: Key Mo	del Statistics			
F Statistic	-	25.49					
Chi ² Statistic	79.26	-	123.31	147.72	147.72	123.31	67.56
Probability	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Panel II: Statis	stical Tests			
Chi ² Statistic	38.79	7.76	26.99	0.00	14.13	633.71	7.04
Probability	0.00	0.00	0.00	1.00	0.00	0.00	0.00
H ₀	Reject	Reject	Reject	Accept	Reject	Reject	Reject
			Panel III: Analy	ysis Results			
Unit Effect	Ø	Ø	Ø	×	Ø	Ø	Ø
Time Effect	Ø	-	-	-	-	-	Ø
Pooled OLS	×	×	×	Ø	×	×	×

The tests conducted and the findings obtained from the results are explained in the following order:

⁽¹⁾ The Likelihood Ratio (LR) test is used to determine whether the classical model is valid in panel data models, or in other words, whether there is at least one unit effect or time effect. The null hypothesis of the LR test is based on the assumption that the classical model is correct. Therefore, if the null hypothesis is disproved, it's concluded that at least one of the unit effect or time effect exists, meaning the classical model is not appropriate (Şahin, 2018: 86). According to

the result of the LR test, since the probability value is significant, it is concluded that at least one of the unit effect or time effect exists in the panel data model, meaning the classical model is not appropriate.

- (2) The null hypothesis of the F test, which is used to test the validity of the classical model, is based on the assumption that all unit effects are equal to zero. Therefore, if the null hypothesis is disproved, it's concluded that the unit effect exists in the panel data model, meaning the classical model is not appropriate. According to the result obtained, the probability value is significant. Thus, the null hypothesis is disproved, and it's concluded that the unit effect exists in the panel data model, meaning the classical model is not appropriate.
- (3) After determining the existence of the unit effect through the above tests, it's necessary to estimate the unit effect using the Likelihood Ratio (LR) test under the assumption that it's random (stochastic). The null hypothesis of this test is based on the assumption that the standard errors of the unit effects are equal to zero. Therefore, if the null hypothesis is disproved, it's concluded that the unit effect exists, meaning the classical model is not appropriate (Yerdelen Tatoğlu, 2021: 185). According to the result of test, the null hypothesis based on the assumption that the standard error of the unit effect is equal to zero is disproved, and it's concluded that the unit effect exists in the panel data model, meaning the classical model is not appropriate.
- (4) Breusch-Pagan (1980) developed the Lagrange Multiplier (LM) test based on the residuals of the classical model to test the appropriateness of the classical model. The null hypothesis of this test is based on the assumption that the variance of the unit effects is zero. According to the results of the test, the null hypothesis, based on the assumption that the variance of the unit effects is zero, was accepted, and it was concluded that the classical model is appropriate.
- (5) To determine the existence of the unit effect, the Adjusted Lagrange Multiplier (ALM) test, which is resistant to autocorrelation, is also conducted. The null hypothesis for all tests with two-sided and one-sided random effects is based on the assumption that the variance of the unit effects is zero. According to all test results, the null hypothesis is disproved, and the existence of the unit effects is accepted.
- (6) Bottai (2003) derived the Score test from the LR test, starting from the random effects model, to determine the appropriateness of the classical model. To conduct this test, the model is estimated using the maximum likelihood method under the assumption of random effects (Yerdelen Tatoğlu, 2021: 191). The null hypothesis of the Score test is based on the assumption that the standard error of the unit effect is zero (Yerdelen Tatoğlu, 2021: 192). Based on the probability value of the Score test result, the null hypothesis is disproved, and it is understood that the standard error of the unit effect is not equal to zero, meaning the classical model is not appropriate.
- (7) The null hypothesis of the Likelihood Ratio (LR) test is based on the assumption that the standard error of the time effect is zero. Thus, if the null hypothesis is disproved, it's concluded that the classical model is not appropriate. According to the result, the standard error of the time effect is not equal to zero. This result shows that the time effect exists in the model and the classical model is not appropriate.

After this stage, since it will be decided whether the two-way model will be solved according to random or fixed effects model, the Hausman test was conducted.

3.3. Findings Related to the Hausman Test

The Hausman (1978) specification test was developed to detect specification errors. In panel data models, this test is used to choose between estimators (Yerdelen Tatoğlu, 2021: 195).

