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Abstract 

The application of next-generation sequencing (NGS) technologies has enabled the identification of both 
culturable and non-culturable microorganisms in blood samples, revealing their potential roles in 
systemic infections and immune responses. However, the complexity and high dimensionality of 
microbiome data present significant challenges for analysis. In this study, it was evaluated the 
performance of various machine learning (ML) algorithms, including logistic regression, random forest 
(RF), decision tree, and support vector machines (SVM), in classifying 16S rRNA gene sequencing data 
of blood microbiota into cultured and uncultured groups. The dataset used in this study, obtained from 
Kalfin and Panaiotov, consists of 16S rRNA gene sequences from a total of 18,093 OTUs and 62 
observations, including control samples. After excluding the six control samples, 56 samples from target 
sequencing of cultured and non-cultured blood samples of healthy individuals were analyzed. Results 
show that the random forest (RF) algorithm exhibits the highest classification performance, successfully 
distinguishing between cultured and uncultured blood microbiota. In the study, the potential of ML 
techniques in microbiome research was evaluated and the effectiveness and accuracy of these 
techniques in the analysis of microbiome data were investigated. 
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Özet 

Yeni nesil dizileme (NGS) teknolojilerinin uygulanması, kan örneklerinde hem kültürlenebilen hem de 
kültürlenemeyen mikroorganizmaların tanımlanmasını sağlayarak, sistemik enfeksiyonlarda ve 
bağışıklık tepkilerinde potansiyel rollerini ortaya koymuştur. Ancak, mikrobiyom verilerinin karmaşıklığı 
ve yüksek boyutluluğu, analiz için önemli zorluklar sunmaktadır. Bu çalışmada, lojistik regresyon, 
rastgele orman (RF), karar ağacı ve destek vektör makineleri (SVM) dahil olmak üzere çeşitli makine 
öğrenimi (ML) algoritmalarının, kan mikrobiyotasının 16S rRNA gen dizileme verilerini kültürlenmiş ve 
kültürlenmemiş gruplara sınıflandırmadaki performansı değerlendirilmiştir. Çalışmada kullanılan veri 
seti, Kalfin ve Panaiotov’dan elde edilen 16S rRNA gen dizileri ile oluşturulmuş olup, toplamda 18.093 
OTU ve 62 gözlem içermektedir; bunlar arasında kontrol örnekleri de bulunmaktadır. Altı kontrol örneği 
çalışmadan çıkarıldıktan sonra, sağlıklı bireylerden alınan kültürlü ve kültürsüz kan örneklerine ait 56 
örnek üzerinde analizler yapılmıştır. Bulgular, rastgele orman (RF) algoritmasının en yüksek 
sınıflandırma performansını sergilediğini ve kültürlenmiş ve kültürlenmemiş kan mikrobiyotası arasında 
başarılı bir şekilde ayrım yaptığını göstermiştir. Çalışmada, mikrobiyom araştırmalarında ML 
tekniklerinin potansiyeli değerlendirilmiş ve bu tekniklerin mikrobiyom verilerinin analizindeki etkinliği ve 
doğruluğu, araştırılmıştır. 

Anahtar Kelimeler: Kan mikrobiyatası, makine öğrenmesi, metagenom, mikrobiom  
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1. Introduction 

The microbiota and microbiome are terms frequently used interchangeably to refer to the community of 

microorganisms (bacteria, viruses, fungi and parasites) present in the human body (Gotschlich et al., 

2019).  

Over the past decade, the importance of the human microbiome has been recognized (Porras & Brito, 

2019). Recent studies on the human microbiome has significantly enhanced the understanding of the 

critical role that microbiota play in health throughout life. 

Microbiota communities display diversity in various areas of the human body, such as the oral cavity, 

skin, blood, genitourinary and gastrointestinal system (Requena & Velasco, 2021). Contrary to the 

common perception of the gut microbiome as a passive component, it not only actively plays a role in 

various host functions such as circadian rhythms, dietary adaptation, metabolism, and immunity, but 

also assumes significant roles in other biological processes including vitamin synthesis and even 

neurological functions (Aggarwal et al., 2023; Zheng et al., 2020). 

Microbiota is also important for human health and disease; particularly, alterations in microbial diversity 

are thought to contribute to the pathogenesis of various diseases (Bilgin & Hanci, 2023; Requena & 

Velasco, 2021). 

The microbiota functions similarly to a fingerprint, with each individual has a distinct and unique 

composition and distribution (Ciftciler & Ciftciler, 2022). 

This uniqueness underscores the complexity of our internal environments and how imbalances can 

influence our health. In this regard, although there has been significant research on different types of 

microbiota, one area of growing interest is the concept of blood microbiota, which refers to the presence 

of microbial DNA, RNA, or viable organisms in the bloodstream (Demirci et al., 2023; Goraya et al., 

2022; Mair & Sirich, 2019).  

