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Abstract

This study systematically evaluates the efficacy of
advanced deep learning architectures, namely Vision
Transformers (ViT) and various ResNet models (ResNet50,
ResNetl101, ResNetl52), in the classification of chest
radiographs into four clinically significant diagnostic
categories: Normal, Lung Opacity, Viral Pneumonia, and
COVID-19. A meticulously curated dataset comprising
21,165 chest X-ray images was utilized to benchmark the
models' performance across key evaluation metrics,
including precision, recall, Fl-score and accuracy. The
experimental evaluation reveals that ViT model achieved
90.25% accuracy, 91.56% precision, 89.22% recall, and a
90.25% F1-score. These findings highlight the potential of
Al-driven approaches in augmenting medical diagnostics,
improving diagnostic accuracy, and enhancing healthcare
delivery, particularly in resource-limited settings. The
study underscores the applicability of Vision Transformers
in complex medical imaging tasks and contributes to the
growing body of research supporting Al-based solutions for
respiratory diseases and other healthcare challenges.

Keywords: Chest radiographs, COVID-19 diagnosis, Deep
learning, ResNet, Vision transformer

1 Introduction

The onset of Coronavirus Disease 2019 (COVID-19),
instigated by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), precipitated a global public health
emergency of unparalleled magnitude. First identified in
December 2019 in Wuhan, China, the rapid global spread of
this novel virus led the World Health Organization (WHO)
to declare a pandemic on March 11, 2020 [1]. By July 30,
2024, COVID-19 had resulted in 775686716 confirmed
cases and 7054093 deaths worldwide [2, 3], profoundly
burdening healthcare systems, disrupting economies, and
reshaping societal norms.

In addition to COVID-19, other respiratory diseases—
including pneumonia, influenza, and various bacterial and
viral pulmonary infections—continue to represent
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Bu calisma, gelismis derin 6grenme mimarilerinin —
ozellikle Vision Transformers (ViT) ve ¢esitli ResNet
modellerinin (ResNet50, ResNet101, ResNetl52) — gogiis
rontgenlerini Normal, Akciger Opasitesi, Viral Pnomoni ve
COVID-19 olmak {iizere dort klinik agidan 6nemli tanisal
kategoriye smiflandirmadaki etkinligini sistematik olarak
degerlendirmektedir. Modellerin performansini, hassasiyet,
geri cagirma, Fl-skora ve dogruluk gibi temel
degerlendirme metrikleri {izerinden o&lgmek amaciyla
Ozenle hazirlanmig 21.165 gogiis X-1s1n1 goriintlisiinden
olusan  bir veri seti  kullanilmistir.  Deneysel
degerlendirmeler, ViT modelinin 9%90.25 dogruluk,
%91.56 hassasiyet, %89.22 geri ¢agirma ve %90.25 FI1-
skora elde ettigini ortaya koymaktadir. Bu bulgular, yapay
zeka temelli yaklagimlarin tibbi tam1  siireglerini
gliclendirme, tan1 dogrulugunu artirma ve 6zellikle kaynak
kisitli  ortamlarda saglik  hizmetlerinin  sunumunu
iyilestirme potansiyeline isaret etmektedir. Calisma,
karmasik  tibbi  goriintiileme  gdrevlerinde  Vision
Transformers''n  uygulanabilirligini ~ vurgulamakta ve
solunum yolu hastaliklar1 ile diger saglik sorunlarina
yonelik yapay zeka temelli ¢oziimleri destekleyen artan
arastirma literatiiriine katkida bulunmaktadir.

Anahtar Kkelimeler: Gogiis rontgenleri, COVID-19 tanisi,
Derin 6grenme, ResNet, Vision transformer

substantial threats to global health. These conditions often
present with overlapping clinical and radiological features,
further complicating diagnosis and management. Early and
accurate detection of such diseases is crucial not only for
initiating appropriate therapeutic interventions and
improving patient outcomes, but also for mitigating
transmission and optimizing the use of limited healthcare
resources. Delays or inaccuracies in diagnosis can lead to
worsened prognosis, increased morbidity and mortality, and
the inefficient allocation of critical infrastructure, such as
hospital beds, ventilators, and personal protective equipment
[4-6]. Moreover, robust early diagnostic systems are
essential for effective epidemiological surveillance and
public health response strategies, allowing authorities to
monitor disease dynamics and implement targeted
interventions [7].
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Currently, reverse transcription-polymerase chain
reaction (RT-PCR) remains the gold standard for COVID-19
diagnosis. However, its practical application is constrained
by factors such as prolonged turnaround times, restricted
accessibility, and a notable risk of false-negative results [8].
Similarly, the diagnosis of other respiratory diseases
frequently relies on clinical evaluation, laboratory testing,
and medical imaging. Among these, chest radiography
(CXR) and computed tomography (CT) have proven
indispensable for detecting pulmonary abnormalities—
including ground-glass opacities, consolidations, and
interstitial changes—across a range of infectious and non-
infectious  etiologies  [9].  Nevertheless, accurate
interpretation of these imaging modalities demands
specialized radiological expertise, a resource that is often
stretched thin in high-demand clinical environments,
particularly during pandemics and seasonal outbreaks.

The integration of artificial intelligence (AI) and deep
learning algorithms into medical imaging analysis represents
a transformative advancement in diagnostic medicine. These
technologies directly address longstanding challenges in
accuracy, efficiency, and scalability within imaging-based
diagnostics. Al-based platforms are now capable of
analyzing CXRs and CT scans to assist clinicians in the rapid
and accurate detection of a wide array of thoracic diseases,
including but not limited to COVID-19, pneumonia, and
other viral or bacterial infections [10]. State-of-the-art deep
learning frameworks, such as convolutional neural networks
(CNNs) and ResNet architectures, have demonstrated
outstanding performance in extracting discriminative
features from complex medical images. More recently,
Vision Transformers (ViT) have introduced advanced self-
attention mechanisms, enabling the precise capture of
intricate visual patterns crucial for differentiating among
diseases with similar radiological presentations. By
enhancing diagnostic accuracy, reducing inter-observer
variability, and expediting large-scale screening processes,
Al-driven methodologies offer significant potential to
strengthen healthcare systems globally. These advances
promise not only to improve the clinical management of
COVID-19 and related respiratory diseases but also to
bolster public health preparedness for future epidemics and
pandemics.