The null hypothesis of the Hausman test is based on the assumption that at least one of the unit or time effects is random. Therefore, if the null hypothesis is disproved, the model is estimated using the fixed effects model. However, in this case, the Hausman test was performed in three stages (two-way model, unit effect, and time effect). Since the model is two-way, the Hausman test of the Two-Way Model, based on the alternative hypothesis that at least one effect is correlated with the independent variable, was applied, and the result is summarized in Table 7.

Table 7. Hausman Test Results for the Two-Way Model

	(1)	(2)	(3)
	Two-Way Model	Unit Effect	Time Effect
chi²	25.86	633.71	40.67
Probability >chi ²	0.0039	0.000	0.000
	Hypotheses		Decision

(1)	H₀: At least one of the unit or time effects is random.	Reject
(2)	H₀: Unit effect is random.	Reject
(3)	H₀: Time effect is random.	Reject

In light of the Hausman test result presented in Table 7, although the null hypothesis was disproved, this test alone is not sufficient to make a final decision. In addition to this test, another Hausman test based on the assumption that the unit effect is random and a further Hausman test assuming the time effect is random were also conducted. The overall conclusion is that the two-way fixed effects model is valid. However, before performing the panel regression analysis, the assumptions of the test should be examined.

3.4. Testing the Assumptions of the Fixed Effects Model

The Modified Wald test was used to test for heteroscedasticity across units. The null hypothesis of this test is based on the assumption that the variances are homoscedastic across units (Yerdelen Tatoğlu, 2021: 244). Subsequently, to test for the presence of autocorrelation in the model, the Durbin-Watson test and Baltagi-Wu LBI test were conducted. In both tests, if the value is less than 2, autocorrelation is considered to be an issue in the model (Yerdelen Tatoğlu, 2021: 248-250). Finally, a test based on the sum of rank correlation coefficients, as proposed by Frees (1995, 2004), was conducted to detect inter-unit correlation. In this test, the critical values at the 99%, 95%, and 90% confidence levels are examined. If Frees' test statistic surpasses the critical value, the null hypothesis, which posits no correlation between the units, is disproved (Yerdelen Tatoğlu, 2021: 262-263). It should be emphasized that in panel data models, the large number of observations and the available information from units make multicollinearity a less significant issue. Therefore, multicollinearity was not tested (Yerdelen Tatoğlu, 2021: 274).

Table 8. Test Results For The Basic Assumptions of The Fixed Effects Model

Tests	Test Results			
Modified Wald Test Statistic	chi2 (10) = 57.53	p-value > chi2 = 0.0000		
Durbin-Watson Test	Test statistic = 1.2503682			
Baltagi-Wu LBI Test	Test statistic = 1.3684744			
Frees' Test	Test statistic = 1.472			

The results in Table 8 reveal the presence of heteroscedasticity, autocorrelation, and inter-unit correlation in the model. Consequently, the model was estimated using fixed effects regression with Driscoll-Kraay standard errors, which is appropriate given the conditions of heteroscedasticity, autocorrelation, and inter-unit correlation

3.5. Findings on the Fixed Effects Regression Model with Driscoll-Kraay Standard Errors

Driscoll-Kraay estimators provide robust estimators in the presence of heteroscedasticity, autocorrelation, and cross-sectional correlation among units.

Table 9. Fixed Effects Regression Results With Driscoll-Kraay Standard Errors

Fixed	d Effects Regressio	Observations: 100						
	Group	Number of Groups: 10						
	M	F(10,9)= 1131.22						
					Probability Value > F = 0.0000			
					R ² = 0.7611			
LO	Coefficient	Driscoll-Kraay Std. Error	t- statistic	p-value	95% Confidence Interval			
D.BS	0.67010	0.20624	3.25	0.010a	0.20354	1.13666		
D.ROA	-0.80983	0.28021	-2.89	0.018b	-1.44373	-0.17594		
D.ROE	0.88839	0.24419	3.64	0.005a	0.33598	1.44081		
D.BC	0.98064	0.20751	4.73	0.001a	0.51121	1.45007		
DCR	-1.44725	0.31344	-4.62	0.001a	-2.15631	-0.73819		
D.CS	1.27598	0.63358	2.01	0.075°	-0.15728	2.70926		
D.NPL	0.08122	0.13056	0.62	0.549	-0.21413	0.37658		
EG	0.24207	0.03531	6.85	0.000a	0.16218	0.32196		
INF	-0.47859	0.06134	-7.80	0.000a	-0.61735	-0.33982		

[GUSBID] Gümüşhane Üniversitesi Sosyal Bilimler Dergisi, Yıl: 2025/ Cilt: 16 / Sayı: 3

UR	-0.09380	0.22659	-0.41	0.689	-0.60639	0.41878
CONSTANT	4.78549	0.59299	8.07	0.000a	3.44405	6.12694

Note: The superscripts a, b, and c in the probability values represent 99%, 95%, and 90% confidence intervals, respectively.