Traditionally, the blood of healthy individuals has been presumed to be sterile. However, recent 

advancements in microbiome research have challenged this view. Although detecting microorganism in 

the blood has been interpreted as a sign of infection, recent studies highlight the blood microbiota plays 

a crucial role in understanding systemic infections, immune responses, and overall health (Tsafarova et 

al., 2022). 

Blood culture remains the gold standard among methods used to detect living microorganisms in the 

bloodstream. But new findings have demonstrated that the presence of genetic material from beneficial 

and/or pathogenic microorganisms in the blood circulation with the advancements in metagenomic and 

molecular biology techniques such as next generation sequencing (NGS) have enabled the detection 

and characterization of microorganisms, including those that are difficult or impossible to culture (Cheng 

et al., 2023). 
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Studies conducted using these techniques have shown that non-culturable microorganisms contribute 

significantly to the diversity of blood microbiota and are also associated with chronic infections, sepsis, 

and systemic inflammatory conditions (Kajihara et al., 2019; Khan, Khan, Jianye, et al., 2022; Khan, 

Khan, Usman, et al., 2022). 

Moreover, these techniques have significantly enhanced comprehension of the human microbiome and 

the interactions between host and microbes under both normal and pathological conditions. Notably, 

numerous studies analyzing blood samples have identified bacteria and their genetic material, even in 

individuals who are healthy (Cheng et al., 2023). 

Therefore, this microbial flora has significant interest among researchers, particularly due to their 

potential effects on human health and/or diseases (Tsafarova et al., 2022). 

Culturable microorganisms refers to microorganisms that have been grown and maintained in a 

controlled laboratory environment, by using specific conditions such as media that support the microbial 

growth (Molina-Menor et al., 2020). Successful cultivation of microorganisms provides an opportunity to 

study their biochemical properties and potential health effects in more detail. But culturing techniques 

alone have identified limited numbers of microorganisms (Emery et al., 2020).  

Unlike culturable microorganisms, those non-culturable refer to microorganisms that can not be 

cultivated in laboratory environments using traditional culture techniques (Molina-Menor et al., 2020). 

A significant portion of the normal microbial flora in humans is nonculturable (Panaiotov et al., 2021). 

Fortunately, the development of high-throughput technologies has made it possible to understand the 

genomes and functions of both culturable and non-culturable microorganisms (Lee et al., 2022). 

These microorganisms have been indirectly identified by molecular techniques such as shutgun, 16s, 

metagenome/ whole genome sequencing methods (Panaiotov et al., 2021). 

Culturable microorganisms are directly associated with bloodstream infections (BSI) and sepsis, and 

these pathogens can be easily identified through traditional culture methods, facilitates clinicians to 

initiate antimicrobial therapy (Costa & Carvalho, 2022; Timsit et al., 2020). 

Meanwhile, rapid characterizing non-culturable microorganisms using alternative methods allows 

researchers and clinicians to investigate their pathogenic mechanisms, interactions with host immune 

responses, and contributions to chronic infections or inflammatory conditions (Li et al., 2014; Potgieter 

et al., 2015). 

Discriminating between cultured and uncultured blood samples is crucial in microbiology, particularly for 

the rapid and accurate identification of microbial infections in clinical settings. This distinction helps 

determine the presence of pathogens, guiding treatment decisions, and provides insights into the 

microbiome's role in various disease states. It also enhances diagnostic accuracy by distinguishing 

between active infections, microbial contamination, and colonization. Understanding the dynamics of  

both culturable and non-culturable microorganisms in the blood microbiota is essential for studying the 

microbiota in healthy individuals, improving patient outcomes, and effectively managing infections to 

address public health challenges (Panaiotov et al., 2021). 
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The human microbiota includes various microorganisms such as bacteria, viruses, fungi, and protozoa, 

and its genome is over 100 times larger than the human genome. There are different types of 

technologies used in microbiome researches such as NGS including 16sRNA amplicon sequencing and 

shotgun metagenome (Loganathan & Priya Doss, 2022). 

Improvements in high-throughput sequencing (HTS) have promoted rapid developments in the field of 

microbiome studies, leading to the generation of extensive microbiome datasets, and recently, 

investigations have begun exploring how these microbiome patterns can predict host traits through 

machine learning (ML) (Liu et al., 2021; Loganathan & Priya Doss, 2022). 

ML is a subset of statistical and computational methods used to extract information from large datasets. 

In microbiome researches, machine learning algorithms are crucial for analyzing metagenomic datasets 

and extracting biological patterns and relationships from these microbiome data (D'Elia et al., 2023). For 

instance, data mining and deep learning techniques can assist in understanding relationships between 

different species and the impact of microorganisms on health in microbiota analysis (Saboo et al., 2022). 

Furthermore, ML models have shown promising performance in distinguishing between patients and 

healthy individuals (Kim et al., 2023). 

