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Abstract   Öz  

This study systematically evaluates the efficacy of 

advanced deep learning architectures, namely Vision 

Transformers (ViT) and various ResNet models (ResNet50, 

ResNet101, ResNet152), in the classification of chest 

radiographs into four clinically significant diagnostic 

categories: Normal, Lung Opacity, Viral Pneumonia, and 

COVID-19. A meticulously curated dataset comprising 

21,165 chest X-ray images was utilized to benchmark the 

models' performance across key evaluation metrics, 

including precision, recall, F1-score and accuracy. The 

experimental evaluation reveals that ViT model achieved 

90.25% accuracy, 91.56% precision, 89.22% recall, and a 

90.25% F1-score. These findings highlight the potential of 

AI-driven approaches in augmenting medical diagnostics, 

improving diagnostic accuracy, and enhancing healthcare 

delivery, particularly in resource-limited settings. The 

study underscores the applicability of Vision Transformers 

in complex medical imaging tasks and contributes to the 

growing body of research supporting AI-based solutions for 

respiratory diseases and other healthcare challenges.  

 Bu çalışma, gelişmiş derin öğrenme mimarilerinin – 

özellikle Vision Transformers (ViT) ve çeşitli ResNet 

modellerinin (ResNet50, ResNet101, ResNet152) – göğüs 

röntgenlerini Normal, Akciğer Opasitesi, Viral Pnömoni ve 

COVID-19 olmak üzere dört klinik açıdan önemli tanısal 

kategoriye sınıflandırmadaki etkinliğini sistematik olarak 

değerlendirmektedir. Modellerin performansını, hassasiyet, 

geri çağırma, F1-skora ve doğruluk gibi temel 

değerlendirme metrikleri üzerinden ölçmek amacıyla 

özenle hazırlanmış 21.165 göğüs X-ışını görüntüsünden 

oluşan bir veri seti kullanılmıştır. Deneysel 

değerlendirmeler, ViT modelinin %90.25 doğruluk, 

%91.56 hassasiyet, %89.22 geri çağırma ve %90.25 F1-

skora elde ettiğini ortaya koymaktadır. Bu bulgular, yapay 

zeka temelli yaklaşımların tıbbi tanı süreçlerini 

güçlendirme, tanı doğruluğunu artırma ve özellikle kaynak 

kısıtlı ortamlarda sağlık hizmetlerinin sunumunu 

iyileştirme potansiyeline işaret etmektedir. Çalışma, 

karmaşık tıbbi görüntüleme görevlerinde Vision 

Transformers'ın uygulanabilirliğini vurgulamakta ve 

solunum yolu hastalıkları ile diğer sağlık sorunlarına 

yönelik yapay zeka temelli çözümleri destekleyen artan 

araştırma literatürüne katkıda bulunmaktadır. 

Keywords: Chest radiographs, COVID-19 diagnosis, Deep 

learning, ResNet, Vision transformer  

 Anahtar kelimeler: Göğüs röntgenleri, COVID-19 tanısı, 

Derin öğrenme, ResNet, Vision transformer  

1 Introduction 

The onset of Coronavirus Disease 2019 (COVID-19), 

instigated by severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2), precipitated a global public health 

emergency of unparalleled magnitude. First identified in 

December 2019 in Wuhan, China, the rapid global spread of 

this novel virus led the World Health Organization (WHO) 

to declare a pandemic on March 11, 2020 [1]. By July 30, 

2024, COVID-19 had resulted in 775686716 confirmed 

cases and 7054093 deaths worldwide [2, 3], profoundly 

burdening healthcare systems, disrupting economies, and 

reshaping societal norms. 

In addition to COVID-19, other respiratory diseases—

including pneumonia, influenza, and various bacterial and 

viral pulmonary infections—continue to represent 

substantial threats to global health. These conditions often 

present with overlapping clinical and radiological features, 

further complicating diagnosis and management. Early and 

accurate detection of such diseases is crucial not only for 

initiating appropriate therapeutic interventions and 

improving patient outcomes, but also for mitigating 

transmission and optimizing the use of limited healthcare 

resources. Delays or inaccuracies in diagnosis can lead to 

worsened prognosis, increased morbidity and mortality, and 

the inefficient allocation of critical infrastructure, such as 

hospital beds, ventilators, and personal protective equipment 

[4-6]. Moreover, robust early diagnostic systems are 

essential for effective epidemiological surveillance and 

public health response strategies, allowing authorities to 

monitor disease dynamics and implement targeted 

interventions [7]. 
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Currently, reverse transcription-polymerase chain 

reaction (RT-PCR) remains the gold standard for COVID-19 

diagnosis. However, its practical application is constrained 

by factors such as prolonged turnaround times, restricted 

accessibility, and a notable risk of false-negative results [8]. 

Similarly, the diagnosis of other respiratory diseases 

frequently relies on clinical evaluation, laboratory testing, 

and medical imaging. Among these, chest radiography 

(CXR) and computed tomography (CT) have proven 

indispensable for detecting pulmonary abnormalities—

including ground-glass opacities, consolidations, and 

interstitial changes—across a range of infectious and non-

infectious etiologies [9]. Nevertheless, accurate 

interpretation of these imaging modalities demands 

specialized radiological expertise, a resource that is often 

stretched thin in high-demand clinical environments, 

particularly during pandemics and seasonal outbreaks. 

The integration of artificial intelligence (AI) and deep 

learning algorithms into medical imaging analysis represents 

a transformative advancement in diagnostic medicine. These 

technologies directly address longstanding challenges in 

accuracy, efficiency, and scalability within imaging-based 

diagnostics. AI-based platforms are now capable of 

analyzing CXRs and CT scans to assist clinicians in the rapid 

and accurate detection of a wide array of thoracic diseases, 

including but not limited to COVID-19, pneumonia, and 

other viral or bacterial infections [10]. State-of-the-art deep 

learning frameworks, such as convolutional neural networks 

(CNNs) and ResNet architectures, have demonstrated 

outstanding performance in extracting discriminative 

features from complex medical images. More recently, 

Vision Transformers (ViT) have introduced advanced self-

attention mechanisms, enabling the precise capture of 

intricate visual patterns crucial for differentiating among 

diseases with similar radiological presentations. By 

enhancing diagnostic accuracy, reducing inter-observer 

variability, and expediting large-scale screening processes, 

AI-driven methodologies offer significant potential to 

strengthen healthcare systems globally. These advances 

promise not only to improve the clinical management of 

COVID-19 and related respiratory diseases but also to 

bolster public health preparedness for future epidemics and 

pandemics. 