The F-test result in Table 9 shows that the model is statistically significant, with an R² of approximately 76%. According to the test results, there is a significant and positive relationship between **bank size** and **the liquidity ratio**. Notably, a 1% increase in the bank's size results in approximately a 0.67% increase in the liquidity ratio. This finding aligns with the evidence presented by Abdullah and Khan (2012), Laurine (2013), Ahamed (2021), yet it departs from the conclusions drawn by Dinger (2009) and Işık and Belke (2017) who identified a differing relationship between bank size and liquidity.

A significant and negative relationship is found between **ROA** and **liquidity ratio**. According to this result, a 1% increase in ROA leads to a decrease of approximately 0.81% in the liquidity ratio. This finding is consistent with the studies conducted by Akhtar et al. (2011), Çelik and Akarım (2012), Ayaydın and Karaaslan (2014).

The relationship between *ROE* and *the liquidity ratio* is positive and significant. Based on this, it can be concluded that a 1% increase in ROE causes an approximate 0.89% increase in the liquidity ratio. This finding is consistent with the results of studies conducted by Akhtar et al. (2011), Abdullah and Khan (2012), Çelik and Akarım (2012), and Işık and Belke (2017). However, Ayaydın and Karaaslan (2014) and Ahamed (2021) reported a negative relationship.

Another variable that is significantly and positively related to *the liquidity ratio* is *bank capital*. Bank capital is determined by dividing equity by total assets, as stated previously. According to the analysis, when the share of equity in total assets increases by 1%, the liquidity ratio also increases by 0.98%. This finding is consistent with the results of studies conducted by Bunda and Desquilbet (2008), Dinger (2009), Singh and Sharma (2016), Işık and Belke (2017), Al-Homaidi et al. (2019), and Kocaman et al. (2021). However, it contradicts the findings reported by Akhtar et al. (2011) and Ayaydın and Karaaslan (2014).

The most significant determinant of liquidity risk is the deposit-to-credit conversion ratio. The relationship between *the liquidity ratio* and *the deposit-to-credit conversion ratio* is significant and negative. This means that a 1% increase in the share of total loans in total deposits leads to an approximate 1.45% decrease in the liquidity ratio. The result obtained is consistent with the findings of the studies conducted by Abdullah and Khan (2012) and Diep and Nguyen (2017). However, this finding is not consistent with the result reported in the study conducted by Singh and Sharma (2016).

Another important variable affecting liquidity risk is the credit size, which shows the share of total loans in total assets. The relationship between *credit size* and *the liquidity ratio* is significant and positive. The coefficient indicates that a 1% increase in the share of total loans in total assets results in an approximate 1.28% increase in the liquidity ratio. The positive relationship obtained in this study is consistent with the findings of Bunda and Desquilbet (2008), but it does not align with the results reported by Işıl and Özkan (2015) and Moussa (2015).

Although a positive relationship was identified between **NPL to total loans** (also referred to as "followed loans") and **the liquidity ratio**, this relationship is not statistically significant. The expected outcome is a negative and significant relationship between liquidity and non-performing loans, as evidenced by the findings of Laurine (2013).

A strong positive relationship was observed between *economic growth* and the *liquidity ratio*. Specifically, a 1% increase in the annual GDP growth rate leads to a 0.24% increase in the liquidity ratio. This result is consistent with the findings of Al-Homaidi et al. (2019), but there are also studies that identify a negative relationship between economic growth and liquidity (Dinger, 2009; Ayaydın and Karaaslan, 2014; Işık and Belke, 2017). Inflation is also one of the key variables determining liquidity risk. A significant negative relationship exists between *inflation* and the *liquidity ratio*. The coefficient suggests that a 1% increase in inflation results in approximately a 0.48% decrease in the liquidity ratio. The positive relationship between the two variables has also been found in various studies (Ayaydın and Karaaslan, 2014; Wójcik-Mazur & Szajt, 2015; Işık and Belke, 2017; Ahamed, 2021). However, there are also studies that have identified a negative relationship between inflation and the liquidity ratio (Waemustafa and Sukri, 2016; Kocaman et al., 2021). Finally, a negative relationship was identified between *unemployment rate* and *liquidity ratio*, but this relationship is not statistically significant. Singh and Sharma (2016), on the other hand, identified a positive but insignificant relationship between unemployment and liquidity.

