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Abstract
In this work, we study the spread of a communicable disease using an SIR
model that includes the effect of imperfect testing. The model is extended
by adding birth and natural death rates, and it uses a standard incidence rate
to describe disease dynamics over a long period, rather than just during an
outbreak. We find the disease-free equilibrium and the basic reproduction
number to analyze the system’s stability. To control transmission and
testing rates, we set up an optimal control problem to find the best values.
To do this, we simulate three different control problems: one with only
isolation, one with only testing, and one with both. We see that reducing
contact between susceptible and infected people is very important, along
with having an effective testing strategy.
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Öz
Bu çalışmada, bulaşıcı bir hastalığın yayılımını kusurlu testlerin etkisini
içeren bir SIR modeli kullanarak inceliyoruz. Model, doğum ve doğal
ölüm oranları eklenerek genişletilmiş ve sadece bir salgın dönemi için
değil, uzun bir zaman aralığında hastalık dinamiklerini tanımlamak
amacıyla standart bulaşma oranı kullanılmıştır. Hastalığın olmadığı denge
noktasını ve temel üreme sayısını sistemin kararlılığını analiz etmek için
buluyoruz. Bulaşma ve test oranlarını kontrol etmek için en uygun
değerleri bulmaya yönelik bir optimal kontrol problemi kurduk. Bunu
yapmak için üç farklı kontrol problemi simülasyonu yapıyoruz: yalnızca
izolasyon uygulanan, yalnızca test oranının optimize edildiği ve her iki
müdahalenin birlikte uygulandığı durumlar. Duyarlı ve enfekte bireyler
arasındaki temasın azaltılmasının, etkili bir test stratejisiyle birlikte,
oldukça önemli olduğunu gözlemledik.

Anahtar Kelimeler: Matematiksel modelleme, optimal kontrol problemi,
temel üreme sayısı, kararlılık analizi, test
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Introduction

Mathematical models of Kermack and McKendrick led to the formation of the field of Mathematical

Epidemiology [1]. Since then, mathematical modeling of infectious diseases has been a powerful tool to

express communicable diseases in a hypothetical manner, and conditions to eliminate the disease have

been analyzed based on these models [2]. Public health officials in the United States have focused on

the control and eradication of organisms causing infectious diseases by founding the hospital discipline

of infection control against the nosocomial epidemic in 1950s [3]. In the twenty-first century, several

epidemics were faced with and improved sanitation, vaccination and access to health care have made

positive contributions to the eradication or control of infectious diseases [4, 5].

Intervention strategies such as quarantine, vaccination and treatment are often necessary to eradicate

the disease or to control its spread, and if these strategies are not implemented in a timely manner and

adequately, disease eradication will be impossible. In contrast, the optimal control strategies can be

investigated via mathematical models [6]. For example, Berge et al. constructed an Ebola model by

incorporating imperfect contact tracing, isolation and hospitalization, and they discovered that combina-

tion of high contact tracing and effective isolation is the optimal intervention [7]. Nyerere et al. investi-

gated the optimal control of Typhoid fever and they found out that both vaccination for susceptible

individuals and the screening and treatment of asymptomatic infected individuals were crucial to reduce

the spread [8]. Teytsa et al. considered cholera as bacterial-borne diseases via a within-host model

and release of lytic vibriophages was found to be the optimal choice to eliminate bacteria [9]. Gao and

Huang interpreted tuberculosis dynamics with a new model and applied vaccination and treatment [10].

Zaman et al. investigated the optimal vaccination strategy for a smoking model [11]. Akman developed

a model for tuberculosis by comparing treatment at home and in hospital via an optimal control problem

(OCP) [12]. Omame et al. constructed a co-infection model for Chlamydia trachomatis and human

papillomavirus, and they concluded that prevention from both viruses was the most successful strategy

[13]. Rabiu et al. proposed an HIV/AIDS-resistant model [14], and they discovered that combination

of positive behavior change, a balanced diet and antiretroviral treatment is the optimal intervention to

guarantee disease eradication. Akman investigated an OCP for a tuberculosis model and a waterborne

pathogen model to eliminate the disease in the community via non-integer order models [15,16]. Eiken-

berry et al. examined the impact of face masks during the COVID-19 pandemic and found that face

mask use was effective in reducing the transmission of disease [17]. Lemos-Paiao et al. established a