A growing body of literature has investigated the
application of deep learning techniques to enhance the
diagnostic precision of COVID-19 through the analysis of
CXR and CT imaging. These studies underscore the efficacy
of CNNs and other advanced Al-based architectures in
improving classification precision, optimizing diagnostic
workflows, and mitigating human error in medical imaging
analysis.

Oh et al. developed an advanced classification
framework utilizing a diverse, multi-source dataset that
included cases of normal lungs, tuberculosis (TB), bacterial
pneumonia, viral pneumonia (including COVID-19), and
other non-COVID viral pneumonias. To promote robust
model performance and generalizability, the dataset was
meticulously divided into three distinct subsets: 70% for
training, 10% for validation, and 20% for testing. To

facilitate a fair performance comparison, an additional
benchmarking dataset was curated specifically for evaluating
the model against the COVID-Net framework. The
classification system was constructed using the ResNet18
architecture, with interpretability enhanced through the
integration of a probabilistic gradient-weighted class
activation map (Grad-CAM). This interpretability
mechanism identified critical regions within chest X-rays
that were most indicative of COVID-19-related patterns. The
ResNetl8 model exhibited strong  classification
performance, attaining an overall accuracy of 88.9%. The
proposed method yielded a precision of 83.4%, a recall of
85.9%, an Fl-score of 84.4%, and a specificity of 96.4%.
These performance metrics underscore the method's efficacy
in accurately differentiating diagnostic categories while
sustaining a high rate of true negative identifications [11].

Butt et al. introduced a deep learning framework that
leverages pulmonary computed tomography image analysis
to enhance the early diagnosis of COVID-19 pneumonia.
Their study introduced a location-attention classification
model, integrated with a Noisy-OR Bayesian function, to
enhance classification accuracy and effectively differentiate
between healthy cases, influenza-A viral pneumonia (IAVP),
and COVID-19. Based on a dataset of 618 CT samples, the
proposed model achieved an overall accuracy of 86.7%. This
performance is attributed to the integration of critical
radiological features—namely, ground-glass opacities and
pleural abnormalities—that are indicative of COVID-19
pathology. This approach underscores the significant
potential of deep learning in augmenting clinical diagnostic
workflows by improving detection efficiency and reliability,
while serving as a complementary tool to traditional methods
like RT-PCR [12].

Khan et al. introduced CoroNet, a convolutional neural
network derived from the Xception architecture, specifically
engineered to improve the identification of COVID-19 from
CXR images. The network was both trained and validated on
a dataset compiled from two publicly available repositories,
which includes 284 cases of COVID-19, 310 normal cases,
330 cases of bacterial pneumonia, and 327 cases of viral
pneumonia. To mitigate the issue of class imbalance, a
random sub-sampling strategy was implemented, ensuring a
more balanced distribution of training samples. Prior to
model training, all images were resized to 224x224 pixels to
standardize input dimensions. CoroNet employed a transfer
learning framework by initializing the network with weights
pre-trained on the ImageNet dataset. Subsequently, the
model underwent fine-tuning using a COVID-19-specific
dataset to refine its feature extraction capabilities for precise
disease classification. This approach resulted in an overall
classification accuracy of 89.6%, thereby demonstrating the
substantial efficacy of transfer learning in the context of
medical image analysis. [13].

Xu et al. conducted a study aimed at enhancing early
COVID-19 screening by leveraging CT imaging to
differentiate COVID-19 cases from IAVP and healthy lung
conditions. The dataset utilized in their research comprised
618 CT scans, obtained from three hospitals in Zhejiang
Province, China. This dataset included scans from 110
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patients diagnosed with COVID-19, 224 individuals with
IAVP, and 175 healthy subjects. To facilitate accurate
classification, the researchers developed a three-dimensional
(3D) deep learning framework designed to segment regions
of potential infection within the lung images. The segmented
regions were subsequently categorized into three distinct
classes—COVID-19, IAVP, and infection-unrelated regions
(ITT)—based on confidence scores generated through a
location-attention classification model. This approach
enabled more precise identification of COVID-19-related
abnormalities, thereby contributing to the advancement of
automated diagnostic tools for respiratory diseases. The final
classification step employed the Noisy-OR Bayesian
function, yielding an overall accuracy of 86.7%. This study
highlights the effectiveness of combining 3D segmentation
with Bayesian classification in screening for COVID-19
through CT imaging [14].

Shadin et al. investigated the efficacy of deep learning
models for COVID-19 detection using CXR images. Their
study compared two methodological approaches: a bespoke
CNN and a transfer learning strategy employing InceptionV3
architecture. The analysis was performed on a dataset
comprising 1,553 CXR images that represent a range of
respiratory conditions. The custom CNN achieved a training
accuracy of 79.74% and a validation accuracy of 84.92%,
whereas the InceptionV3-based model attained a higher
performance with a training accuracy of 85.41% and a
validation accuracy of 85.94%. These results emphasize the
advantages of transfer learning, particularly in contexts
characterized by limited datasets, as pre-trained models can
effectively utilize features extracted from extensive datasets
such as ImageNet [15].

Park et al. developed a robust ViT framework to advance
the automated diagnosis of COVID-19 and other pulmonary
infections using CXR images. Their research utilized a
comprehensive, multi-institutional dataset comprising
17,548 CXR images, categorized into normal, other
infections (including bacterial pneumonia and tuberculosis),
and COVID-19 cases. The ViT model was rigorously
evaluated across three independent external institutional test
sets—CNUH, YNU, and KNUH—to assess its performance
and generalizability in diverse clinical settings. The model
demonstrated consistent and strong classification results,
achieving average accuracy scores of 86.4% on CNUH,
85.9% on YNU, and 85.2% on KNUH test sets. Notably,
these outcomes surpassed those of conventional models such
as ResNet-50 and standard ViT architectures, highlighting
the effectiveness of leveraging low-level CXR feature
embeddings in combination with transformer-based
learning. The study’s findings underscore the potential of the
proposed ViT approach to deliver accurate, stable, and
generalizable diagnostic support for COVID-19 and related
diseases in real-world healthcare environments [16].