The hypotheses tested in the study, the decisions made regarding the hypotheses, and the direction of the effects are summarized in Table 10.

Table 10. Hypotheses, Decisions, And Effect Direction For The Model

Hypotheses on the Model	Decision	Effect
The bank size (scale) affects the liquidity ratio.	Accepted	+
ROA affects the liquidity ratio.	Accepted	
ROE affects the liquidity ratio.	Accepted	+
The bank capital affects the liquidity ratio.	Accepted	+
The deposit-to-credit conversion ratio affects the liquidity ratio.	Accepted	
The credit size affects the liquidity ratio.	Accepted	+
Non-performing loans affect the liquidity ratio.	Insignificant	
Economic growth affects the liquidity ratio.	Accepted	+
Inflation affects the liquidity ratio.	Accepted	
The unemployment rate affects the liquidity ratio.	Insignificant	

Conclusion and Evaluation

This article aims to examine the bank-related and macroeconomic factors affecting liquidity risk for the top 10 deposit banks by asset size between 2012 and 2022, utilizing the panel regression analysis method. In alignment with the study's objective, the liquidity ratio, which serves as the dependent variable, is calculated by dividing liquid assets by the sum of deposits and non-deposit funding sources. According to the results of cross-sectional dependency and unit root tests, the model incorporates bank-related independent variables such as bank size, ROA, ROE, bank capital, deposit-to-credit conversion ratio, credit size, and non-performing loans (NPL). Additionally, the macroeconomic variables considered are economic growth, inflation, and unemployment rate.

In the analysis phase, based on the results of the tests (see Table 6), it was found that there are both unit and time effects in the panel data model, meaning that the model is two-way. Following this, in order to decide whether the model should be solved according to the random effects model or the fixed effects model, the Hausman test was applied, and it was determined that the fixed effects model is valid. Before proceeding with the panel regression analysis analysis, the basic assumptions of the model were tested, and heteroscedasticity, autocorrelation, and correlation between units were detected in the model. Therefore, fixed-effects regression analysis with Driscoll-Kraay standard errors, which provides robust estimators, was applied.

The regression analysis results indicate a positive relationship between bank size, ROE, bank capital, credit size, and economic growth with the liquidity ratio. In line with this finding, it can be stated that banks with large total assets, higher ROE, greater capital, and higher credit volume have lower liquidity risk. Additionally, the liquidity risk of banks is lower in an environment of economic growth. In this context:

- Large banks, in terms of total assets, may tend to work with higher liquid assets to be more cautious against
 economic shocks or uncertainties, to finance investment opportunities with liquid assets, or to enhance their
 market reputation.
- Large-scale banks, due to their more reliable image, may be able to secure funds more easily and stably from depositors and other fund providers, allowing them to maintain high levels of liquid assets.
- Banks with higher ROE may prefer to work with a higher level of liquid assets in order to gain trust and reputation in the market, be prepared for new opportunities, and reduce the likelihood of facing liquidity risk during economic shocks or uncertainties.
- Banks with higher ROE are likely to have higher financial strength and tend to operate with more liquid assets, thus reducing their liquidity risk.
- Banks with strong capital maintain their liquidity levels at a sufficient level to meet their liabilities.
- Banks with larger credit volumes tend to manage their liquidity cautiously to respond quickly to customer cash demands and maintain cash flow.

• Economic growth increases banks' ability to collect deposits and provide loans, thus enabling them to manage liquidity more effectively.