A growing body of literature has investigated the 

application of deep learning techniques to enhance the 

diagnostic precision of COVID-19 through the analysis of 

CXR and CT imaging. These studies underscore the efficacy 

of CNNs and other advanced AI-based architectures in 

improving classification precision, optimizing diagnostic 

workflows, and mitigating human error in medical imaging 

analysis. 

Oh et al. developed an advanced classification 

framework utilizing a diverse, multi-source dataset that 

included cases of normal lungs, tuberculosis (TB), bacterial 

pneumonia, viral pneumonia (including COVID-19), and 

other non-COVID viral pneumonias. To promote robust 

model performance and generalizability, the dataset was 

meticulously divided into three distinct subsets: 70% for 

training, 10% for validation, and 20% for testing. To 

facilitate a fair performance comparison, an additional 

benchmarking dataset was curated specifically for evaluating 

the model against the COVID-Net framework. The 

classification system was constructed using the ResNet18 

architecture, with interpretability enhanced through the 

integration of a probabilistic gradient-weighted class 

activation map (Grad-CAM). This interpretability 

mechanism identified critical regions within chest X-rays 

that were most indicative of COVID-19-related patterns. The 

ResNet18 model exhibited strong classification 

performance, attaining an overall accuracy of 88.9%. The 

proposed method yielded a precision of 83.4%, a recall of 

85.9%, an F1-score of 84.4%, and a specificity of 96.4%. 

These performance metrics underscore the method's efficacy 

in accurately differentiating diagnostic categories while 

sustaining a high rate of true negative identifications [11]. 

Butt et al. introduced a deep learning framework that 

leverages pulmonary computed tomography image analysis 

to enhance the early diagnosis of COVID-19 pneumonia. 

Their study introduced a location-attention classification 

model, integrated with a Noisy-OR Bayesian function, to 

enhance classification accuracy and effectively differentiate 

between healthy cases, influenza-A viral pneumonia (IAVP), 

and COVID-19. Based on a dataset of 618 CT samples, the 

proposed model achieved an overall accuracy of 86.7%. This 

performance is attributed to the integration of critical 

radiological features—namely, ground-glass opacities and 

pleural abnormalities—that are indicative of COVID-19 

pathology. This approach underscores the significant 

potential of deep learning in augmenting clinical diagnostic 

workflows by improving detection efficiency and reliability, 

while serving as a complementary tool to traditional methods 

like RT-PCR [12]. 

Khan et al. introduced CoroNet, a convolutional neural 

network derived from the Xception architecture, specifically 

engineered to improve the identification of COVID-19 from 

CXR images. The network was both trained and validated on 

a dataset compiled from two publicly available repositories, 

which includes 284 cases of COVID-19, 310 normal cases, 

330 cases of bacterial pneumonia, and 327 cases of viral 

pneumonia. To mitigate the issue of class imbalance, a 

random sub-sampling strategy was implemented, ensuring a 

more balanced distribution of training samples. Prior to 

model training, all images were resized to 224×224 pixels to 

standardize input dimensions. CoroNet employed a transfer 

learning framework by initializing the network with weights 

pre-trained on the ImageNet dataset. Subsequently, the 

model underwent fine-tuning using a COVID-19-specific 

dataset to refine its feature extraction capabilities for precise 

disease classification. This approach resulted in an overall 

classification accuracy of 89.6%, thereby demonstrating the 

substantial efficacy of transfer learning in the context of 

medical image analysis. [13]. 

Xu et al. conducted a study aimed at enhancing early 

COVID-19 screening by leveraging CT imaging to 

differentiate COVID-19 cases from IAVP and healthy lung 

conditions. The dataset utilized in their research comprised 

618 CT scans, obtained from three hospitals in Zhejiang 

Province, China. This dataset included scans from 110 
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patients diagnosed with COVID-19, 224 individuals with 

IAVP, and 175 healthy subjects. To facilitate accurate 

classification, the researchers developed a three-dimensional 

(3D) deep learning framework designed to segment regions 

of potential infection within the lung images. The segmented 

regions were subsequently categorized into three distinct 

classes—COVID-19, IAVP, and infection-unrelated regions 

(ITI)—based on confidence scores generated through a 

location-attention classification model. This approach 

enabled more precise identification of COVID-19-related 

abnormalities, thereby contributing to the advancement of 

automated diagnostic tools for respiratory diseases. The final 

classification step employed the Noisy-OR Bayesian 

function, yielding an overall accuracy of 86.7%. This study 

highlights the effectiveness of combining 3D segmentation 

with Bayesian classification in screening for COVID-19 

through CT imaging [14]. 

Shadin et al. investigated the efficacy of deep learning 

models for COVID-19 detection using CXR images. Their 

study compared two methodological approaches: a bespoke 

CNN and a transfer learning strategy employing InceptionV3 

architecture. The analysis was performed on a dataset 

comprising 1,553 CXR images that represent a range of 

respiratory conditions. The custom CNN achieved a training 

accuracy of 79.74% and a validation accuracy of 84.92%, 

whereas the InceptionV3-based model attained a higher 

performance with a training accuracy of 85.41% and a 

validation accuracy of 85.94%. These results emphasize the 

advantages of transfer learning, particularly in contexts 

characterized by limited datasets, as pre-trained models can 

effectively utilize features extracted from extensive datasets 

such as ImageNet [15]. 

Park et al. developed a robust ViT framework to advance 

the automated diagnosis of COVID-19 and other pulmonary 

infections using CXR images. Their research utilized a 

comprehensive, multi-institutional dataset comprising 

17,548 CXR images, categorized into normal, other 

infections (including bacterial pneumonia and tuberculosis), 

and COVID-19 cases. The ViT model was rigorously 

evaluated across three independent external institutional test 

sets—CNUH, YNU, and KNUH—to assess its performance 

and generalizability in diverse clinical settings. The model 

demonstrated consistent and strong classification results, 

achieving average accuracy scores of 86.4% on CNUH, 

85.9% on YNU, and 85.2% on KNUH test sets. Notably, 

these outcomes surpassed those of conventional models such 

as ResNet-50 and standard ViT architectures, highlighting 

the effectiveness of leveraging low-level CXR feature 

embeddings in combination with transformer-based 

learning. The study’s findings underscore the potential of the 

proposed ViT approach to deliver accurate, stable, and 

generalizable diagnostic support for COVID-19 and related 

diseases in real-world healthcare environments [16]. 