COVID-19 model with a Portuguese case study and the basic reproduction number that the authors found

was compatible with the one found by public authorities [18]. Akman et al. developed a model for the

early dynamics of COVID-19 in Turkey and investigated the effect of underreporting to the peak of the

spread [19]. Chhetri studied a within-host model for COVID-19 by focusing on optimal drug regimen for

four drugs with the aim of helping physicians in their clinical decision to treat COVID-19 patients [20].

As another point of view, the study of Villela can be mentioned where effect of imperfect testing has been

considered as a factor in disease dynamics [21]. In that work, the population is split into susceptible,

infected, and recovered subgroups and effect of false positive tests is considered. The model, unlike

the classical SIR model, includes two more compartments, namely Ŝ and Î , to denote the number of

susceptible and infected individuals who are tested positive, respectively. Motivated from the study [21],

we firstly propose a mathematical model. We prove that the solution is positive and bounded provided
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that the initial conditions are non-negative. Then, we obtain the disease-free equilibrium (DFE) point,

and find the basic reproduction number R0 based on the next generation matrix (NGM), and discuss

the stability of the DFE [22]. We secondly construct an OCP for planning quarantine/isolation and

optimizing the test rate to minimize the number of infected individuals. We provide the optimality system

and explain the details of the forward-backward sweep (FBS) algorithm [23] which is used to solve the

OCP numerically. We then illustrate the success of the interventions with some simulation results. The

rest of the paper is organized as follows: In the first section, we develop the mathematical model, and

prove that the solution is positive and bounded. In the second section, the DFE point is found and its

stability is analyzed. In the third section, the OCP is formalized with three interventions and optimality

system is written as a theorem. Some numerical results are presented in the section of simulation results.

Finally, the paper ends with a summary and conclusion.

Mathematical Model

In this paper, Villela’s model [21] is modified to interpret the long-term dynamics of an infectious disease

so that the population size does not remain constant. The model is constructed by splitting the total

population at time t, denoted N := N(t), into five mutually exclusive subgroups. The model variables

are defined as S := S(t) (susceptible individuals), Ŝ := Ŝ(t) (susceptible individuals but deemed

infected), I := I(t) (infected individuals), Î := Î(t) (infected individuals who are tested–positive)

and R := R(t) (recovered individuals). Recruitment of susceptible individuals, such as birth, occur

at the rate of Σ. Susceptible individuals in S and Ŝ get infected at the rates of β and β̂, respectively.

Susceptible individuals tested, and they are misclassified as infected at the rate of c. The term I + kÎ

represents the number of individuals who become sick as a result of interaction of infected individuals

with susceptible individuals at a rate of β, whereas the parameter k denotes the self protection rate of

infected individuals who tested positive. Misclassified susceptible individuals are tested again and move

to the susceptible subgroup at the rate of d, if the test is negative. Infected and tested individuals move

to the compartment Î at the rate of θ if the test result is positive. Infected individuals who are tested and

not tested recover at the rates of γ and γ̂, respectively. All individuals die at the rate of µ for simplicity.

With these assumptions, we propose the following model:

dS

dt
= Σ− cS − β

S(I + kÎ)

N
− µS + dŜ,

dŜ

dt
= cS − β̂

Ŝ(I + kÎ)

N
− (µ+ d)Ŝ,

dI

dt
= β

S(I + kÎ)

N
+ β̂

Ŝ(I + kÎ)

N
− (θ + γ + µ)I, (1)

dÎ

dt
= θI − γ̂Î − µÎ,

dR

dt
= γ̂Î + γI − µR,

S(0) = S0, Ŝ(0) = Ŝ0, I(0) = I0, Î(0) = I0, R(0) = R0,

with the non-negative values of initial subgroups S0, Ŝ0, I0, Î0, R0, with N = S + Ŝ + I + Î +R.
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We show that the solution to Eq. (1) is positive and bounded.