Furthermore, the analysis also revealed a negative relationship between ROA, deposit-to-credit conversion ratio, inflation, and the liquidity ratio. According to this relationship, banks with higher asset profitability and deposit-to-credit conversion ratios face higher liquidity risk. On the other hand, the inflation rate has an impact of increasing banks' liquidity risk. These findings can be interpreted as follows:

- Banks with increased asset profitability tend to operate with lower liquidity ratios.
- Banks, while attempting to increase profitability, may direct their resources to higher-yield but less liquid assets such as loans and allocate their capital to investments that enhance profitability.
- As banks increase their credit volume, they may need to use existing deposits, which could lead to cash flow constraints.
- Banks may seek to protect the value of their liquid assets from being eroded by inflation.
- During inflationary periods, banks may prefer to focus on income-generating activities or investments rather than working with high levels of liquid assets.

The relationships between NPL and unemployment rate with the liquidity ratio were found to be statistically insignificant.

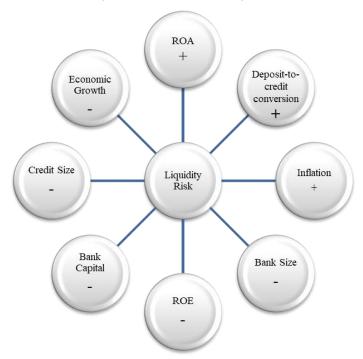


Figure 1. Factors Determining Liquidity Risk And Their Directions of Effect

This article is expected to not only provide up-to-date information on the factors determining liquidity risk but also serve as a guide for bank managers, financial experts, and authorities in the financial sector. The findings aim to offer new motivations for improving liquidity ratios and contribute to the development of more effective strategies in liquidity management. In this respect, the study is considered to be an important reference that will shed light on financial decision-making processes. Future studies may classify banks based on their capital structure or business activities and investigate the factors determining liquidity risk according to the type of bank using current data.

References

Abdullah, A., & Khan, A. Q. (2012). Liquidity risk management: A comparative study between domestic and foreign banks in Pakistan. *Journal of Managerial Science*, *6*(1), 62-72.

Ahamed, F. (2021). Determinants of liquidity risk in the commercial banks in Bangladesh. *European Journal of Business and Management Research*, 6(1), 164-169.

Akan, N. B. (2008). Likidite riski ölçümü. Bankacılar Dergisi, (66), 66-81.

Akbaş, F. (2022). Katılım bankalarının likidite risk belirleyicileri. Abant Sosyal Bilimler Dergisi, 22(2), 738-748.