Cannata et al. conducted a comprehensive study to 

develop an automated COVID-19 infection screening tool 

using chest X-ray (CXR) images, aiming to provide a rapid, 

cost-effective alternative to RT-PCR. The researchers 

utilized a large, publicly available CXR dataset containing 

four diagnostic classes: COVID-19, viral pneumonia, lung 

opacity (non-COVID lung infection), and normal cases. The 

methodology employed advanced artificial intelligence 

techniques, leveraging transfer learning with pre-trained 

networks to address data scarcity and computational 

efficiency. Four deep learning architectures were evaluated: 

InceptionV3, Xception, ResNet50, and Vision Transformer 

(ViT). All models were trained and tested using a consistent 

data split (70% training, 10% validation, 20% test), and the 

same dataset version (3,616 COVID-19, 10,192 normal, 

6,012 lung opacity, and 1,345 viral pneumonia images). 

Experimental results showed that ViT significantly 

outperformed all convolutional neural network (CNN) 

architectures, achieving a test accuracy of 99.3%, compared 

to 85.58% for ResNet50 (the best CNN baseline). ViT also 

demonstrated high precision, recall, and F1-scores across all 

four classes, successfully distinguishing COVID-19 from 

other respiratory diseases and healthy cases. The authors 

highlighted the clinical potential of ViT-based computer-

aided diagnostic tools to assist, accelerate, and automate the 

COVID-19 diagnosis process using CXR images [17]. 

Despite considerable progress in the application of deep 

learning to chest X-ray and CT imaging for the diagnosis of 

COVID-19 and other pulmonary diseases, several limitations 

persist in the existing literature. Many previous studies have 

relied on limited, single-center datasets or lacked external 

validation, thereby restricting the generalizability and 

clinical applicability of their findings. Furthermore, the 

majority of works have focused on conventional CNN 

architectures, with relatively few investigations evaluating 

the effectiveness of emerging transformer-based models, 

such as the Vision Transformer (ViT), on large, diverse, and 

multi-class chest X-ray datasets. In addition, the practical 

integration of these AI models into clinical workflows, 

particularly as real-time decision support tools in emergency 

and high-volume healthcare environments, remains 

underexplored. To address these gaps, the present study 

systematically compares the performance of ViT and ResNet 

architectures using a comprehensive, multi-institutional 

CXR dataset encompassing four clinically relevant 

diagnostic categories. The aim is to provide robust, 

generalizable evidence on the efficacy of transformer-based 

approaches and to discuss their potential clinical integration 

in real-world settings. 

Building upon the foundations of prior research, this 

study investigates the effectiveness of advanced deep 

learning architectures, specifically ViT and various ResNet 

models (ResNet50, ResNet101, and ResNet152), in the 

classification of CXRs across four clinically relevant 

categories: Normal, Lung Opacity, Viral Pneumonia, and 

COVID-19. In contrast to traditional CNNs, which primarily 

focus on local feature extraction, ViTs employ self-attention 

mechanisms to capture long-range dependencies within 

images. This innovative approach not only diverges from 

conventional methods but also holds a significant promise 

for advancing medical image analysis by potentially 

enhancing diagnostic accuracy and enabling more 

comprehensive feature integration. This study systematically 

compares the performance of the ViT with that of the well-

established ResNet architecture. A rigorous evaluation 
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framework is employed, leveraging key performance 

metrics—including accuracy, precision, recall, F1-score, and 

specificity—to provide a comprehensive assessment of each 

model's capabilities. 

This study aims to advance the development of robust, 

AI-driven diagnostic tools for COVID-19 and similar 

respiratory ailments. By leveraging the capabilities of ViTs 

in medical imaging, the research seeks to enhance both the 

speed and precision of COVID-19 detection. Furthermore, it 

proposes a scalable framework designed to address current 

challenges while also accommodating future respiratory 

disease outbreaks. The core objectives of this investigation 

are outlined as follows: 

1) Performance Evaluation: To assess and compare 

the classification performance of ViTs and ResNet models 

(ResNet50, ResNet101, ResNet152) in categorizing chest 

radiographs into four diagnostic groups: Normal, Lung 

Opacity, Viral Pneumonia, and COVID-19. 

2) Clinical Relevance: To evaluate the potential of 

these AI models to assist healthcare professionals by 

providing rapid, accurate, and reliable diagnostic insights, 

enabling the differentiation of COVID-19 from other 

pulmonary pathologies. 

This investigation endeavors to reconcile advanced 

artificial intelligence techniques with their clinical 

implementations, thereby promoting the incorporation of AI 

into medical diagnostics to enhance accuracy, efficiency, and 

accessibility. 

2 Materials and methods  

2.1 Dataset  

The dataset utilized in this study comprises a total of 

21,165 CXR images, systematically categorized into four 

diagnostic groups: 3,616 images of COVID-19-positive 

cases, 6,012 images with lung opacity (non-COVID lung 

infections), 10,192 normal images, and 1,345 images of viral 

pneumonia [18, 19]. This comprehensive collection was 

developed through a collaborative effort led by researchers 

from Qatar University and the University of Dhaka, together 

with international partners and medical professionals from 

Pakistan and Malaysia. The dataset has undergone multiple 

updates, with incremental additions to each class to support 

ongoing research in automated thoracic disease detection 

[20]. Figure 1 illustrates representative samples from each 

category. Prior to neural network ingestion, all images were 

uniformly resized to 128 × 128 pixels. Additionally, data 

augmentation methods—including horizontal flipping, 

rotation, and zooming—were implemented to increase 

variability and enhance the robustness of the model. 

2.2 Model architecture 

2.2.1 Residual networks (ResNet) 

Residual Networks (ResNet) constitute a groundbreaking 

innovation in the design of deep CNNs, effectively 

addressing the degradation problem—an issue wherein 

increasing network depth unexpectedly results in higher 

training error. This phenomenon arises primarily from the 

challenge of training deeper networks, as gradients tend to 

diminish during backpropagation. Introduced by He et al., 

the ResNet architecture resolves this issue through residual 

learning, a paradigm that has since become foundational in 

computer vision tasks [21]. The hallmark of ResNet lies in 

its residual learning framework, wherein layers are designed 

to learn residual mappings relative to their inputs rather than 

complete transformations. This is accomplished through 

shortcut (or skip) connections, which bypass one or more 

layers, facilitating direct gradient propagation during 

backpropagation and thereby enhancing network training 

stability and efficiency. Such a mechanism not only 

facilitates the training of substantially deeper networks but 

also alleviates the vanishing gradient problem. 

The residual block constitutes the fundamental building 

unit of the ResNet architecture, playing a critical role in 

preserving efficient gradient propagation and alleviating the 

vanishing gradient issue in deep neural networks. Let x 

denote the input to the residual block and define 𝐹(𝑥, {𝑊𝑖}) 

as the residual mapping that the network is designed to learn, 

where Wi represents the set of weights associated with the 

convolutional layers within the block. The output y of the 

residual block is consequently expressed as shown in 

Equation (1). 