2. Method 

2.1. Aim of the Study 

This study aimed to evaluate the performance of various machine learning methods in classifying blood 

microbiota as cultured or uncultured based on bacterial operational taxonomic units (OTUs) identified 

through next-generation sequencing technologies. Blood microbiota have recently become a popular 

research topic, and understanding their classification can provide valuable insights into microbial 

community dynamics. 

2.2. Data Collection 

16S rRNA gene sequence data obtained by Kalfin and Panaiotov was used as the data set (Github-1, 

2024). The dataset comprises a total of 18093 OTUs and 62 observations, including controls. Control 

samples (n=6) were excluded from the study, resulting in a total of 56 samples for analysis. Additionally, 

OTUs with invalid taxonomic classification (n=11066) were removed from the dataset. Among the 

remaining 7027 OTUs, those with a combined abundance ≥100 reads and a taxonomic assignment cut-

off value >10 reads per OTU were included (Panaiotov et al., 2021). The dataset includes two classes 

of 56 observations, cultured and uncultured, and 260 OTUs. 

2.3. Limitation of the Study 

The focus on a specific dataset and algorithms, as well as the lack of consideration for variable ordering,  

are limitations of the study. 

2.4. Data Analysis 

In the study, general information was provided on machine learning classification algorithms that have 

recently become prevalent in microbiome research, including logistic regression, random forest,  

 



 
 

 

210 *Corresponding author: ozlem.akay@gibtu.edu.tr DOI: 10.56061/fbujohs.1636654 
RESEARCH ARTICLE 

 

decision trees, and support vector machines, and microbiome data were classified using these methods. 

Models of the algorithms were obtained in R (version 4.3.1; R Foundation for Statistical Computing, 

Istanbul, Turkey) using the mikropml package (Topçuoğlu et al., 2021). Performances of the obtained 

models have been evaluated by performance metrics (Area Under the Curve (AUC), Accuracy, 

Balanced Accuracy, Detection Rate, F1, Kappa, negative predictive value (NPV), positive predictive 

value (PPV), Precision, Recall, Sensitivity, Specificity, log Loss, cross-validation AUC (cv_metric_AUC), 

Precision-Recall Area Under the Curve (prAUC)). 

2.5. Analysing Methods 

2.5.1. Logistic Regression 

Linear regression models examine the relationship between one or more independent variables and a 

single continuous dependent variable (Y). If the dependent variable value can only be one of two 

outcomes (i.e. a binary variable such as dead/alive, injured/uninjured, or accident/no accident), logistic 

regression is used to model binary response data. The dependent variable is usually treated as an 

indicator variable. The outcome being predicted is assigned a value of 1, and the other outcome is 

assigned a value of 0. Since it is not possible to map a linear predictor to only two values, it is mapped 

to a range of values between 0 and 1. Since probabilities vary between 0 and 1, the linear predictor is 

mapped to a probability (Bangdiwala, 2018). Consider a collection of p independent variables be 

denoted by the vector X'=(X1, X2,…,Xp), and the conditional probability that the outcome is present be 

denoted by P(Y=1|X) =π. Then the logit of having Y=1 is modeled as a linear function of the independent 

variables as  

 ln (
𝜋𝑖

1−𝜋𝑖
) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 ; 0 ≤ 𝜋𝑖 ≤ 1       (1) 

where the function  

  𝜋𝑖 =
exp (𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑝𝑋𝑝)

1+exp (𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑝𝑋𝑝)
         (2) 

is known as the logistic function (Rana et al., 2010). 

Here, 𝜋 represents the event probability, 𝛽0 is the intercept, 𝛽1, 𝛽2, … , 𝛽𝑝 are the coefficients (slopes), and 

𝑋1, 𝑋2, … , 𝑋𝑝 are the independent variables. The parameters 𝛽0 and 𝛽 are estimated using the maximum 

likelihood estimation (MLE) method (Abdulqader, 2017). 

2.5.2. Random Forest 

Random Forest (RF) is an ensemble method that constructs multiple independent decision tree 

classifiers from various subsets of the dataset (Kouchaki et al., 2020). Breiman (2001) proposed random 

forests, which add a layer of randomness to bagging. In Bagging, each classifier is built individually by 

working with a bootstrap sample of the input data. In a regular decision tree classifier, a decision at a 

node split is made based on all the feature attributes (Alam & Vuong, 2013; Breiman, 2001). 

The design of a decision tree requires a pruning method and the choice of an attribute selection 

measure. In most approaches to attribute selection for decision tree induction, a quality measure is 
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directly assigned to the attribute. Commonly used feature selection measures are the Gini Index, and 

the Information Gain Ratio Criterion. The Gini Index which measures the impurity of an attribute 

concerning the classes is used in the random forest classifier as an attribute selection measure. For a 

given training set T, selecting one case (pixel) at random and saying that it belongs to some class 𝐶𝑖, 

the Gini index can be written as 

  ∑ ∑(𝑓(𝐶𝑖, 𝑇)/|𝑇|)(𝑓(𝐶𝑗, 𝑇)/|𝑇|)      (3) 

where 𝑓(𝐶𝑖 , 𝑇)/|𝑇| is the probability that the selected case belongs to class 𝐶𝑖  (Pal, 2005). 