- Akhtar, M. F., Ali, K., & Sadaqat, S. (2011). Liquidity risk management: a comparative study between conventional and Islamic banks of Pakistan. *Interdisciplinary Journal of Research in Business*, *1*(1), 35-44.
- Akkaya, M., & Azimli, T. (2018). Türk bankacılık sektöründe likidite riski yönetimi. *Finans Politik ve Ekonomik Yorumlar,* (638), 35-57.
- Alev, N. (2024). Likidite riski yönetiminin Türkiye'deki özel ticari bankalarının kârlılığı üzerindeki etkisi: 2010-2021 dönemi için bir analiz. *Kastamonu Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi*, 26(1), 19-39.
- Al-Homaidi, E.A., Tabash, M.I., Farhan, N.H., & Almaqtari, F.A. (2019). The determinants of liquidity of Indian listed commercial banks: A panel data approach. *Cogent Economics & Finance*, 7(1), 1616521.
- Ayaydın, H., & Karaaslan, İ. (2014). Likidite riski yönetimi: Türk bankacılık sektörü üzerine bir araştırma. Gümüşhane Üniversitesi Sosyal Bilimler Enstitüsü Elektronik Dergisi, 5(11), 237-256.
- Berger, A. N., & Bouwman, C. H. (2009). Bank liquidity creation. *The Review of Financial Studies*, 22(9), 3779-3837.
- Bozkurt, I., & Akman, E. (2016). Financial integration into EU: The Romanian case. *Amfiteatru Economic Journal*, 18(42), 269-285.
- Bunda, I., & Desquilbet, J. B. (2008). The bank liquidity smile across exchange rate regimes. *International Economic Journal*, 22(3), 361-386.
- Çakmak, A., & Sunal, O. (2023). Türk bankacılık sektöründe likidite karşılama oranını belirleyen faktörler: Covid–19 pandemi dönemini de kapsayan bir panel veri analizi uygulaması. *Doğuş Üniversitesi Dergisi*, 24(1), 399-410.
- Çelik S., & Akarım Y.D. (2012). Likidite riski yönetimi: Panel veri analizi ile İMKB bankacılık sektörü üzerine ampirik bir uygulama. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi, 13(1), 1-17.
- Diep, N. T. N., & Nguyen, T. (2017). Determinants of liquidity of commercial banks in Vietnam in the period 2009-2016. International Journal of Scientific Study, 5(6), 237-241.
- Dinger, V. (2009). Do foreign-owned banks affect banking system liquidity risk?. *Journal of Comparative Economics*, 37(4), 647-657.
- Düzer, M., & Önce, S. (2017). Kurumsal sürdürülebilirlik raporlaması ve finansal performans: BIST'te işlem gören şirketler için karşılaştırmalı bir analiz. *Bilecik Şeyh Edebali Üniversitesi Sosyal Bilimler Dergisi, 2*(2), 637-648.
- Elçeri, M. E., & Karaslan, İ. (2023). Türk bankacılık sektöründe likidite riskinin belirleyicileri: Zaman serisi uygulaması. *International Social Mentality and Researcher Thinkers Journal*. 9(70), 3259-3267.
- Ersoy, E., & Aydın, Y. (2018). Bankaların likiditesini etkileyen makroekonomik ve bankaya özgü faktörlerin ampirik analizi: Türkiye örneği. *Global Journal of Economics And Business Studies*, 7(14), 158-169.
- Firuzan, E., & Firuzan, A. R. (2017). Türk bankalarının likidite ve kredi risk değerlendirmesi: Dinamik panel veri analizi. Business & Management Studies: An International Journal, 5(3), 703-716.
- Greene, W.H. (2012). *Econometric analysis* (7th ed.). Harlow, England: Pearson.
- Gürel, E. (2002). Banka finansal performansının ölçülmesi ve beş ticari banka üzerinde bir uygulama. Unpublished master's thesis, Adnan Menderes University, Aydın, TR.
- Güzel, A. (2023). Ticari bankalarda likidite ve likidite riskinin yönetimi: Türk bankacılık sektörü üzerine bir uygulama. *Ahi Evran Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi*, 7(1), 109-135.
- Hidayat, M. (2024). The effect of economic growth and inflation on liquidity in "Bank Syariah Indonesia". *Economics Studies and Banking Journal (DEMAND)*, 1(1), 17-25.
- lşık, Ö., & Belke, M. (2017). Likidite riskinin beliirleyicileri: Borsa İstanbul'a kote mevduat bankalarından kanıtlar. *Ekonomi Politika ve Finans Araştırmaları Dergisi, 2*(2), 113-126.
- Işıl, G., & Özkan, N. (2015). İslami bankalarda likidite riski yönetimi: Türkiye'de katılım bankacılığı üzerine ampirik bir uygulama. *Uluslararası İslam Ekonomisi ve Finansı Araştırmaları Dergisi, 1*(2), 23-37.
- Karakaş, A., & Acar, M. (2022). Ticari bankalarda likidite ve kârlılık ilişkisi: Türk bankacılık sektörü üzerine bir uygulama. BDDK Bankacılık ve Finansal Piyasalar Dergisi, 16(2), 139-171.