 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥 (1) 

 

In this formulation, let y denote the output of the residual 

block and x its corresponding input. Notably, the residual 

function 𝐹(𝑥, {𝑊𝑖}) is structured to incorporate x directly 

into its output, thereby establishing an identity mapping. 

 

  
Figure 1. Illustrating four diagnostic categories. (a) COVID-19, (b) Lung opacity, (c) Normal, (d) Viral pneumonia  
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This approach simplifies the learning process by 

allowing the network to concentrate on learning residuals 

rather than the complete transformation. Figure 2 illustrates 

a schematic overview of the residual block architecture, 

highlighting its essential structural components. 

 

 

Figure 2. Residual block 

 

Basic and Bottleneck Blocks: 

ResNet employs two primary types of residual blocks, 

with the choice of blocks depending on the depth of the 

network architecture: 

Basic Block: The basic block architecture is employed in 

shallow variants of the ResNet framework, specifically 

ResNet-18 and ResNet-34. The proposed architecture 

comprises two convolutional layers, each immediately 

followed by a batch normalization layer and a rectified linear 

unit (ReLU) activation function. This configuration is 

designed to enhance training stability and alleviate the 

vanishing gradient problem. Additionally, an identity 

mapping mechanism is incorporated, facilitating direct 

propagation of the input to the output, thereby preserving 

essential feature representations and improving gradient 

flow during backpropagation. Equation (2) provides a formal 

mathematical representation of the output y from the basic 

block.  

 

𝑦 = 𝑅𝑒𝐿𝑈(𝐹(𝑥, {𝑊1, 𝑊2}) + 𝑥 ) (2) 

 

In this framework, W1 and W2 denote the weight matrices 

corresponding to the two convolutional layers that comprise 

the residual block. This design is intentionally simple, 

ensuring efficient gradient flow and stable training in 

relatively shallow networks. Its simplicity helps mitigate the 

vanishing gradient problem, which is critical for effective 

network optimization. 

Bottleneck Block: For deeper neural network 

architectures, including ResNet-50, ResNet-101, and 

ResNet-152, the bottleneck block is utilized to enhance 

computational efficiency and facilitate the training of 

significantly deeper models. The bottleneck block follows a 

three-layer structure:  

• A 1x1 convolution to reduce dimensionality, 

• A 3x3 convolution to perform spatial feature 

extraction, and 

• Another 1x1 convolution to restore dimensionality. 

Equation (3). delineates the mathematical formulation of 

the bottleneck block's output, denoted by y.  

 

𝑦 = 𝑅𝑒𝐿𝑈(𝐹(𝑥, {𝑊1, 𝑊2, 𝑊3}) + 𝑥 ) (3) 

 

Here, W1, W2, and W3 represent the weights of the three 

convolutional layers. By incorporating dimensionality 

reduction using 1x1 convolutions, the bottleneck block 

significantly reduces computational complexity. This 

efficiency facilitates the training of deeper networks without 

excessive computational cost, making it a cornerstone of 

deeper ResNet architectures. Figure 3 shows basic and 

bottleneck blocks. 

 

 

Figure 3. a) basic block b) bottleneck block 

 

ResNet architectures are available in multiple variants, 

differentiated primarily by their depth and computational 

complexity. While deeper models possess a greater capacity 

to capture intricate patterns in data, they also demand 

significantly more computational resources. In ResNet 

architectures, the model's depth is quantified by the 

aggregate number of convolutional layers incorporated into 

its design. 

ResNet-18 and ResNet-34: These relatively shallow 

variants utilize the basic block design, consisting of 18 and 

34 convolutional layers, respectively. Their reduced 

computational requirements make them well-suited for 

applications with constrained resources or tasks involving 

less complex feature extraction. 

ResNet-50, ResNet-101, and ResNet-152: Deep neural 

network architectures often incorporate bottleneck blocks, an 

effective design strategy that maximizes parameter 

efficiency while enabling significantly greater network 
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depth. For example, the ResNet family includes models such 

as ResNet-50, ResNet-101, and ResNet-152, which consist 

of 50, 101, and 152 convolutional layers, respectively. The 

proposed architectural models exhibit robust performance in 

addressing a wide range of advanced computer vision tasks, 

including image classification, object detection, and 

semantic segmentation. Their robustness and scalability 

make them particularly well-suited for deployment in large-

scale datasets, such as ImageNet, where they have 

demonstrated superior performance in feature extraction and 

pattern recognition.  

A defining characteristic of ResNet architectures is the 

use of an identity shortcut connection, which directly adds 

the input to the output of a residual block. When the input 

and output dimensions differ—such as during 

downsampling—a 1x1 convolution is employed to align 

dimensions, ensuring the addition operation remains 

mathematically valid. This innovative design supports the 

scalability of ResNet models, enabling their adaptation to 

varying levels of depth and complexity, thereby 

accommodating diverse applications in computer vision. 

2.2.2 Vision transformer (ViT) 

The Vision Transformer (ViT) represents a seminal 

advancement in computer vision by repurposing the 

Transformer architecture—originally developed for natural 

language processing (NLP)—to address image classification 

challenges [22]. In contrast to traditional CNNs, which rely 

on localized receptive fields and hierarchical feature 

extraction through convolutional operations, ViT 

decomposes an image into a sequence of patches. It then 

employs self-attention mechanisms to capture long-range 

dependencies and global contextual information, thereby 

offering a fundamentally different approach to visual 

representation. 

Patch Embedding: In the ViT framework, an input 

image 𝑰 ∈ ℝ𝐻𝑥𝑊𝑥𝐶—with H, W, and C representing the 

image’s height, width, and number of channels, respectively, 

initially segmented into a set of non-overlapping patches, 

each of dimensions P x P. This partitioning yields a total of 

𝑁 =
𝐻𝑊

𝑃2  patches. Each patch is subsequently flattened into a 

one-dimensional vector and mapped into a lower-

dimensional embedding space through a linear projection, 

thereby generating a sequence of patch embeddings 𝑬 ∈
 ℝ𝑁𝑥𝐷  where D denotes the embedding dimension. 

Positional Encoding: To maintain the spatial coherence 

of image patches, fixed positional encodings are 

incorporated into the patch embeddings, ensuring the 

preservation of spatial relationships within the input data. 

These encodings, represented as 𝑷 ∈  ℝ𝑁𝑥𝐷, are of the same 

dimensionality as the embeddings. The resulting positional 

encoding is expressed as Equation (4). 