The RF generated mean decrease Gini was used as a measure of the importance of a variable (stress 

condition and time point) for classifying SigB from non-SigB genes. The decrease in the Gini index is 

determined for each variable at each node. The mean Gini decrease is the sum of all these decreases 

due to a given variable, normalized by the number of trees in the forest (Nannapaneni et al., 2012). 

RF includes the ability to asses the importance of the predictor variable in predicting the correct answer 

is a scalable and robust method. This is important because it allows the elimination of statistically 

dependent variables, the use of computational resources, and reducing the size of the input dataset 

(Buckley & Harvey, 2021). 

2.5.3. Decision Tree 

Among machine learning algorithms, the decision tree is classified as a supervised learning method 

(Sathiyanarayanan et al., 2019). One widely used data mining technique is systems that create 

classifiers (Jijo & Abdulazeez, 2021). Since it is easier to understand and implement than other 

classification algorithms it is the most widely used algorithm (Sathiyanarayanan et al., 2019). 

A decision tree is a flowchart-like tree structure, where each branch represents an outcome of the test, 

class label is represented by each leaf node, and each internal node represents a test on an attribute 

(Sharma & Kumar, 2016). Input is given to the decision tree based on certain criteria and the output is 

shown as either false or true (Sathiyanarayanan et al., 2019). 

A tuple X is given and the attribute values of the tuple are tested against a decision tree. From the root, 

a path is followed to a leaf node that holds the class prediction for the tuple. Decision trees are easily 

converted into classification rules (Sharma & Kumar, 2016). 

Classification rules are created by the selected path from the root node to the leaf. Since it is the most 

prominent attribute to separate the data root node is selected first to split each input data. The tree is 

created by determining the attributes and their associated values to be used to analyze the input data 

at each intermediate node of the tree. 

Once the tree is created, it can pre-structure the new incoming data by visiting all internal nodes in the 

path starting from a root node and passing towards the leaf node depending on the test conditions of 

the attributes at each node (Rai et al., 2016). 

A decision tree as a predictive model that maps observations about an item to conclusions about the 

item's target value is used in decision tree learning (Sharma & Kumar, 2016). 



 
 

 

212 *Corresponding author: ozlem.akay@gibtu.edu.tr DOI: 10.56061/fbujohs.1636654 
RESEARCH ARTICLE 

 

2.5.4. Support vector machine (SVMs) 

SVMs, which are very effective for many applications in engineering and science, especially for 

classification problems constitute an important part of learning theory (Wu & Zhou, 2006). SMLs, which 

formulate the learning problem as a quadratic optimization problem whose error surface is free of local 

minima and has a global optimum, originate from Vapnik's statistical learning theory (Begg et al., 2005). 

Support vector machines are the two main classifiers that are attractive and more systematic for learning 

linear or nonlinear class boundaries. SVM involves two basic steps: training and testing, like all other 

machine learning techniques. Creating a finite training set by training an SVM involves feeding known 

data to the SVM along with previously known decision values. An SVM derives its intelligence from the 

training set to classify unknown data (Othman et al., 2011). The hyperplane separates the two groups 

of points in the training set by the largest margin when two classes of points in the training set can be 

separated by a linear hyperplane. This amounts to the hard margin linear support vector machine: Find  

(𝑤 ∈ 𝑅𝑛, 𝑏 ∈ 𝑅), to minimize ‖𝑤‖2 subject to 

 (𝒙𝒊. 𝒘) + 𝑏 ≥ +1    𝑓𝑜𝑟 𝑦𝑖 = +1                         (4) 

 (𝒙𝒊. 𝒘) + 𝑏 ≤ −1 𝑓𝑜𝑟 𝑦𝑖 = −1                     (5) 

Once such w and b are found, the classification rule is sign[(w・x)  + 𝑏]. 

Constraints (4) and (5) can not be satisfied simultaneously when the points in the training data set are 

not linearly separable. To overcome this difficulty, non-negative slack variables ξ's can be introduced, 

and this results in the soft margin linear support vector machine: 

 Find 𝑤 ∈ 𝑅𝑛, 𝑏 ∈ 𝑅, and  ξ
𝑖
  , i = 1, 2, . . . ,ℓ to minimize (

1

ℓ
) (∑ 𝜉𝑖)ℓ 

𝑖=1

𝑞
+ 𝜆‖𝑤‖2, under the constraints 

   (𝒙𝒊. 𝒘) + 𝑏 ≥ +1 − 𝜉𝑖 𝑓𝑜𝑟 𝑦𝑖 = +1                    (6) 

 (𝒙𝒊. 𝒘) + 𝑏 ≤ −1 +  𝜉𝑖 𝑓𝑜𝑟 𝑦𝑖 = −1                        (7) 

    𝜉𝑖 ≥ 0, ∀𝑖 

where q is a positive integer and λ is a parameter to be chosen by the user. Since this is the most 

common situation it is concentrated on the case q=1. Notice (6) and (7) can be combined as follows: 

  𝜉𝑖 ≥ 1 − 𝑦𝑖  [(𝒙𝒊. 𝒘) + 𝑏]                        (8)  

(Lin et al., 2002). 