Cannata et al. conducted a comprehensive study to
develop an automated COVID-19 infection screening tool
using chest X-ray (CXR) images, aiming to provide a rapid,
cost-effective alternative to RT-PCR. The researchers
utilized a large, publicly available CXR dataset containing
four diagnostic classes: COVID-19, viral pneumonia, lung

opacity (non-COVID lung infection), and normal cases. The
methodology employed advanced artificial intelligence
techniques, leveraging transfer learning with pre-trained
networks to address data scarcity and computational
efficiency. Four deep learning architectures were evaluated:
InceptionV3, Xception, ResNet50, and Vision Transformer
(ViT). All models were trained and tested using a consistent
data split (70% training, 10% validation, 20% test), and the
same dataset version (3,616 COVID-19, 10,192 normal,
6,012 lung opacity, and 1,345 viral pneumonia images).
Experimental results showed that ViT significantly
outperformed all convolutional neural network (CNN)
architectures, achieving a test accuracy of 99.3%, compared
to 85.58% for ResNet50 (the best CNN baseline). ViT also
demonstrated high precision, recall, and F1-scores across all
four classes, successfully distinguishing COVID-19 from
other respiratory diseases and healthy cases. The authors
highlighted the clinical potential of ViT-based computer-
aided diagnostic tools to assist, accelerate, and automate the
COVID-19 diagnosis process using CXR images [17].

Despite considerable progress in the application of deep
learning to chest X-ray and CT imaging for the diagnosis of
COVID-19 and other pulmonary diseases, several limitations
persist in the existing literature. Many previous studies have
relied on limited, single-center datasets or lacked external
validation, thereby restricting the generalizability and
clinical applicability of their findings. Furthermore, the
majority of works have focused on conventional CNN
architectures, with relatively few investigations evaluating
the effectiveness of emerging transformer-based models,
such as the Vision Transformer (ViT), on large, diverse, and
multi-class chest X-ray datasets. In addition, the practical
integration of these Al models into clinical workflows,
particularly as real-time decision support tools in emergency
and high-volume healthcare environments, remains
underexplored. To address these gaps, the present study
systematically compares the performance of ViT and ResNet
architectures using a comprehensive, multi-institutional
CXR dataset encompassing four clinically relevant
diagnostic categories. The aim is to provide robust,
generalizable evidence on the efficacy of transformer-based
approaches and to discuss their potential clinical integration
in real-world settings.

Building upon the foundations of prior research, this
study investigates the effectiveness of advanced deep
learning architectures, specifically ViT and various ResNet
models (ResNet50, ResNetl01, and ResNetl52), in the
classification of CXRs across four clinically relevant
categories: Normal, Lung Opacity, Viral Pneumonia, and
COVID-19. In contrast to traditional CNNs, which primarily
focus on local feature extraction, ViTs employ self-attention
mechanisms to capture long-range dependencies within
images. This innovative approach not only diverges from
conventional methods but also holds a significant promise
for advancing medical image analysis by potentially
enhancing diagnostic accuracy and enabling more
comprehensive feature integration. This study systematically
compares the performance of the ViT with that of the well-
established ResNet architecture. A rigorous evaluation
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framework is employed, leveraging key performance
metrics—including accuracy, precision, recall, F1-score, and
specificity—to provide a comprehensive assessment of each
model's capabilities.

This study aims to advance the development of robust,
Al-driven diagnostic tools for COVID-19 and similar
respiratory ailments. By leveraging the capabilities of ViTs
in medical imaging, the research seeks to enhance both the
speed and precision of COVID-19 detection. Furthermore, it
proposes a scalable framework designed to address current
challenges while also accommodating future respiratory
disease outbreaks. The core objectives of this investigation
are outlined as follows:

1) Performance Evaluation: To assess and compare
the classification performance of ViTs and ResNet models
(ResNet50, ResNetl01, ResNetl152) in categorizing chest
radiographs into four diagnostic groups: Normal, Lung
Opacity, Viral Pneumonia, and COVID-19.

2) Clinical Relevance: To evaluate the potential of
these Al models to assist healthcare professionals by
providing rapid, accurate, and reliable diagnostic insights,
enabling the differentiation of COVID-19 from other
pulmonary pathologies.

This investigation endeavors to reconcile advanced
artificial intelligence techniques with their clinical
implementations, thereby promoting the incorporation of Al
into medical diagnostics to enhance accuracy, efficiency, and
accessibility.

2 Materials and methods

2.1 Dataset

The dataset utilized in this study comprises a total of
21,165 CXR images, systematically categorized into four
diagnostic groups: 3,616 images of COVID-19-positive
cases, 6,012 images with lung opacity (non-COVID lung
infections), 10,192 normal images, and 1,345 images of viral
pneumonia [18, 19]. This comprehensive collection was
developed through a collaborative effort led by researchers
from Qatar University and the University of Dhaka, together
with international partners and medical professionals from
Pakistan and Malaysia. The dataset has undergone multiple
updates, with incremental additions to each class to support
ongoing research in automated thoracic disease detection
[20]. Figure 1 illustrates representative samples from each

a b

Figure 1. [llustrating four diagnostic categories. (a) COVID-19, (b) Lung opacity, (¢) Normal, (d) Viral pneumonia

category. Prior to neural network ingestion, all images were
uniformly resized to 128 x 128 pixels. Additionally, data
augmentation methods—including horizontal flipping,
rotation, and zooming—were implemented to increase
variability and enhance the robustness of the model.

2.2 Model architecture

2.2.1 Residual networks (ResNet)

Residual Networks (ResNet) constitute a groundbreaking
innovation in the design of deep CNNs, effectively
addressing the degradation problem—an issue wherein
increasing network depth unexpectedly results in higher
training error. This phenomenon arises primarily from the
challenge of training deeper networks, as gradients tend to
diminish during backpropagation. Introduced by He et al.,
the ResNet architecture resolves this issue through residual
learning, a paradigm that has since become foundational in
computer vision tasks [21]. The hallmark of ResNet lies in
its residual learning framework, wherein layers are designed
to learn residual mappings relative to their inputs rather than
complete transformations. This is accomplished through
shortcut (or skip) connections, which bypass one or more
layers, facilitating direct gradient propagation during
backpropagation and thereby enhancing network training
stability and efficiency. Such a mechanism not only
facilitates the training of substantially deeper networks but
also alleviates the vanishing gradient problem.