Theorem 1. A solution (S(t), Ŝ(t), I(t), Î(t), R(t)) of the system (1) with non-negative initial conditions

is positive and bounded on [0,∞).

Proof. Let (S0, Ŝ0, I0, Î0, R0) be non-negative values for the model variables in Eq. (1). Firstly, let us

assume that the variable S is not positive for some value a in the interval [0, T ] with T > 0. Since the

initial value of S is positive, there is a value t1 < a such that S(t1) = 0 and then S(a) < 0. Now,

S(t) > 0 in the interval [0, t1). Since c > 0, it follows that

dŜ

dt
= cS − β̂

Ŝ(I + kÎ)

N
− (µ+ d)Ŝ ≥ −

(
β̂
(I + kÎ)

N
+ (µ+ d)

)
Ŝ.

Separation of variables implies that,

dŜ

Ŝ
≥ −

(
β̂
(I + kÎ)

N
+ (µ+ d)

)
dt.

Then, we get

Ŝ(t) ≥ Ŝ(0) exp

(
−
∫ t

0
[β̂

(I(u) + kÎ(u))

N
+ (µ+ d)]du

)
> 0.

This shows that Ŝ(t) > 0 in the interval [0, t1). Now, we consider

dS

dt
= Σ− cS − β

S(I + kÎ)

N
− µS + dŜ.

Since Ŝ > 0,Σ > 0; the following inequality holds for all t ∈ [0, t1]:

dS

dt
≥ −

(
c− β

(I + kÎ)

N
− µ

)
S.

Then, for t = t1, we get

S(t1) ≥ S(0) exp

(
−
∫ t1

0

[
β
(I(u) + kÎ(u))

N
+ (c+ µ)

]
du

)
> 0,

which is a contradiction to the assumption S(t1) = 0. Thus, S(t) ≥ 0 for all t ∈ [0, T ]. Then, Ŝ ≥ 0 for

all t ∈ [0, T ].

Moreover, the above argument can be used to show I ≥ 0 and Î ≥ 0. Firstly, I is assumed to be negative,

then we get a contradiction by using the equations for dI
dt and dÎ

dt . For the last variable R, we get
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R(t) ≥ S(0) exp(−µt) > 0.

In addition, we consider the total population N and we add all equations in the Eq. (1) up to obtain

d(S + Ŝ + I + Î +R)

dt
= Σ− µ(S + Ŝ + I + Î +R),

⇒ dN

dt
= Σ− µN,

⇒ dN

dt
+ µN = Σ,

⇒ N(t) =
Σ

µ
+K exp (−µt), for a constant K,

⇒ N(t) =
Σ

µ
+

(
N(0)− Σ

µ

)
exp (−µt).

We observe that as t → ∞, N → Σ
µ . Therefore, S, Ŝ, I, Î and R are bounded, which completes the

proof.

We note that all partial derivatives of the right-hand side of Eq. (1) are dependent on the model variables

and constants, so their derivatives are bounded which gives the existence and uniqueness of the solution

from the standard theory of SEIR models. In the next section, we present the stability analysis by

obtaining the DFE and R0.

Stability Analysis

If R0 > 1, then an infectious individual leads, on average, more than one individual to be infected.

Otherwise, disease is eliminated [2]. Here, we use the method of the NGM by following the work [22]

to derive R0.

Suppose that there are l infected segments and k uninfected segments. Therefore, an ordinary differential

equation has k+ l dependent variables. Let x and y be the vectors of dependent variables in the infected

and uninfected compartments, respectively; so, x ∈ Rl and y ∈ Rk. The system of differential equations

is defined as:

x′i = fi(x, y), i = 1, 2, . . . , l, y′i = hj(x, y), j = 1, 2, . . . , k. (2)

The right side of the infected compartment is divided as follows:

x′i = F̃i(x, y)− Ṽi(x, y) , i = 1, 2, . . . , l,

y′j = hj(x, y), j = 1, 2, . . . , k. (3)
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Here,

• F̃i(x, y) represents new infections occurring in state i,

• Ṽi(x, y) represents the remaining part in the model.