The simplest way to separate two groups is with a straight line, a flat plane, or an N-dimensional  

 

hyperplane. A non-linear dividing line is needed if the points are separated by a non-linear region. In 

this case, SVM uses a kernel function to map the data to a different space where a hyperplane can be 

used to separate them. The kernel function can transform the data into a higher-dimensional space to 

make the separation possible (Bhavsar & Panchal, 2012). Kernel functions and their equations are given 

Table 1 (Chidambaram & Srinivasagan, 2019). 
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Table 1. Kernel functions and their equations 

Kernel functions Equations 

Linear kernel 𝑘(𝑥, 𝑦) = 𝑥𝑇𝑦 + 𝑐 

Polynomial kernel 𝑘(𝑥, 𝑦) = (𝛼𝑥𝑇𝑦 + 𝑐)𝑑 
 
Radial Basis Function kernel 𝑘(𝑥, 𝑦) = 𝑒𝑥𝑝 (−

‖𝑥 − 𝑦‖2

2𝜎2
) 

Sigmoid kernel 𝑘(𝑥, 𝑦) = 𝑡𝑎𝑛ℎ(𝛼𝑥𝑇𝑦 + 𝑐) 

2.5.5. Classification Metrics 

When the response is binary in a machine learning model, classification models such as decision trees, 

logistic regression, convolutional neural networks, random forests, etc. are used. Classification metrics 

are used to evaluate the performance of the models. A confusion matrix contains the prediction results 

of any binary test that is often used to calculate classification metrics. A confusion matrix is shown in 

Table 2. 

Table 2. A confusion matrix 

 
 
 
 
 
 
 

Confusion matrix and classification accuracy measure TP and TN are the true positive and true negative 

predictions; FP and FN are false positive and false negative predictions respectively (Table 2). 

Accordingly, the classification metrics used in the study are explained as follows. 

Accuracy measures the overall frequency of correct predictions made by a classifier. Precision, also 

referred to as Positive Predictive Value (PPV), indicates the proportion of correctly predicted positive 

cases that are truly positive. Recall, or Sensitivity, measures the ability of the model to correctly identify 

actual positive cases (Huilgol, 2025). Negative Predictive Value (NPV) reflects the proportion of true 

negatives among all cases predicted as negative. Specificity assesses the model's effectiveness in 

correctly identifying actual negative cases. The F1-Score, calculated as the harmonic mean of precision 

and recall, is used to evaluate classification performance (Srivastava, 2024). Balanced accuracy, which 

is the average of sensitivity and specificity, is particularly useful when dealing with imbalanced datasets 

where one class significantly outnumbers the other (Olugbenga, 2024). Cohen's Kappa coefficient (κ) 

quantifies agreement between predicted and actual values, accounting for the likelihood of random 

agreement, based on the marginal distributions of each class (Kolena, 2024).  Among the metrics based 

on cross-entropy, the log loss metric, measures the quality of predictions rather than the accuracy. 

Formulas for these metrics are given the Eq. 13-22. which are  

 

 

 

 Observed 

  1 (+) 0 (-) 

Predicted 1 (+) TP FP 

0 (-) FN TN 
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 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
       (13) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                     (14) 

𝑃𝑃𝑉(Detection Rate) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                   (15) 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                  (16) 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
                     (17) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
        (18) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
         (19) 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
     (20) 

𝐶𝑜ℎ𝑒𝑛 𝐾𝑎𝑝𝑝𝑎 =
2∗(𝑇𝑃∗𝑇𝑁−𝐹𝑁∗𝐹𝑃)

(𝑇𝑃+𝐹𝑁)∗(𝐹𝑁+𝑇𝑁)+(𝑇𝑃+𝐹𝑃)∗(𝐹𝑃+𝑇𝑁)
     (21) 

𝐿𝑜𝑔𝑙𝑜𝑠𝑠 = −
1

𝑁
∑ [𝑦𝑖𝑙𝑛𝑝𝑖 + (1 − 𝑦𝑖)ln (1 − 𝑝𝑖]𝑁

𝑖=1    (22) 

where y is the actual/true value, i is the given observation/record, p and ln refers to the prediction 

probability, and the natural logarithm of a number, respectively (Dembla, 2020). 

Efficiently, the log loss gages additional error coming the estimates as opposed to the true values (Log, 

2024). 

Cross-validation AUC (cv_metric_AUC), is the AUC calculated for the cross-validation folds for the 

training data (AUC, 2024). 