 

𝐸𝑝𝑜𝑠 = 𝐸 + 𝑃 (4) 

 

Transformer Encoder: At the core of the ViT lies its 

Transformer encoder, an adaptation of the seminal 

architecture proposed by Vaswani et al. [23]. This encoder is 

structured as a stack of L identical layers, with each layer 

integrating two essential components: a multi-head self-

attention mechanism (MHSA) as formulated in Equation (5) 

and a position-wise feed-forward network (FFN) as defined 

in Equation (6). 

 

𝑍𝑙 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑍𝑙−1 + 𝑀𝐻𝑆𝐴(𝑍𝑙−1)) (5) 

 

𝑍𝑙 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑍𝑙 + 𝐹𝐹𝑁(𝑍𝑙)) (6) 

 

where Z(l-1) is the input to the l-th layer. 

Classification Head: After processing through the 

Transformer layers, the embedding corresponding to the 

designated [CLS] token is extracted. This embedding serves 

as the definitive feature representation for downstream 

classification tasks. This classification-specific token is 

processed through a fully connected layer, where it 

undergoes transformation to generate the final class 

probability distribution. 

Multi-Head Self-Attention (MHSA): The multi-head 

self-attention (MHSA) mechanism is a fundamental element 

of transformer architecture. It enables the model to 

concurrently attend to multiple segments of the input, 

thereby facilitating the capture of intricate dependencies and 

contextual relationships. Specifically, for any given input 

sequence, the MHSA mechanism computes attention 

weights that are subsequently used to form multiple attention 

heads. This parallel processing approach allows the model to 

extract a diverse range of contextual dependencies across 

various feature representations. These heads are 

subsequently concatenated and linearly transformed. 

Formally, for an input sequence 𝒁 ∈  ℝ𝑁𝑥𝐷, the output of a 

single attention head is defined as Equation (7). 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 (7) 

 

In this framework, the matrices Q, K, and V correspond 

to the query, key, and value representations, respectively, 

while dk denotes the dimensionality of the key vectors.  

Feed-Forward Network (FFN): In Transformer 

architecture, each layer incorporates a position-wise feed-

forward network (FFN) that is critical for modeling intricate 

dependencies within the input data. This network is 

structured as two successive fully connected layers, with a 

ReLU activation function interposed between them. The 

introduction of non-linearity via the ReLU function enhances 

the model's capacity to learn complex and high-level feature 

representations. This operation can be formally represented 

as Equation (8). 

 

𝐹𝐹𝑁(𝒁) = max(0, 𝒁𝑊1 + 𝑏1) 𝑊2 + 𝑏2 (8) 

 

Here W1, W2, b1, and b2 are learnable parameters. 

ViT architecture is configurable through several 

hyperparameters, notably the number of transformer layers 

(L), the number of attention heads, and the dimensionality of 

the embedding space (D). The resulting variants include, for 

example, the following configurations: 
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Figure 4. ViT architecture  

ViT-Base (B/16): This configuration comprises 12 

transformer layers, each equipped with 12 attention heads, 

and an embedding dimension of 768. It processes input 

images using patch sizes of 16×16. 

ViT-Large (L/16): This model variant comprises 24 

layers and 16 attention heads, featuring an embedding 

dimension of 1024. Additionally, it employs patch sizes of 

16×16, facilitating enhanced spatial feature extraction and 

representation.  

ViT-Huge (H/14): The most advanced configuration 

comprises 32 layers, 16 attention heads, and an embedding 

dimension of 1280, utilizing smaller patch sizes of 14×14 to 

enhance feature extraction and model performance. 

The choice of ViT variant depends on the computational 

resources available and the complexity of the task at hand. 

Notably, ViTs typically require pretraining on large-scale 

datasets (e.g., ImageNet-21k) to achieve optimal 

performance. This necessity stems from the absence of 

inductive biases in ViTs that are inherently present in CNNs, 

including locality and translation equivariance. 

2.3 Experimental setup 

The experimental framework was implemented on the 

Google Colab platform, leveraging the computational 

capabilities of a Tesla T4 GPU equipped with 320 Turing 

Tensor Cores and 16 GB of GDDR6 VRAM. This setup was 

selected to ensure efficient training and inference of deep 

learning models. TensorFlow 2.15 was utilized as the 

primary deep learning framework, offering comprehensive 

support for the development, training, and optimization of 

advanced neural network architectures. Its robust 

computational capabilities facilitated efficient model 

implementation, enabling precise and scalable deep learning 

applications. The cloud-based environment facilitated high 

computational efficiency, reproducibility, and seamless 

collaboration among researchers. 

The dataset was partitioned into training, validation, and 

testing sets using an 80:10:10 ratio to enable a rigorous and 

impartial assessment of model performance. To improve 

generalizability and counteract overfitting, various data 

augmentation strategies—such as image flipping, rotation, 

and zooming—were employed. Prior to model training, all 

input images were standardized to a resolution of 128×128×3 

pixels. Model optimization was performed using the 

AdamW optimizer [24] with a learning rate of 0.0003 and a 

weight decay coefficient of 0.00003. Training was conducted 

with a batch size of 32 over 100 epochs, and a dropout rate 

of 0.1 was integrated into the network architecture to further 

mitigate the risk of overfitting. The learning process was 

guided by the sparse categorical cross-entropy loss function, 

which ensured stable convergence of the model. All 

hyperparameters were selected manually based on 

preliminary experiments. 

3 Experimental Results 

3.1 Evaluation metrics 

A rigorous evaluation was conducted to benchmark the 

diagnostic performance of the ViT and the ResNet models 

(ResNet50, ResNet101, and ResNet152) in categorizing 

chest X-ray images into four classes— Normal, Lung 

Opacity, Viral Pneumonia, and COVID-19—using an 

extensive suite of evaluation metrics. These metrics provide 

a detailed and objective analysis of each model's 

classification efficacy, particularly within the field of 

medical image processing, where significant challenges—

most notably, the prevalent issue of class imbalance—are 

routinely encountered. 

Within the suite of evaluation metrics, accuracy is a 

principal measure, defined as the ratio of correctly classified 

observations to the total number of observations. This metric 
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offers a general performance indicator and is formally 

defined by Equation (9). 

 

Accuracy =
(TP +  TN)

(TP +  TN +  FP +  FN)
 (9) 

 

True Positives (TP), True Negatives (TN), False 

Positives (FP), and False Negatives (FN) collectively define 

the classification outcomes in a predictive model. While 

accuracy serves as a fundamental performance metric, it can 

be misleading in scenarios involving imbalanced datasets, as 

it does not account for class distribution disparities.  