The residual block constitutes the fundamental building
unit of the ResNet architecture, playing a critical role in
preserving efficient gradient propagation and alleviating the
vanishing gradient issue in deep neural networks. Let x
denote the input to the residual block and define F (x, {W;})
as the residual mapping that the network is designed to learn,
where W; represents the set of weights associated with the
convolutional layers within the block. The output y of the
residual block is consequently expressed as shown in
Equation (1).

y=F@x{W} +x M

In this formulation, let y denote the output of the residual
block and x its corresponding input. Notably, the residual
function F(x,{W;}) is structured to incorporate x directly
into its output, thereby establishing an identity mapping.

C d
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This approach simplifies the learning process by
allowing the network to concentrate on learning residuals
rather than the complete transformation. Figure 2 illustrates
a schematic overview of the residual block architecture,
highlighting its essential structural components.

X

F(x,{W3) identity

Flx,{W)+x

Figure 2. Residual block

Basic and Bottleneck Blocks:

ResNet employs two primary types of residual blocks,
with the choice of blocks depending on the depth of the
network architecture:

Basic Block: The basic block architecture is employed in
shallow variants of the ResNet framework, specifically
ResNet-18 and ResNet-34. The proposed architecture
comprises two convolutional layers, each immediately
followed by a batch normalization layer and a rectified linear
unit (ReLU) activation function. This configuration is
designed to enhance training stability and alleviate the
vanishing gradient problem. Additionally, an identity
mapping mechanism is incorporated, facilitating direct
propagation of the input to the output, thereby preserving
essential feature representations and improving gradient
flow during backpropagation. Equation (2) provides a formal
mathematical representation of the output y from the basic
block.

y = ReLU(F(x, {W,, W,}) + x) 2)

In this framework, W; and W, denote the weight matrices
corresponding to the two convolutional layers that comprise
the residual block. This design is intentionally simple,
ensuring efficient gradient flow and stable training in
relatively shallow networks. Its simplicity helps mitigate the
vanishing gradient problem, which is critical for effective
network optimization.

Bottleneck Block: For deeper neural network
architectures, including ResNet-50, ResNet-101, and
ResNet-152, the bottleneck block is utilized to enhance
computational efficiency and facilitate the training of
significantly deeper models. The bottleneck block follows a
three-layer structure:

e A 1x1 convolution to reduce dimensionality,

e A 3x3 convolution to perform spatial feature

extraction, and

e Another 1x1 convolution to restore dimensionality.

Equation (3). delineates the mathematical formulation of
the bottleneck block's output, denoted by y.

y = ReLU(F (x, {Wy, W,,W3}) + x) 3)

Here, W;, W>, and W3 represent the weights of the three
convolutional layers. By incorporating dimensionality
reduction using 1x1 convolutions, the bottleneck block
significantly reduces computational complexity. This
efficiency facilitates the training of deeper networks without
excessive computational cost, making it a cornerstone of
deeper ResNet architectures. Figure 3 shows basic and
bottleneck blocks.

3x3 Conv

Batch Norm

3x3 Conv

Batch Norm

e o mm e mm e mm mm o e o mm mm mm e e

Figure 3. a) basic block b) bottleneck block

ResNet architectures are available in multiple variants,
differentiated primarily by their depth and computational
complexity. While deeper models possess a greater capacity
to capture intricate patterns in data, they also demand
significantly more computational resources. In ResNet
architectures, the model's depth is quantified by the
aggregate number of convolutional layers incorporated into
its design.

ResNet-18 and ResNet-34: These relatively shallow
variants utilize the basic block design, consisting of 18 and
34 convolutional layers, respectively. Their reduced
computational requirements make them well-suited for
applications with constrained resources or tasks involving
less complex feature extraction.

ResNet-50, ResNet-101, and ResNet-152: Deep neural
network architectures often incorporate bottleneck blocks, an
effective design strategy that maximizes parameter
efficiency while enabling significantly greater network
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depth. For example, the ResNet family includes models such
as ResNet-50, ResNet-101, and ResNet-152, which consist
of 50, 101, and 152 convolutional layers, respectively. The
proposed architectural models exhibit robust performance in
addressing a wide range of advanced computer vision tasks,
including image classification, object detection, and
semantic segmentation. Their robustness and scalability
make them particularly well-suited for deployment in large-
scale datasets, such as ImageNet, where they have
demonstrated superior performance in feature extraction and
pattern recognition.

A defining characteristic of ResNet architectures is the
use of an identity shortcut connection, which directly adds
the input to the output of a residual block. When the input
and output dimensions differ—such as during
downsampling—a 1x1 convolution is employed to align
dimensions, ensuring the addition operation remains
mathematically valid. This innovative design supports the
scalability of ResNet models, enabling their adaptation to
varying levels of depth and complexity, thereby
accommodating diverse applications in computer vision.

2.2.2 Vision transformer (ViT)

The Vision Transformer (ViT) represents a seminal
advancement in computer vision by repurposing the
Transformer architecture—originally developed for natural
language processing (NLP)—to address image classification
challenges [22]. In contrast to traditional CNNs, which rely
on localized receptive fields and hierarchical feature
extraction through convolutional operations, ViT
decomposes an image into a sequence of patches. It then
employs self-attention mechanisms to capture long-range
dependencies and global contextual information, thereby
offering a fundamentally different approach to visual
representation.

Patch Embedding: In the ViT framework, an input
image I € RP*W*C_with H, W, and C representing the
image’s height, width, and number of channels, respectively,
initially segmented into a set of non-overlapping patches,
each of dimensions P x P. This partitioning yields a total of

N = I;—I;/ patches. Each patch is subsequently flattened into a

one-dimensional vector and mapped into a lower-
dimensional embedding space through a linear projection,
thereby generating a sequence of patch embeddings E €
RM*D where D denotes the embedding dimension.

Positional Encoding: To maintain the spatial coherence
of image patches, fixed positional encodings are
incorporated into the patch embeddings, ensuring the
preservation of spatial relationships within the input data.
These encodings, represented as P € RV*P, are of the same
dimensionality as the embeddings. The resulting positional
encoding is expressed as Equation (4).

Epos =E+P 4)

Transformer Encoder: At the core of the ViT lies its
Transformer encoder, an adaptation of the seminal
architecture proposed by Vaswani et al. [23]. This encoder is
structured as a stack of L identical layers, with each layer

integrating two essential components: a multi-head self-
attention mechanism (MHSA) as formulated in Equation (5)
and a position-wise feed-forward network (FFN) as defined
in Equation (6).