Precision-Recall Area Under the Curve (prAUC) quantifies how well a model can distinguish between 

classes, considering both its ability to not mark a negative sample as positive (Precision) and its ability 

to find all the positive samples (Recall). A higher prAUC value signifies a better-performing model (Alon, 

2023). 

3. Results  

In the study, for the application of four different commonly used machine learning algorithms, the 

arguments in the run_ml command were set to default and the dataset was first randomly divided into 

training and test sets (46 sample training set, 10 sample test set, training_frac=NULL). When learning 

a dependence from data, to avoid overfitting, it is important to divide the data into the training set and 

the testing set. Empirical studies show that the best results are obtained if 20-30% of the data for testing 

was used, and the remaining 70-80% of the data for training (Gholamy et al., 2018). For this reason, the 

test and training sets were determined automatically by setting the run_ml command as default. The 

training data was used to create and select the models and the test set was used to evaluate the model. 

Four different models were trained using the training data. Since the arguments in the run_ml command 
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were set to default, hyperparameters was set as sensible defaults will be chosen automatically 

(hyperparameters=NULL) for model selection. For resampling, five-fold cross-validation (CV) was 

performed on the training set, repeated 100 times. The model was trained using the full training dataset 

and was applied to the test data to evaluate the test prediction performance of each model. Performance 

metrics were created to determine and evaluate the appropriate model selection for machine learning 

algorithms. 100 bootstraps (alpha=0.05) were created and the confidence interval estimate for the model 

performance was calculated (Topçuoğlu et al., 2020). The obtained values are given in Table 3. 

 

Table 3. Performance metrics of machine learning algorithms 

 GLM [LCI-UCI] RF [LCI-UCI] DT-rpart2[LCI-
UCI] 

SVM [LCI-UCI] 

AUC 0.795 [0.4-1] 0.960 [0.7-1] 0.705 [0.5-1] 0.205 [0-0.6] 

Accuracy 0.496 [0.2-0.8] 0.798 [0.5-1] 0.702 [0.4-1] 0.504 [0.2-0.8] 

Balanced Accuracy 0.5 [0.5-0.5] 0.801 [0.5-1] 0.705 [0.5-1] 0.5 [0.5-0.5] 

Detection Rate 0.266 [0-0.8] 0.428 [0.1-0.8] 0.378 [0-0.8] 0.271 [0-0.8] 

F1 0.683 [0.4-0.8] 0.789 [0.4-1] 0.695 [0.2-1] 0.690 [0.4-0.8] 

Kappa 0 [0-0] 0.582 [0.1-1] 0.392 [0-1] 0 [0-0] 

NPV 0.458 [0.2-0.7] 0.837 [0.3-1] 0.782 [0.3-1] 0.467 [0.2-0.7] 

PPV 0.533 [0.3-0.8] 0.871 [0.5-1] 0.821 [0.4-1] 0.542 [0.3-0.8] 

Precision 0.533 [0-3-0.8] 0.871 [0.5-1] 0.821 [0.4-1] 0.542 [0.3-0.8] 

Recall 0.5 [0-1] 0.800 [0.2-1] 0.706 [0-1] 0.5 [0-1] 

Sensitivity 0.5 [0-1] 0.800 [0.2-1] 0.706 [0-1] 0.5 [0-1] 

Specificity 0.5 [0-1] 0.802 [0.2-1] 0.704 [0-1] 0.5 [0-1] 

cv_metric_AUC 0.865[0.86-0.87] 0.925[0.92-0.93] 0.776[0.77-0.78] 0.854[0.85-0.86] 

logLoss 0.676 [0.6-0.7] 0.459 [0.2-0.6] 0.565 [0.2-0.9] 0.693 [0.6-0.7] 

prAUC 0.499 [0.3-0.7] 0.629 [0.3-0.6] 0.185 [0-0.3] 0.346 [0.2-0.4] 

GLM=Logistic Regression, RF=Random Forest, DT=Decision Tree, SVM=Support Vector Machines, LCI=Lower Confidence 
Interval, UCI=Upper Confidence Interval, AUC=Area Under the Curve, NPV=Negative Predictive Values, PPV=Positive Predictive 
Values, prAUC=Precision-Recall Area Under the Curve 

 

The predictive performances of four algorithms for classifying bacteria as cultured or non-cultured were 

evaluated. When Table 3 is examined, the prediction performance of the random forest model is higher 

than other ML models for all metrics. However, the performances of logistic regression and support 

vector machine models are close to each other. 

Additionally, to evaluate the performance of machine learning algorithms, the ROC curves obtained by 

using test data in the model created by training with training data for each algorithm are given in Figure 

1. 



 
 

 

216 *Corresponding author: ozlem.akay@gibtu.edu.tr DOI: 10.56061/fbujohs.1636654 
RESEARCH ARTICLE 

 

Figure 1. ROC curves for ML algorithms 

When Figure 1 is examined, it can be seen that the ML algorithm with the largest area is the random 

forest (rf), followed by support vector machines (svmradial), decision tree (rpart2), and logistic 

regression (glmnet) models. 