Precision is a fundamental performance metric in 

classification tasks, defined as the ratio of true positive 

predictions to the total number of instances predicted as 

positive. This measure assesses the classifier's ability to 

accurately identify positive cases and is crucial for 

evaluating model performance, particularly in contexts 

where minimizing false positives is of paramount 

importance. It is formally defined in Equation (10). 

 

Precision =
TP

(TP +  FP)
 (10) 

 

Recall quantifies a model's effectiveness in identifying 

all actual positive instances within a dataset. More formally, 

it is defined as the ratio of true positive predictions to the 

total number of genuine positive cases, as delineated in 

Equation (11). 

 

Recall =
TP

(TP +  FN)
 (11) 

 

The F1-score, defined as the harmonic mean of precision 

and recall, offers a balanced evaluation of these two 

performance metrics. This balance renders it especially 

useful in applications where an optimal trade-off between 

precision and recall is imperative. Equation (12) formally 

delineates the definition of this metric. 

 

F1 − Score =  
2 ∗  (Precision ∗  Recall)

(Precision +  Recall)
 (12) 

 

A confusion matrix serves as a robust tool for evaluating 

a model’s predictive performance by systematically aligning 

actual class labels with those predicted by the model. In a 

four-class classification scenario, a 4×4 confusion matrix is 

employed, where each row denotes an actual class, and each 

column corresponds to a predicted class. This structured 

approach enables a thorough examination of class-specific 

accuracies, error distributions, and misclassification trends.  

In multi-class classification scenarios, individual 

metrics—namely precision, recall, and F1-score—are 

computed for each class to evaluate the model’s performance 

across distinct categories. To achieve a comprehensive 

performance assessment, these per-class metrics are 

commonly aggregated using two well-established methods: 

Macro-Averaging: This method calculates the 

unweighted mean of the performance metrics across all 

classes, treating each class equally irrespective of its size or 

prevalence. 

Weighted-Averaging: Here, the metrics for each class 

are weighted according to the proportion of true instances 

belonging to that class, ensuring a more representative 

measure for datasets with class imbalances. 

Collectively, these evaluation metrics provide an 

integrated assessment of the model's performance across all 

four diagnostic categories, thereby enabling a more nuanced 

and precise analysis of its classification accuracy and overall 

efficacy. 

Reporting both macro and weighted averages is 

particularly important in the presence of class imbalance, as 

it ensures that the evaluation reflects both per-class 

performance and the real-world prevalence of each 

diagnostic group. 

3.2 Results 

The performance of the models—ViT, ResNet50, 

ResNet101, and ResNet152—was meticulously evaluated on 

the test dataset using a diverse set of metrics, including 

accuracy, precision, recall, F1-score, and confusion matrices. 

This multifaceted evaluation framework enabled a thorough 

examination of each model's classification capabilities 

across four chest X-ray categories thereby providing a 

comprehensive assessment of their diagnostic performance. 

To ensure clarity and systematic comparisons, the 

performance of each model is analyzed in dedicated 

subsections. The use of confusion matrices enables a detailed 

examination of misclassifications, thereby identifying areas 

where predictive accuracy can be improved. Such an 

approach ensures a rigorous and impartial assessment of the 

models' effectiveness, facilitating the identification of their 

respective strengths and limitations. This comprehensive 

analysis is crucial for refining model architectures and 

optimizing training methodologies to enhance performance 

in future applications. 

3.2.1 ResNet-50 

ResNet-50, a 50-layer deep residual network introduced 

by He et al. [21], mitigates the vanishing gradient issue by 

employing skip connections, thereby enhancing the training 

efficiency of deep neural architectures. Table 1 presents the 

model’s performance on the test set by reporting essential 

evaluation metrics—precision, recall, and F1-score—across 

four chest X-ray diagnostic categories: COVID-19, Lung 

Opacity, Normal, and Viral Pneumonia. In addition, both 

macro-averaged and weighted-average metrics are provided 

to offer a comprehensive evaluation of the classifier’s overall 

efficacy. 

The model exhibited a notable performance across 

multiple evaluation metrics. Specifically, the model 

achieved a maximum precision of 96.7% for the Normal 

class and recorded its highest recall of 98.62% for the 

COVID-19 category, thereby demonstrating its effectiveness 

in identifying critical cases. Additionally, the Viral 

Pneumonia class attained the highest F1-score at 97.06%, 

reflecting an optimal balance between precision and recall. 

Overall, the model reached an accuracy of 89.69% on the test 

set, with macro-average and weighted-average F1-scores of 
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90.82% and 89.77%, respectively. These results underscore 

the robust classification capabilities of the ResNet-50 model 

in a multi-class diagnostic setting. 

 

Table 1. ResNet-50 test results 

 
Test 

Data 
Precision Recall F1-Score 

COVID-19 363 79.56% 98.62% 88.07% 

Lung Opacity 602 85.37% 89.20% 87.25% 

Normal 1024 96.70% 85.74% 90.89% 

Viral 

Pneumonia 
135 96.35% 97.78% 97.06% 

Macro avg 2124 89.49% 92.84% 90.82% 

Weighted avg 2124 90.54% 89.69% 89.77% 

Overall 

Accuracy 
2124 89.69% 

 

To facilitate a more detailed evaluation of the model’s 

performance, a confusion matrix was generated (see Figure 

5). Among the 363 test images classified as COVID-19, only 

5 instances were misclassified, reflecting a high degree of 

accuracy for this category. Similarly, the Viral Pneumonia 

class exhibited robust performance, with only 3 

misclassifications out of 135 test images. In contrast, the 

Lung Opacity class demonstrated a higher error rate, with 65 

out of 602 images misclassified. The Normal class also faced 

significant challenges, as 146 of the 1024 test images were 

incorrectly predicted. The experimental findings indicate 

that the model demonstrates robust performance in 

differentiating COVID-19 cases from viral pneumonia. 

However, the analysis also reveals that its classification 

accuracy for Normal and lung opacity images is suboptimal, 

suggesting the need for further refinement in these areas.  

 

 

Figure 5. Confusion matrix for ResNet-50 test results 

 

3.2.2 ResNet-101 

Introduced by He et al. [21], ResNet-101 is an advanced 

deep convolutional neural network that extends the ResNet-

50 architecture by incorporating 101 layers, thereby 

enhancing both depth and representational capacity. Table 2 

presents a comprehensive evaluation of the model's 

performance on the test dataset, detailing precision, recall, 

and F1-score for four CXR categories. Moreover, the table 

summarizes the overall classification effectiveness through 

macro-averaged and weighted-average metrics. 