Z; = LayerNorm(Z,_; + MHSA(Z,_,)) (5)
Z; = LayerNorm(Z; + FFN(Z;)) (6)

where Z(1-1) is the input to the I-th layer.

Classification Head: After processing through the
Transformer layers, the embedding corresponding to the
designated [CLS] token is extracted. This embedding serves
as the definitive feature representation for downstream
classification tasks. This classification-specific token is
processed through a fully connected layer, where it
undergoes transformation to generate the final class
probability distribution.

Multi-Head Self-Attention (MHSA): The multi-head
self-attention (MHSA) mechanism is a fundamental element
of transformer architecture. It enables the model to
concurrently attend to multiple segments of the input,
thereby facilitating the capture of intricate dependencies and
contextual relationships. Specifically, for any given input
sequence, the MHSA mechanism computes attention
weights that are subsequently used to form multiple attention
heads. This parallel processing approach allows the model to
extract a diverse range of contextual dependencies across
various feature representations. These heads are
subsequently concatenated and linearly transformed.
Formally, for an input sequence Z € RM*P| the output of a
single attention head is defined as Equation (7).

T
Ve

In this framework, the matrices Q, K, and ¥ correspond
to the query, key, and value representations, respectively,
while di denotes the dimensionality of the key vectors.

Feed-Forward Network (FFN): In Transformer
architecture, each layer incorporates a position-wise feed-
forward network (FFN) that is critical for modeling intricate
dependencies within the input data. This network is
structured as two successive fully connected layers, with a
ReLU activation function interposed between them. The
introduction of non-linearity via the ReLU function enhances
the model's capacity to learn complex and high-level feature
representations. This operation can be formally represented
as Equation (8).

Attention(Q,K,V) = softmax( 4 (7

Here W, W3, b;, and b, are learnable parameters.

ViT architecture is configurable through several
hyperparameters, notably the number of transformer layers
(L), the number of attention heads, and the dimensionality of
the embedding space (D). The resulting variants include, for
example, the following configurations:
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Vision Transformer (ViT)
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Figure 4. ViT architecture

ViT-Base (B/16): This configuration comprises 12
transformer layers, each equipped with 12 attention heads,
and an embedding dimension of 768. It processes input
images using patch sizes of 16x16.

ViT-Large (L/16): This model variant comprises 24
layers and 16 attention heads, featuring an embedding
dimension of 1024. Additionally, it employs patch sizes of
16x16, facilitating enhanced spatial feature extraction and
representation.

ViT-Huge (H/14): The most advanced configuration
comprises 32 layers, 16 attention heads, and an embedding
dimension of 1280, utilizing smaller patch sizes of 14x14 to
enhance feature extraction and model performance.

The choice of ViT variant depends on the computational
resources available and the complexity of the task at hand.
Notably, ViTs typically require pretraining on large-scale
datasets (e.g., ImageNet-21k) to achieve optimal
performance. This necessity stems from the absence of
inductive biases in ViTs that are inherently present in CNNss,
including locality and translation equivariance.

2.3 Experimental setup

The experimental framework was implemented on the
Google Colab platform, leveraging the computational
capabilities of a Tesla T4 GPU equipped with 320 Turing
Tensor Cores and 16 GB of GDDR6 VRAM. This setup was
selected to ensure efficient training and inference of deep
learning models. TensorFlow 2.15 was utilized as the
primary deep learning framework, offering comprehensive
support for the development, training, and optimization of
advanced neural network architectures. Its robust
computational capabilities facilitated efficient model
implementation, enabling precise and scalable deep learning
applications. The cloud-based environment facilitated high
computational efficiency, reproducibility, and seamless
collaboration among researchers.

The dataset was partitioned into training, validation, and
testing sets using an 80:10:10 ratio to enable a rigorous and
impartial assessment of model performance. To improve
generalizability and counteract overfitting, various data
augmentation strategies—such as image flipping, rotation,
and zooming—were employed. Prior to model training, all
input images were standardized to a resolution of 128x128x3
pixels. Model optimization was performed using the
AdamW optimizer [24] with a learning rate of 0.0003 and a
weight decay coefficient of 0.00003. Training was conducted
with a batch size of 32 over 100 epochs, and a dropout rate
of 0.1 was integrated into the network architecture to further
mitigate the risk of overfitting. The learning process was
guided by the sparse categorical cross-entropy loss function,
which ensured stable convergence of the model. All
hyperparameters were selected manually based on
preliminary experiments.

3 Experimental Results

3.1 Evaluation metrics

A rigorous evaluation was conducted to benchmark the
diagnostic performance of the ViT and the ResNet models
(ResNet50, ResNet101, and ResNetl152) in categorizing
chest X-ray images into four classes— Normal, Lung
Opacity, Viral Pneumonia, and COVID-19—using an
extensive suite of evaluation metrics. These metrics provide
a detailed and objective analysis of each model's
classification efficacy, particularly within the field of
medical image processing, where significant challenges—
most notably, the prevalent issue of class imbalance—are
routinely encountered.

Within the suite of evaluation metrics, accuracy is a
principal measure, defined as the ratio of correctly classified
observations to the total number of observations. This metric
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offers a general performance indicator and is formally
defined by Equation (9).

(TP + TN)
(TP + TN + FP + FN)

Accuracy =

®

True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN) collectively define
the classification outcomes in a predictive model. While
accuracy serves as a fundamental performance metric, it can
be misleading in scenarios involving imbalanced datasets, as
it does not account for class distribution disparities.

Precision is a fundamental performance metric in
classification tasks, defined as the ratio of true positive
predictions to the total number of instances predicted as
positive. This measure assesses the classifier's ability to
accurately identify positive cases and is crucial for
evaluating model performance, particularly in contexts
where minimizing false positives is of paramount
importance. It is formally defined in Equation (10).

Precision = v 10
recision = (TP + FP) (10)

Recall quantifies a model's effectiveness in identifying
all actual positive instances within a dataset. More formally,
it is defined as the ratio of true positive predictions to the
total number of genuine positive cases, as delineated in
Equation (11).

Recall = — 1
el =P + FN) an

The F1-score, defined as the harmonic mean of precision
and recall, offers a balanced evaluation of these two
performance metrics. This balance renders it especially
useful in applications where an optimal trade-off between
precision and recall is imperative. Equation (12) formally
delineates the definition of this metric.