Figure 2 shows the graph of cross-validation AUROC (CV AUC) and test AUROC (test AUC) values for 

machine learning algorithms. The AUROC ranges from 0, where the model's predictions are completely 

wrong, to 1, where the model discriminates perfectly between cases and controls. An AUROC value of 

0.5 indicates that the model's predictions are no different from random. To evaluate the generalizability 

of the models built for the algorithms, the cross-validation AUROC median is compared with the test 

AUROC median. If the difference between cross-validation and testing AUROCs is large, this may 

indicate that the models are overfitting the training data. When Figure 1 is examined, it is seen that the 

biggest difference in Median AUROCs is in SVM (svmradial), followed by logistic regression (glmnet), 

decision tree (rpart2), and random forest (rf) algorithms, respectively. These differences are relatively 

small and provide confidence in the models' predictions of generalization performance. 
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Figure 2. Generalization and classification performance of machine learning (ML) models using 

ML models are used not only to predict the classification result but also to identify potential variables for 

classification. Figure 2 shows a graph showing feature importance, using the median ranking of absolute 

feature weights for each OTU of the algorithm models for classifying bacteria as cultured or non-cultured. 

 

  

Figure 3. Median ranking of absolute feature weights for each OTU of ML algorithm models (Features 

which have a lower performance when permuted have a difference in performance above zero. The 

features with the greatest decrease are the most important for model performance) 

Examining Figure 3, it can be seen that among the OTUs with the largest impact, there is only one OTU 

(OTU 2: FJ957443.1.1492) shared for support vector machines (svmRadial), random forest (rf), and 

decision tree (rpart2) algorithms. Considering Figure 3, the OTUs with the greatest impact on machine  
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learning algorithms are given in Table 4. The microorganism names corresponding to OTU Ids in the 

table are long, so they could not be added to the table. However, those interested can access the open 

access dataset https://github.com/yhodzhev/blood_microbiota for more information (Github-1, 2024). 

Table 4. The relative importance of OTUs for the Machine Learning Algorithms 

Machine Learning 
Algorithms  

OTU Name 

Logistic Regression OTU 35: GQ129964.1.1443 
OTU 55: GU561370.1.1451 
OTU 82: HM333626.1.1345  
OTU 100: JF087988.1.1339  
OTU 103: JF111953.1.1335 
OTU 115: JF231450.1.1376  
OTU 168: JX222876.1.1353 
OTU 177: KF063018.1.1342  
OTU 207: KF078047.1.1392  
OTU 215: AY167836.1.1338  
OTU 234: JVEO01000014.1806.3342  
OTU 246: FJ558013.1.1408  

Support Vector 
Machines 

OTU 2: FJ957443.1.1492 
OTU 10: FN421949.1.1367  
OTU 34: GQ129886.1.1458  
OTU 69: HM072285.1.1438  
OTU 171: KC122696.1.1416 

Decision Tree OTU 2: FJ957443.1.1492 

Random Forest OTU 1: FJ948822.1.1302  
OTU 2: FJ957443.1.1492,  
OTU 10: FN421949.1.1367  
OTU 21: GDLT01000297.39.1633  
OTU 25: GQ012876.1.1370 
OTU 31: GQ067833.1.1345  
OTU 43: GQ338714.1.1521 
OTU 47: GQ487987.1.1471  
OTU 52: JF142842.1.1376  
OTU 76: HM445303.1.1360  
OTU 84: HQ697417.1.1457 
OTU 111: JF179224.1.1335 
OTU 216: AY328673.1.1474 
OTU 254: M01113:65:000000000-
BG2CF:1:1103:26342:13806 1:N:0:9/M01113:65:000000000-
BG2CF:1:1103:26342:13806 2:N:0:9  
OTU 258: 
M01113:65:000000000BG2CF:1:1101:10166:89021:N:0:41/
M01113:65:000000000-BG2CF:1:1101:10166:8902 2:N:0:41 
 

OTU=An Operational Taxonomic Unit 

4. Discussion  

It is known that a significant part of the microbial flora in healthy individuals is not able to be cultured. 

This has been demonstrated by next-generation sequencing methods, which are used to better 

understand the existence and diversity of microorganisms, especially those that are difficult or 

impossible to culture. Blood microbiota has also been examined in this context, and while some of the 

microorganisms found in the blood could not be detected by culturing techniques, while others can be 

successfully cultured. Machine learning plays a critical role in making this distinction, as it can 
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differentiate between cultured and uncultured blood samples with high accuracy, owing to its pattern 

recognition and classification capabilities across large data sets and complex microbiota profiles. This 

ability enables more reliable and effective results in diagnosing infections, monitoring health, and 

conducting microbiota research. 