In the evaluation, the model achieved a perfect precision 

of 100% for the Viral Pneumonia category, and a recall of 

100% for the COVID-19 category, indicating its efficacy in 

accurately identifying all true instances of COVID-19 within 

the test dataset. Notably, the highest F1-score (70.94%) was 

observed for the Normal class. Despite these class-specific 

performances, the overall accuracy of ResNet-101 on the test 

set was 56.87%, significantly lower than the 89.69% 

accuracy obtained by ResNet-50. 

 

Table 2. ResNet-101 test results 

 
Test 

Data 
Precision Recall F1-Score 

COVID-19 
363 30.02% 100% 46.18% 

Lung Opacity 602 88.98% 34.88% 50.12% 

Normal 1024 93.03% 57.32% 70.94% 

Viral 

Pneumonia 
135 100% 35.56% 52.46% 

Macro avg 2124 78.01% 56.94% 54.92% 

Weighted avg 2124 81.56% 56.87% 59.63% 

Overall 

Accuracy 
2124 56.87% 

 

Figure 6 illustrates the confusion matrix corresponding to 

the ResNet-101 model. Notably, the model achieved a 

perfect recall (100%) for the COVID-19 class, accurately 

classifying all 363 test images in that category. However, a 

substantial number of misclassifications were observed 

among the other classes. Specifically, within the Lung 

Opacity class, 359 of the 602 images were incorrectly 

classified as COVID-19, while an additional 33 were 

misclassified as Normal. Similarly, for the Normal class, 411 

out of 1024 images were erroneously predicted as COVID-

19. In the case of the Viral Pneumonia class, 76 of the 135 

images were misclassified as COVID-19. 

This pattern of misclassification indicates a strong bias in 

the model towards overpredicting the COVID-19 class, 

which is reflected in the high recall (100%) but low precision 

(30.02%) for this category. The notably low overall accuracy 

(56.87%) compared to ResNet-50 suggests suboptimal 

generalization and points to possible issues such as 

overfitting, class imbalance, or inappropriate model 

hyperparameters (e.g., learning rate, batch size). These 

factors, along with potential configuration errors during 

model training, may have contributed to the observed 

performance drop and misclassification trends.  
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Conversely, the model demonstrated perfect precision for 

the Viral Pneumonia class (100%), attributable to the 

absence of any misclassification of non-Viral Pneumonia 

images as Viral Pneumonia. 

 

 

Figure 6. Confusion matrix for ResNet-101 test results 

 

3.2.3 ResNet-152 

ResNet-152, a 152-layer Residual Network introduced 

by He et al., represents the deepest architecture examined in 

this study [21]. Table 3 presents a comprehensive evaluation 

of the model's performance on the test set. Specifically, it 

reports precision, recall, and F1-scores for each of the four 

chest X-ray categories. Moreover, the table includes both 

macro-averaged and weighted-average metrics, offering a 

detailed overview of the model’s diagnostic efficacy across 

these classes. 

The model achieved the highest precision (100%) and 

F1-score (93.70%) for the Viral Pneumonia category, while 

the highest recall (95.61%) was observed for the Normal 

category. Overall, ResNet-152 achieved an accuracy of 

87.66%, outperforming ResNet-101 (56.87%) but slightly 

trailing ResNet-50 (89.69%). 

 

Table 3. ResNet-152 test results 

 
Test 

Data 
Precision Recall F1-Score 

COVID-19 
363 99.17% 65.56% 78.94% 

Lung Opacity 602 80.92% 87.38% 84.03% 

Normal 1024 87.80% 95.61% 91.54% 

Viral 

Pneumonia 
135 100% 88.15% 93.70% 

Macro avg 2124 91.97% 84.17% 87.05% 

Weighted avg 2124 88.57% 87.66% 87.39% 

Overall 

Accuracy 
2124 87.66% 

 

Figure 7 presents the confusion matrix for the ResNet-

152 model, summarizing its classification performance 

across four diagnostic categories. The model was evaluated 

on a test set comprising 363 COVID-19 images, correctly 

identifying 238 of them. In contrast, misclassifications 

included 74 images erroneously labeled as lung opacity and 

51 images incorrectly categorized as normal. For the Lung 

Opacity category, 526 out of 602 images were accurately 

identified, with 75 misclassified as Normal and 1 as COVID-

19. Regarding the Normal class, 979 of the 1024 test images 

were correctly classified, whereas 44 were erroneously 

assigned to Lung Opacity and 1 to COVID-19. Finally, for 

the Viral Pneumonia category, the model achieved correct 

classification for 119 of 135 images, while 6 were 

misclassified as Lung Opacity and 10 as Normal. 

The model achieved a precision of 100% for the Viral 

Pneumonia class, which can be attributed to the absence of 

false positive predictions for this category, mirroring the 

performance observed with ResNet-101. Furthermore, the 

model demonstrated its most robust classification capability 

with the Normal class, as reflected in its recall rate of 95.61% 

and the highest count of correctly classified images. 

3.2.4 ViT  

ViT adopts a fundamentally distinct architectural 

approach compared to traditional CNN-based models. In this 

study, the ViT model was trained from scratch without the 

use of pre-trained weights, allowing the network to learn all 

relevant features directly from the chest X-ray dataset. Table 

4 presents a detailed evaluation of the ViT model's 

performance on the test dataset. The table reports essential 

metrics for each of the four CXR categories, thereby 

providing a granular assessment of the model's diagnostic 

capabilities. Additionally, macro-averaged and weighted-

average values for these metrics are reported to offer a 

comprehensive assessment. 

 

 

Figure 7. Confusion matrix for ResNet-152 test results 

 

Among the evaluated classes, the COVID-19 category 

achieved the highest precision at 96.79%, while the Normal 

category demonstrated the highest recall at 93.95%. Notably, 

the Viral Pneumonia class attained the highest F1-score 
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(92.54%), underscoring the model’s strong performance in 

accurately classifying this category. Among the models 

evaluated, ViT achieved the highest performance, recording 

a test set accuracy of 90.25%. 

ViT employs a fundamentally different architecture from 

CNN-based models. Table 4 provides a comprehensive 

evaluation of the model's performance on the test set. 

Specifically, it details the precision, recall, and F1-score for 

each of the four chest X-ray categories while also reporting 

the corresponding macro and weighted averages of these 

metrics. 