F1—5 2 x (Precision = Recall) (12)
core = (Precision + Recall)

A confusion matrix serves as a robust tool for evaluating
a model’s predictive performance by systematically aligning
actual class labels with those predicted by the model. In a
four-class classification scenario, a 4x4 confusion matrix is
employed, where each row denotes an actual class, and each
column corresponds to a predicted class. This structured
approach enables a thorough examination of class-specific
accuracies, error distributions, and misclassification trends.

In multi-class classification scenarios, individual
metrics—namely precision, recall, and Fl-score—are
computed for each class to evaluate the model’s performance
across distinct categories. To achieve a comprehensive
performance assessment, these per-class metrics are
commonly aggregated using two well-established methods:

Macro-Averaging: This method calculates the
unweighted mean of the performance metrics across all

classes, treating each class equally irrespective of its size or
prevalence.

Weighted-Averaging: Here, the metrics for each class
are weighted according to the proportion of true instances
belonging to that class, ensuring a more representative
measure for datasets with class imbalances.

Collectively, these evaluation metrics provide an
integrated assessment of the model's performance across all
four diagnostic categories, thereby enabling a more nuanced
and precise analysis of its classification accuracy and overall
efficacy.

Reporting both macro and weighted averages is
particularly important in the presence of class imbalance, as
it ensures that the evaluation reflects both per-class
performance and the real-world prevalence of each
diagnostic group.

3.2 Results

The performance of the models—ViT, ResNet50,
ResNet101, and ResNet152—was meticulously evaluated on
the test dataset using a diverse set of metrics, including
accuracy, precision, recall, F1-score, and confusion matrices.
This multifaceted evaluation framework enabled a thorough
examination of each model's classification capabilities
across four chest X-ray categories thereby providing a
comprehensive assessment of their diagnostic performance.

To ensure clarity and systematic comparisons, the
performance of each model is analyzed in dedicated
subsections. The use of confusion matrices enables a detailed
examination of misclassifications, thereby identifying areas
where predictive accuracy can be improved. Such an
approach ensures a rigorous and impartial assessment of the
models' effectiveness, facilitating the identification of their
respective strengths and limitations. This comprehensive
analysis is crucial for refining model architectures and
optimizing training methodologies to enhance performance
in future applications.

3.2.1 ResNet-50

ResNet-50, a 50-layer deep residual network introduced
by He et al. [21], mitigates the vanishing gradient issue by
employing skip connections, thereby enhancing the training
efficiency of deep neural architectures. Table 1 presents the
model’s performance on the test set by reporting essential
evaluation metrics—precision, recall, and F1-score—across
four chest X-ray diagnostic categories: COVID-19, Lung
Opacity, Normal, and Viral Pneumonia. In addition, both
macro-averaged and weighted-average metrics are provided
to offer a comprehensive evaluation of the classifier’s overall
efficacy.

The model exhibited a notable performance across
multiple evaluation metrics. Specifically, the model
achieved a maximum precision of 96.7% for the Normal
class and recorded its highest recall of 98.62% for the
COVID-19 category, thereby demonstrating its effectiveness
in identifying critical cases. Additionally, the Viral
Pneumonia class attained the highest F1-score at 97.06%,
reflecting an optimal balance between precision and recall.
Overall, the model reached an accuracy of 89.69% on the test
set, with macro-average and weighted-average F1-scores of
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90.82% and 89.77%, respectively. These results underscore
the robust classification capabilities of the ResNet-50 model
in a multi-class diagnostic setting.

Table 1. ResNet-50 test results

Test
Dat Precision Recall F1-Score
ata
COVIDSS 363 79.56% 98.62%  88.07%
Lung Opacity 602 85.37% 89.20% 87.25%
Normal 1024 96.70% 85.74% 90.89%
Viral
135 96.35% 97.78% 97.06%
Pneumonia
Macro avg 2124 89.49% 92.84% 90.82%
Weighted avg 2124 90.54% 89.69% 89.77%
Overall
2124 89.69%
Accuracy

To facilitate a more detailed evaluation of the model’s
performance, a confusion matrix was generated (see Figure
5). Among the 363 test images classified as COVID-19, only
5 instances were misclassified, reflecting a high degree of
accuracy for this category. Similarly, the Viral Pneumonia
class exhibited robust performance, with only 3
misclassifications out of 135 test images. In contrast, the
Lung Opacity class demonstrated a higher error rate, with 65
out of 602 images misclassified. The Normal class also faced
significant challenges, as 146 of the 1024 test images were
incorrectly predicted. The experimental findings indicate
that the model demonstrates robust performance in
differentiating COVID-19 cases from viral pneumonia.
However, the analysis also reveals that its classification
accuracy for Normal and lung opacity images is suboptimal,
suggesting the need for further refinement in these areas.

Confusion Matrix - ResNet50

coviD

Lung Opacity

True Label

Normal

Viral Pneumonia

Viral Pneumonia

cm‘llD Lung 6pacily Nor‘mal
Predicted Label

Figure 5. Confusion matrix for ResNet-50 test results

3.2.2 ResNet-101

Introduced by He et al. [21], ResNet-101 is an advanced
deep convolutional neural network that extends the ResNet-
50 architecture by incorporating 101 layers, thereby
enhancing both depth and representational capacity. Table 2
presents a comprehensive evaluation of the model's
performance on the test dataset, detailing precision, recall,
and F1-score for four CXR categories. Moreover, the table
summarizes the overall classification effectiveness through
macro-averaged and weighted-average metrics.

In the evaluation, the model achieved a perfect precision
of 100% for the Viral Pneumonia category, and a recall of
100% for the COVID-19 category, indicating its efficacy in
accurately identifying all true instances of COVID-19 within
the test dataset. Notably, the highest F1-score (70.94%) was
observed for the Normal class. Despite these class-specific
performances, the overall accuracy of ResNet-101 on the test
set was 56.87%, significantly lower than the 89.69%
accuracy obtained by ResNet-50.