Firstly, we find the DFE point P̃◦ of Eq. (1) as

P̃◦ = (S◦, Ŝ◦, I◦, Î◦, R◦) =

(
Σ(µ+ d)

µ(c+ µ+ d)
,

Σc

µ(c+ µ+ d)
, 0, 0, 0

)
.

By following the idea of the NGM [22], we obtain

F̃ =


βS(I + kÎ)

N
+
β̂Ŝ(I + kÎ)

N

0

 , Ṽ =

 (θ + γ + µ)I

−θI + (γ̂ + µ)Î

 .

Their Jacobian matrices evaluated at the DFE point P̃◦ are found as

F =
1

µ+ d+ c

β(µ+ d) + cβ̂ k(β(µ+ d) + cβ̂)

0 0

 , V =

[
θ + γ + µ 0

−θ γ̂ + µ

]
.

Then, we obtain the matrix

FV −1 =
1

(µ+ d+ c)(γ̂ + µ)(θ + γ + µ)

[
(β(µ + d) + cβ̂)(γ̂ + µ + kθ)) k(β(µ + d) + cβ̂)(θ + γ + µ))

0 0

]
.

The largest eigenvalue of the matrix FV −1, which is R0, is obtained as

R0 = ρ(FV −1) =

(
1 +

kθ

γ̂ + µ

)
β(µ+ d) + cβ̂

(θ + γ + µ)(d+ µ+ c)
, (4)

where ρ denotes the spectral radius [22]. Finally, the stability result is established in the following

theorem and the proof is given in the Appendix:

Theorem 2. The DFE point P̃◦ = (S◦, Ŝ◦, I◦, Î◦, R◦) is locally asymptotically stable, if R0 < 1.

In addition, we investigate the connection between R0 in Eq. (4) and its counterpart for a SIR model, as

done in [21]. Villela defines θ = rψ and c = r(1− ϵ) where r is the testing rate, ψ is the test sensitivity

and ϵ is the test specificity [21]. If we rewrite R0 by inserting θ and c, then we get the expression

R0 =
(γ̂ + µ+ krψ)(β(µ+ d) + β̂r(1− ϵ))

(rψ + γ + µ)(µ+ d+ r(1− ϵ))(γ̂ + µ)
.
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We observe that

lim
r→∞

R0 =
kβ̂

γ̂ + µ
.

Indeed, this expression is R0 of a SIR model with the infection rate β̂ and the recovery rate γ̂ [24]. A

similar discussion can be found for the original model in Villela’s study as well [21].

Optimal Control Problem

Optimal control theory has proven to be a highly successful tool to simulate response strategies. In

order to prevent the spread of disease, high rates of testing and strict quarantine/isolation of susceptible

individuals (S and Ŝ) and those who have the capacity to transmit the disease (I and Î) are required.

In this current study, we incorporate the tools of optimal control theory to minimize the number of

infected individuals together with the cost of implementing the intervention strategies. Here, we construct

three OCPs for quarantine/isolation, for optimal testing and combination of these strategies. Our aim is

to find an optimal control strategy on a prespecified time interval [0, T ] for T > 0. Since investigation of

the optimal testing is one of our goals, we explicitly interpret the testing rate by substituting θ = rψ and

c = r(1− ϵ) into Eq. (1).

We define the set of admissible controls as

U = {u1(t), u2(t), u3(t) : u1(t), u2(t), u3(t) are measurable,

0 ⩽ u1(t), u2(t) ⩽M1, 0 ⩽ u3(t) ⩽M2, t ∈ [0, T ]}, (5)

and define the OCP on U as

J [(u1(t), u2(t), u3(t))] =

∫ T

0

(
I(t) + Î(t) +

w1

2
u21 +

w2

2
u22 +

w3

2
u23

)
dt, (6)

subject to

dS

dt
= −u3(t)(1− ϵ)S − (1− u1(t))β

S(I + kÎ)

N
− µS + dŜ +Σ,

dŜ

dt
= u3(t)(1− ϵ)S − (1− u2(t))β̂

Ŝ(I + kÎ)

N
− (µ+ d)Ŝ,

dI

dt
= (1− u1(t))β

S(I + kÎ)