- Kocaman, B. E., Babuşcu, Ş., & Hazar, A. (2021). Factors affecting liquidity risk-an empirical analysis on turkish banking sector. *Journal of Mehmet Akif Ersoy University Economics and Administrative Sciences Faculty*, 8(3), 1840-1857.
- Laštůvková, J. (2016). Liquidity determinants of the selected banking sectors and their size groups. *Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis*, 64(3), 971-978.
- Laurine, C. (2013). Zimbabwean commercial banks liquidity risk determinants after dollarisation. *Journal of Applied Finance and Banking*, 3(6), 97-114.
- Moussa, M. A. B. (2015). The determinants of bank liquidity: Case of Tunisia. *International Journal of Economics and Financial Issues*, *5*(1), 249-259.
- Muzır, E., & Şeker, A. (2015). Dış ticaret performansına dayalı ülke riski öngörüleri ile aktif-pasif yönetiminde para birimi tercihlerinin bankaların likidite performansı üzerindeki etkileri: Ampirik bir analiz. *İşletme Araştırma Dergisi,* 7(1), 293-325.
- Navruz, B. (2019). Bankacılıkta sistemik risk sorunu ve Pigovian çözüm yaklaşımı: Türk bankacılık sektörü açısından bir değerlendirme. İstanbul: TBB Yayınları.
- Nikolaou, K. (2009). Liquidity (risk) concepts: Definitions and interactions (ECB Working Paper Series No. 1008). European Central Bank.
- Reis, Ş. G., Kılıç, Y., & Buğan, M. F. (2016). Banka karlılığını etkileyen faktorler: Türkiye örneği. *Muhasebe ve Finansman Dergisi*, (72), 21-36.
- Singh, A., & Sharma, A. K. (2016). An empirical analysis of macroeconomic and bank-specific factors affecting liquidity of Indian banks. *Future Business Journal*, 2(1), 40-53.
- Şahin, D. (2018). OECD ülkelerinde girişimcilik faaliyetlerinin ekonomik büyüme üzerine etkisi: Panel veri analizi. *Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi*, 5(3), 81-90.
- Şahut, F., & Afşar, A. (2024). Bankaların likidite riskini etkileyen faktörler: BIST 30 endeksinde işlem gören bankaların analizi. *Anadolu Üniversitesi Mesleki Eğitim ve Uygulama Dergisi, 3*(1), 16-35.
- Şenol, Z., Öncül, M., & Alıcı, M. S. (2019). Banka finansal risklerinin banka karlılığına etkisi. *Journal of International Management Educational And Economics Perspectives*, 7(2), 101-109.
- Tan, Y. (2016). The impacts of risk and competition on bank profitability in China. *Journal of international financial Markets, Institutions and Money,* (40), 85-110.
- Türkmen, C. (2018). Ticari bankaların aktif karlılığını etkileyen makroekonomik değişkenlerin belirlenmesi. *Muhasebe ve Finans İncelemeleri Dergisi*, 1(2), 80-88.
- Türküner, E. (2016). Basel III likidite düzenlemeleri çerçevesinde Türk bankacılık sektörünün likidite riskinin ölçülmesi ve modellenmesi. İstanbul: Türkiye Bankalar Birliği Yayını.
- Van den End, J. W. (2016). A macroprudential approach to address liquidity risk with the loan-to-deposit ratio. *The European Journal of Finance*, 22(3), 237-253.
- Waemustafa, W., & Sukri, S. (2016). Systematic and unsystematic risk determinants of liquidity risk between Islamic and conventional banks. *International Journal of Economics and Financial Issues*, 6(4), 1321-1327.
- Wójcik-Mazur, A. & Szajt, M. (2015). Determinants of liquidity risk in commercial banks in the European Union. *Argumenta Oeconomica*, 2(35): 25-47.
- Yağcılar, G. G., & Demir, S. (2015). Türk bankacılık sektöründe takipteki kredi oranları üzerinde etkili olan faktörlerin belirlenmesi. *Uluslararası Alanya İşletme Fakültesi Dergisi*, 7(1), 221-229.
- Yarız, A. (2011). Bankacılıkta risk yönetimi: Risk matrisi uygulaması. *Marmara Üniversitesi Bankacılık ve Sigortacılık Enstitüsü E-Dergisi*, 1(1), 1-33.
- Yarız, A. (2012). Bankacılıkta risk yönetimi: Risk matrisi uygulaması (2nd ed.). Ankara: Nobel Yayınları.
- Yerdelen Tatoğlu, F. (2020). İleri panel veri analizi (4th ed.). İstanbul: Beta Basım Yayın Dağıtım A.Ş.
- Yerdelen Tatoğlu, F. (2021). *Panel veri ekonometrisi Stata uygulamalı* (5th ed.). İstanbul: Beta Basım Yayın Dağıtım A.Ş.

- Yıldırım, U., & Kaya, M. V. (2021). Seçilmiş OECD ülkelerinde yenilenebilir enerji tüketiminin makro ekonomik belirleyicileri. *Çankırı Karatekin Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 11*(1), 267-289.
- Yong, H. H. A., Faff, R., & Chalmers, K. (2007, June 27-30). *Determinants of the extent of Asia-Pacific banks' derivative activities*. Paper presented at the European Financial Management Association Annual Meeting, Vienna, Austria.
- Yücel, E. (2021). Mevduatın krediye dönüşüm oranının belirleyicileri. *Ekonomi ve Finansal Araştırmalar Dergisi, 3*(1), 60-70.
- Zengin, S., & Yüksel, S. (2016). Likidite riskini etkileyen faktörler: Türk bankacılık sektörü üzerine bir inceleme. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 15(29), 77-95.