Table 2. ResNet-101 test results

;::; Precision Recall F1-Score

COVID-19 363 30.02% 100% 46.18%

Lung Opacity 602 88.98% 34.88% 50.12%

Normal 1024 93.03% 57.32% 70.94%

P Viral 135 100% 35.56% 52.46%
neumonia

Macro avg 2124 78.01% 56.94% 54.92%

Weighted avg 2124 81.56% 56.87% 59.63%

Overall 2124 56.87%

Accuracy

Figure 6 illustrates the confusion matrix corresponding to
the ResNet-101 model. Notably, the model achieved a
perfect recall (100%) for the COVID-19 class, accurately
classifying all 363 test images in that category. However, a
substantial number of misclassifications were observed
among the other classes. Specifically, within the Lung
Opacity class, 359 of the 602 images were incorrectly
classified as COVID-19, while an additional 33 were
misclassified as Normal. Similarly, for the Normal class, 411
out of 1024 images were erroneously predicted as COVID-
19. In the case of the Viral Pneumonia class, 76 of the 135
images were misclassified as COVID-19.

This pattern of misclassification indicates a strong bias in
the model towards overpredicting the COVID-19 class,
which is reflected in the high recall (100%) but low precision
(30.02%) for this category. The notably low overall accuracy
(56.87%) compared to ResNet-50 suggests suboptimal
generalization and points to possible issues such as
overfitting, class imbalance, or inappropriate model
hyperparameters (e.g., learning rate, batch size). These
factors, along with potential configuration errors during
model training, may have contributed to the observed
performance drop and misclassification trends.
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Conversely, the model demonstrated perfect precision for
the Viral Pneumonia class (100%), attributable to the
absence of any misclassification of non-Viral Pneumonia
images as Viral Pneumonia.

Confusion Matrix - ResNet101

CovVID

True Label
Lung Opacity

Normal

Viral Pneumonia

Viral Pneumonia

covip Lung 6pacity Normal
Predicted Label

Figure 6. Confusion matrix for ResNet-101 test results

3.2.3 ResNet-152

ResNet-152, a 152-layer Residual Network introduced
by He et al., represents the deepest architecture examined in
this study [21]. Table 3 presents a comprehensive evaluation
of the model's performance on the test set. Specifically, it
reports precision, recall, and F1-scores for each of the four
chest X-ray categories. Moreover, the table includes both
macro-averaged and weighted-average metrics, offering a
detailed overview of the model’s diagnostic efficacy across
these classes.

The model achieved the highest precision (100%) and
F1-score (93.70%) for the Viral Pneumonia category, while
the highest recall (95.61%) was observed for the Normal
category. Overall, ResNet-152 achieved an accuracy of
87.66%, outperforming ResNet-101 (56.87%) but slightly
trailing ResNet-50 (89.69%).

Table 3. ResNet-152 test results

;::; Precision Recall F1-Score
COVID-19 363 99.17% 65.56% 78.94%
Lung Opacity 602 80.92% 87.38% 84.03%
Normal 1024 87.80% 95.61% 91.54%
Viral 135 100% 88.15% 93.70%
Pneumonia
Macro avg 2124 91.97% 84.17% 87.05%
Weighted avg 2124 88.57% 87.66% 87.39%
Overall 2124 87.66%
Accuracy

Figure 7 presents the confusion matrix for the ResNet-
152 model, summarizing its classification performance

across four diagnostic categories. The model was evaluated
on a test set comprising 363 COVID-19 images, correctly
identifying 238 of them. In contrast, misclassifications
included 74 images erroneously labeled as lung opacity and
51 images incorrectly categorized as normal. For the Lung
Opacity category, 526 out of 602 images were accurately
identified, with 75 misclassified as Normal and 1 as COVID-
19. Regarding the Normal class, 979 of the 1024 test images
were correctly classified, whereas 44 were erroneously
assigned to Lung Opacity and 1 to COVID-19. Finally, for
the Viral Pneumonia category, the model achieved correct
classification for 119 of 135 images, while 6 were
misclassified as Lung Opacity and 10 as Normal.

The model achieved a precision of 100% for the Viral
Pneumonia class, which can be attributed to the absence of
false positive predictions for this category, mirroring the
performance observed with ResNet-101. Furthermore, the
model demonstrated its most robust classification capability
with the Normal class, as reflected in its recall rate 0 95.61%
and the highest count of correctly classified images.

3.2.4 ViT

ViT adopts a fundamentally distinct architectural
approach compared to traditional CNN-based models. In this
study, the ViT model was trained from scratch without the
use of pre-trained weights, allowing the network to learn all
relevant features directly from the chest X-ray dataset. Table
4 presents a detailed evaluation of the ViT model's
performance on the test dataset. The table reports essential
metrics for each of the four CXR categories, thereby
providing a granular assessment of the model's diagnostic
capabilities. Additionally, macro-averaged and weighted-
average values for these metrics are reported to offer a
comprehensive assessment.

Confusion Matrix - ResNetl152

CovID

Lung Opacity

True Label

Normal

Viral Pneumonia

coviD Lung Opacity Normal Viral Pneumonia

Predicted Label
Figure 7. Confusion matrix for ResNet-152 test results
Among the evaluated classes, the COVID-19 category
achieved the highest precision at 96.79%, while the Normal

category demonstrated the highest recall at 93.95%. Notably,
the Viral Pneumonia class attained the highest Fl-score
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(92.54%), underscoring the model’s strong performance in
accurately classifying this category. Among the models
evaluated, ViT achieved the highest performance, recording
a test set accuracy of 90.25%.

ViT employs a fundamentally different architecture from
CNN-based models. Table 4 provides a comprehensive
evaluation of the model's performance on the test set.
Specifically, it details the precision, recall, and F1-score for
each of the four chest X-ray categories while also reporting
the corresponding macro and weighted averages of these
metrics.

Table 4. ViT test results
Test

Data Precision Recall F1-Score

COVID-19 363 96.79% 83.20% 89.48%

Lung Opacity 602 85.46% 87.87% 86.65%

Normal 1024 90.75% 93.95% 92.32%

Viral 135 93.23% 91.85% 92.54%

Pneumonia

Macro avg 2124 91.56% 89.22% 90.25%

Weighted avg 2124 90.44% 90.25% 90.24%
Overall 2124 90.25%

Accuracy

Figure 8 presents a detailed confusion matrix for the ViT
model. For the COVID-19 class, 302 of 363 test images were
correctly classified, while misclassifications included 39
images labeled as Lung Opacity, 17 as Normal, and 5 as
Viral Pneumonia. In the Lung Opacity category, 529 out of
602 images were correctly identified; however, 70 images
were incorrectly classified as Normal, 2 as COVID-19, and
1 as Viral Pneumonia. Similarly, for the Normal class, 962
of 1024 images were correctly classified, with 51 images
misidentified as Lung Opacity, 8 as COVID-19, and 3 as
Viral Pneumonia. Lastly, for the Viral Pneumonia class, 124
of 135 images were correctly classified, with the remaining
11 images misclassified as Normal.