In this study, the classification performance of microbiome data was evaluated using four common 

machine learning algorithms: logistic regression, random forest, decision tree, and support vector 

machines. The results demonstrated that the random forest algorithm has the highest classification 

performance compared to the other algorithms. Logistic regression and support vector machines 

showed similar performances but fell behind the random forest model. Additionally, when model 

performances were compared based on AUC (ROC curve) values, it was observed that the random 

forest algorithm covered the largest area, followed by support vector machines, decision tree, and 

logistic regression models. 

The findings obtained in this study show that the random forest algorithm is the most effective method 

for classifying microbiome data. The superior performance of the random forest algorithm could be 

because this algorithm captures more variation by using multiple tree structures and can better manage 

data complexity. In particular, the high dimensionality and complexity of microbiome data reveal the 

advantage of such algorithms. Logistic regression and support vector machines gave similar results in 

terms of performance, but they fell behind the random forest algorithm. This shows that these algorithms 

may be limited in modeling nonlinear relationships and complex data structures.  

When the differences between the cross-validation and test AUROC values of the model performances 

were examined, it was seen that the largest difference was in SVM, followed by logistic regression, 

decision tree, and random forest algorithms. The relatively small differences indicate that the 

generalization performance of the models is reliable. Similar to the results of the study, Teixeira et al. 

(2022) discussed Machine Learning methods for cancer characterization from microbiome data in their 

review, where it was stated that the proposed methods, generally based on Random Forests, showed 

promising results but were insufficient for widespread clinical use (Teixeira et al., 2024). Topcuoğlu et 

al. (2020) trained seven models that used fecal 16S rRNA sequence data to predict the presence of 

colonic screen relevant neoplasias (SRNs). To show the effect of model selection, the predictive 

performance, interpretability, and training time of L2-regularized logistic regression, L1- and L2-

regularized support vector machines (SVM) with linear and radial basis function kernels, a decision tree, 

random forest, and gradient boosted trees (XGBoost) were assessed. The random forest model 

performed best at detecting SRNs (Topçuoğlu et al., 2020). Beck and Foster (2015) used random forests 

and logistic regression classifiers to model the relationship between the microbial community and 

Bacterial vaginosis. Models generated performed nearly identically and identify largely similar important 

features (Beck & Foster, 2015). Wilhelm et al. (2022) evaluated the accuracy of random forest (RF) and 

support vector machine (SVM) regression and classification models in predicting 12 measures of soil 

health, tillage status, and soil texture from 16S rRNA gene amplicon data with an operationally relevant 

sample set. Acording to results, the efficacy and performance of the ML algorithms differed by task with 

SVM outperforming RF in classifying health categories while RF surpassed SVM in regression-based 
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prediction of ratings (Wilhelm et al., 2022). Freitas et al. (2023) aimed to distinguish cancer type based 

on the analysis of tissue-specific microbial information using Random Forest algorithms. They were 

trained to classify five cancer types, namely head and neck, esophageal, stomach, colon, and rectal 

cancers, with examples provided by The Cancer Microbiome Atlas database. Random Forest models 

achieved promising performances when predicting head and neck, stomach, and colon cancer cases 

(Freitas et al., 2023). However, Wang and Liu (2020) systematically compared Random Forests (RF), 

eXtreme Gradient Boosting decision trees (XGBoost), elastic network (ENET), and Support Vector 

Machine (SVM) in the classification analysis of 29 benchmark human microbiome datasets and found 

that XGBoost outperformed all other methods only on a few benchmark datasets (Wang & Liu, 2020). 

This study demonstrates the effectiveness of machine learning algorithms in analyzing and interpreting 

microbiome data. The superior performance of the random forest algorithm suggests that this method 

should be preferred for future microbiome studies. However, it should be noted that the performance of 

other algorithms under different data sets and conditions should also be evaluated. It should also be 

taken into account that the order of the attributes in the classification has a significant impact on the 

model performance (Tallón-Ballesteros et al., 2019). Otherwise, it may cause bias in the model results. 

Therefore, applying appropriate methods for variable ordering when using different algorithms is critical 

to obtain more reliable and accurate results. 

5. Conclusion  

Distinguish between cultured and non-cultured blood samples with machine learning algorthims based 

on microbiota composition, is important for better understanding of blood microbiota dynamics in clinical 

microbiology. Furthermore, it is believed that these techniques could contribute to the development of 

more precise diagnostic tools for microbiome analysis in clinical settings. By integrating machine 

learning, computational methods can enhance microbiome analysis, aid in biomarker identification, and 

ultimately improve clinical decision-making. These advancements can be considered a promising path 

for future research into the complex dynamics of microbial communities in health and disease. 

Furthermore, they constitute an important step for a deeper understanding of microbiome data and the 

development of more sensitive prediction models. 

Future research should focus on expanding the dataset by incorporating a larger and more diverse 

sample population to enhance the model's generalizability and robustness. Additionally, investigating 

alternative and hybrid machine learning approaches, such as deep learning models and ensemble 

techniques, may further improve classification performance. The optimization of feature selection and 

data preprocessing techniques, including normalization and class balancing methods, could also 

contribute to increased model accuracy and reliability. 
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