 

Table 4. ViT test results 

 
Test 

Data 
Precision Recall F1-Score 

COVID-19 
363 96.79% 83.20% 89.48% 

Lung Opacity 602 85.46% 87.87% 86.65% 

Normal 1024 90.75% 93.95% 92.32% 

Viral 

Pneumonia 
135 93.23% 91.85% 92.54% 

Macro avg 2124 91.56% 89.22% 90.25% 

Weighted avg 2124 90.44% 90.25% 90.24% 

Overall 

Accuracy 
2124 90.25% 

 

Figure 8 presents a detailed confusion matrix for the ViT 

model. For the COVID-19 class, 302 of 363 test images were 

correctly classified, while misclassifications included 39 

images labeled as Lung Opacity, 17 as Normal, and 5 as 

Viral Pneumonia. In the Lung Opacity category, 529 out of 

602 images were correctly identified; however, 70 images 

were incorrectly classified as Normal, 2 as COVID-19, and 

1 as Viral Pneumonia. Similarly, for the Normal class, 962 

of 1024 images were correctly classified, with 51 images 

misidentified as Lung Opacity, 8 as COVID-19, and 3 as 

Viral Pneumonia. Lastly, for the Viral Pneumonia class, 124 

of 135 images were correctly classified, with the remaining 

11 images misclassified as Normal. 

 

 

Figure 8. Confusion matrix for ViT test results 

ViT model demonstrated superior efficacy in classifying 

viral pneumonia, achieving an F1-score of 92.54%. The 

confusion matrix underscores the model’s overall robust 

classification ability, effectively differentiating between the 

four CXR categories. 

4 Discussion 

An evaluation on the test image dataset indicates that ViT 

model achieved the highest classification accuracy, reaching 

90.25%. In contrast, among the ResNet-based architectures, 

ResNet-50 demonstrated the best performance with an 

accuracy of 89.69%, while ResNet-101 and ResNet-152 

attained accuracies of 56.87% and 87.66%, respectively. 

These findings suggest that increasing the depth of the 

network does not inherently lead to improved accuracy, 

thereby underscoring the potential efficacy of shallower 

architectures in certain scenarios. 

To validate the reliability of these results, a comparative 

analysis with existing studies is presented in Table 5. The 

ViT model consistently outperformed other models utilized 

in multi-class and binary classification tasks across prior 

research. Oh et al. [11] documented a classification accuracy 

of 88.9% when distinguishing among five categories—

normal, bacterial, tuberculosis, viral, and COVID-19 images. 

In a related study, Butt et al. [12] achieved an accuracy of 

86.7% in differentiating COVID-19, Influenza A, and 

normal images. Similarly, Khan et al. [13] reported an 

accuracy of 89.6% for categorizing images into COVID-19, 

normal, viral pneumonia, and bacterial pneumonia classes. 

Furthermore, Xu et al. [14] attained an accuracy of 86.7% in 

discriminating between COVID-19, IAVP, and normal 

images, while Shadin et al. [15] observed an accuracy of 

85.94% in the binary classification of COVID-19 versus 

normal images. More recently, Park et al. [16] developed a 

robust ViT framework and achieved average accuracy scores 

of 86.4%, 85.9%, and 85.2% across three independent 

institutional test sets (CNUH, YNU, and KNUH, 

respectively) for classifying normal, other infections, and 

COVID-19 cases, surpassing the performance of 

conventional models such as ResNet-50 and standard ViT 

architectures. 

The collective findings underscore the superior 

performance of the ViT model, which consistently achieves 

higher classification accuracy than both the evaluated 

ResNet architectures and those documented in previous 

studies. The model's reliability is quantitatively supported by 

high accuracy, precision, recall, and F1-score values across 

all classes in both internal and comparative evaluations. 

While direct inference speed was not measured, the ViT 

architecture is recognized in the literature for its 

computational efficiency and suitability for real-time clinical 

applications, further supporting its potential as a rapid and 

reliable diagnostic tool for CXR image analysis. This 

reinforces the effectiveness of transformer-based 

architectures for CXR image classification, further 

validating the robustness of the study's findings within the 

broader context of the literature. 
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Table 5. Comparison of studies 

Studies Models Accuracy Precision Recall 
F1-

Score 

[11] ResNet-18 88.9% 83.4% 85.9% 84.4% 

[12]  ResNet-18 86.7% 81.3% 86.7% 83.9% 

[13]  CoroNet 89.6% 89.84% 89.93% 89.82% 

[14]  ResNet-18 86.7% 86.86% 86.66% 86.7% 

[15]  InceptionV3 85.94% 87.5% 76.24% 81.48% 

[16]  ViT 86.4% ----- 87.0% ----- 

This 

Study 

ResNet-50  

ResNet-101 

ResNet-152 
ViT 

89.69% 

56.87% 

87.66% 
90.25% 

89.49% 

78.01% 

91.97% 
91.56% 

92.84% 

56.94% 

84.17% 
89.22% 

90.82% 

54.92% 

87.05% 
90.25% 

5 Conclusion and suggestions  

Despite a marked decline in COVID-19 incidence, the 

disease continues to pose a significant global health 

challenge, underscoring the need for rapid and reliable 

diagnostic strategies to improve patient outcomes. In this 

context, our study investigates the utility of CXR imaging as 

an efficient, cost-effective, and widely accessible alternative 

to traditional diagnostic techniques such as RT-PCR and CT. 

We assembled a comprehensive dataset comprising 21,165 

images, which included 3,616 confirmed COVID-19 cases, 

6,012 instances exhibiting lung opacity, 10,192 normal 

cases, and 1,345 cases of viral pneumonia. The diagnostic 

performance of four state-of-the-art machine learning 

models—ResNet-50, ResNet-101, ResNet-152, and ViT—

was systematically evaluated using this dataset. 

Among the models evaluated, ViT demonstrated the most 

robust performance. On the test set, ViT achieved an 

accuracy of 90.25%, a precision of 91.56%, a recall of 

89.22%, and an F1-score of 90.25%. These results 

underscore the efficacy of the ViT architecture in accurately 

capturing the underlying patterns of the data compared to its 

counterparts. Comparative analysis with prior research 

confirmed that the ViT model outperformed other 

approaches across binary, three-class, four-class, and five-

class classification tasks, thereby underscoring the 

robustness and reliability of the proposed method. 

In addition to its strong quantitative performance, the 

proposed AI-based framework can be readily integrated into 

clinical workflows as a decision support system. For 

instance, in emergency departments or triage settings, the 

model can rapidly analyze incoming chest X-rays to assist 

healthcare professionals in the early detection and 

differentiation of COVID-19, viral pneumonia, lung opacity, 

and normal cases. Such real-time integration can facilitate 

prompt isolation and treatment decisions, alleviate the 

diagnostic workload for radiologists, and ultimately improve 

patient outcomes, particularly in high-demand or resource-

constrained environments. 

Future investigations will concentrate on bolstering 

classification accuracy through the integration of state-of-

the-art data preprocessing methodologies and the meticulous 

optimization of model hyperparameters. This multifaceted 

approach is expected to significantly enhance the diagnostic 

performance of AI-driven systems in chest X-ray image 

analysis. 
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