Confusion Matrix - ViT

coviD

Lung Opacity

True Label

Normal

Viral Pneumonia

covip Lung Opacity Normal
Predicted Label

Viral Pneumonia

Figure 8. Confusion matrix for ViT test results

ViT model demonstrated superior efficacy in classifying
viral pneumonia, achieving an Fl-score of 92.54%. The
confusion matrix underscores the model’s overall robust
classification ability, effectively differentiating between the
four CXR categories.

4 Discussion

An evaluation on the test image dataset indicates that ViT
model achieved the highest classification accuracy, reaching
90.25%. In contrast, among the ResNet-based architectures,
ResNet-50 demonstrated the best performance with an
accuracy of 89.69%, while ResNet-101 and ResNet-152
attained accuracies of 56.87% and 87.66%, respectively.
These findings suggest that increasing the depth of the
network does not inherently lead to improved accuracy,
thereby underscoring the potential efficacy of shallower
architectures in certain scenarios.

To validate the reliability of these results, a comparative
analysis with existing studies is presented in Table 5. The
ViT model consistently outperformed other models utilized
in multi-class and binary classification tasks across prior
research. Oh et al. [11] documented a classification accuracy
of 88.9% when distinguishing among five categories—
normal, bacterial, tuberculosis, viral, and COVID-19 images.
In a related study, Butt et al. [12] achieved an accuracy of
86.7% in differentiating COVID-19, Influenza A, and
normal images. Similarly, Khan et al. [13] reported an
accuracy of 89.6% for categorizing images into COVID-19,
normal, viral pneumonia, and bacterial pneumonia classes.
Furthermore, Xu et al. [14] attained an accuracy of 86.7% in
discriminating between COVID-19, IAVP, and normal
images, while Shadin et al. [15] observed an accuracy of
85.94% in the binary classification of COVID-19 versus
normal images. More recently, Park et al. [16] developed a
robust ViT framework and achieved average accuracy scores
of 86.4%, 85.9%, and 85.2% across three independent
institutional test sets (CNUH, YNU, and KNUH,
respectively) for classifying normal, other infections, and
COVID-19 cases, surpassing the performance of
conventional models such as ResNet-50 and standard ViT
architectures.

The collective findings underscore the superior
performance of the ViT model, which consistently achieves
higher classification accuracy than both the evaluated
ResNet architectures and those documented in previous
studies. The model's reliability is quantitatively supported by
high accuracy, precision, recall, and F1-score values across
all classes in both internal and comparative evaluations.
While direct inference speed was not measured, the ViT
architecture is recognized in the literature for its
computational efficiency and suitability for real-time clinical
applications, further supporting its potential as a rapid and
reliable diagnostic tool for CXR image analysis. This
reinforces the effectiveness of transformer-based
architectures for CXR image classification, further
validating the robustness of the study's findings within the
broader context of the literature.
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Table 5. Comparison of studies Contflict of Interest
Studies Models Accuracy Precision  Recall SFl- The authors declare that they have no conflict of interest.
core
[11]  ResNet-18  88.9%  834%  859%  84.4% Similarity Rate (iThenticate): %15
[12] ResNet-18 86.7% 81.3% 86.7% 83.9% References
[13] CoroNet 89.6% 89.84%  89.93%  89.82% [1] WHO, WHO Director-General's opening remarks at the
[14] ResNet-18 86.7% 86.86%  86.66%  86.7% media briefing on COVID-19. March 2020. Available:
15 IncentionV3  85.94% 87 5% 604% 81487 https://www.who.int/director-
[15] fleephion il e i oo general/speeches/detail/who-director-general-s-
[16] ViT 86.4% - 87.0% - opening-remarks-at-the-media-briefing-on-covid-19---
ResNet-50  89.69%  89.49%  92.84%  90.82% 11-march-2020
This ResNet-101 56.87% 78.01% 56.94% 54.92% _ _
Study ResNet-152 87.66% 91.97% 84.17% 87.05% [2] WHO, WHO COVID-19 dashboard-cases. 30.1 'Llily
ViT 90.25%  91.56%  89.22%  90.25% 2024. Available:

5 Conclusion and suggestions

Despite a marked decline in COVID-19 incidence, the
disease continues to pose a significant global health
challenge, underscoring the need for rapid and reliable
diagnostic strategies to improve patient outcomes. In this
context, our study investigates the utility of CXR imaging as
an efficient, cost-effective, and widely accessible alternative
to traditional diagnostic techniques such as RT-PCR and CT.
We assembled a comprehensive dataset comprising 21,165
images, which included 3,616 confirmed COVID-19 cases,
6,012 instances exhibiting lung opacity, 10,192 normal
cases, and 1,345 cases of viral pneumonia. The diagnostic
performance of four state-of-the-art machine learning
models—ResNet-50, ResNet-101, ResNet-152, and ViT—
was systematically evaluated using this dataset.

Among the models evaluated, ViT demonstrated the most
robust performance. On the test set, ViT achieved an
accuracy of 90.25%, a precision of 91.56%, a recall of
89.22%, and an Fl-score of 90.25%. These results
underscore the efficacy of the ViT architecture in accurately
capturing the underlying patterns of the data compared to its
counterparts. Comparative analysis with prior research
confirmed that the ViT model outperformed other
approaches across binary, three-class, four-class, and five-
class classification tasks, thereby underscoring the
robustness and reliability of the proposed method.

In addition to its strong quantitative performance, the
proposed Al-based framework can be readily integrated into
clinical workflows as a decision support system. For
instance, in emergency departments or triage settings, the
model can rapidly analyze incoming chest X-rays to assist
healthcare professionals in the early detection and
differentiation of COVID-19, viral pneumonia, lung opacity,
and normal cases. Such real-time integration can facilitate
prompt isolation and treatment decisions, alleviate the
diagnostic workload for radiologists, and ultimately improve
patient outcomes, particularly in high-demand or resource-
constrained environments.

Future investigations will concentrate on bolstering
classification accuracy through the integration of state-of-
the-art data preprocessing methodologies and the meticulous
optimization of model hyperparameters. This multifaceted
approach is expected to significantly enhance the diagnostic
performance of Al-driven systems in chest X-ray image
analysis.
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