N
+ (1− u2(t))β̂

Ŝ(I + kÎ)

N
− (u3(t)ψ + γ + µ)I,

dÎ

dt
= u3(t)ψI − γ̂Î − µÎ, (7)

dR

dt
= γ̂Î + γI − µR,

S(0) = S0, Ŝ(0) = Ŝ0, I(0) = I0, Î(0) = I0, R(0) = R0,
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with the non-negative initial conditions and the weight constants ω1, ω2 and ω3. The goal is to determine

the control function (u∗1(t), u
∗
2(t), u

∗
3(t)) ∈ U satisfying

J [(u∗1(t), u
∗
2(t), u

∗
3(t))] = min

(u1(t),u2(t),u3(t))∈U
J [(u1(t), u2(t), u3(t))].

This problem is solved using the optimality system and it requires the Hamiltonian which is written as

H = H(S(t), Ŝ(t), I(t), Î(t), R(t), u1(t), u2(t), u3(t))

= I(t) + Î(t) +
w1

2
u21(t) +

w2

2
u22(t) +

w3

2
u23(t)

+ λ1(t)

(
− u3(t)(1− ϵ)S − (1− u1(t))β

S(I + kÎ)

N
− µS + dŜ +Σ

)
+ λ2(t)

(
u3(t)(1− ϵ)S − (1− u2(t))β̂

Ŝ(I + kÎ)

N
− (µ+ d)Ŝ

)
+ λ3(t)

(
(1− u1(t))β

S(I + kÎ)

N
+ (1− u2(t))β̂

Ŝ(I + kÎ)

N
− (u3(t)ψ + γ + µ)I

)
+ λ4(t)

(
u3(t)ψI − γ̂Î − µÎ

)
+ λ5(t)

(
γ̂Î + γI − µR

)
.

Let u∗1 = u∗1(t), u
∗
2 = u∗2(t) and u∗3 = u∗3(t) be the control functions. When we apply the Pontryagin

Maximum Principle [23], we obtain

λ′1 = −∂H
∂S

, λ′2 = −∂H
∂Ŝ

, λ′3 = −∂H
∂I

, λ′4 = −∂H
∂Î

, λ′5 = −∂H
∂R

, (8)

with the final conditions λ1(T ) = λ2(T ) = λ3(T ) = λ4(T ) = λ5(T ) = 0. To obtain an expression of

the control functions, Hamiltonian is differentiated with respect to u as

∂H

∂u1


u1=u∗

1

= 0,
∂H

∂u2


u2=u∗

2

= 0,
∂H

∂u3


u3=u∗

3

= 0, (9)

and we project the resulting equations onto the admissible set of control U . This optimality system is

summarized as follows:

Theorem 3. Given an optimal control triple (u∗1, u
∗
2, u

∗
3) and solution to the system (7) for (6), there exist

adjoint variables λi(t) for 1 ≤ i ≤ 5 satisfying
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λ′1(t) =

(
(1− u1(t))β(I + kÎ)

(
1

N
− S

N2

))
(λ1(t)− λ3(t)) + λ1(t)µ

+

(
(1− u2(t))β̂Ŝ

(I + kÎ)

N2

)
(λ3(t)− λ2(t)) + u3(t)(1− ϵ)(λ1(t)− λ2(t)),

λ′2(t) =

(
(1− u1(t))βS

(I + kÎ)

N2

)
(λ3(t)− λ1(t))

+ (1− u2(t))β̂(I + kÎ)

(
1

N
− Ŝ

N2

)
(λ2(t)− λ3(t))− λ1(t)d+ λ2(t)(µ+ d),

λ′3(t) = −1 +

(
1

N
− (I + kÎ)

N2

)(
(1− u1(t))βS(λ1(t)− λ3(t)) (10)

+ (1− u2(t))β̂Ŝ(λ2(t)− λ3(t))

)
+ λ3(t)(u3(t)ψ + γ + µ)

− λ4(t)u3(t)ψ − λ5(t)γ,

λ′4(t) = −1 +

(
p

N
− (I + kÎ)

N2

)(
(1− u1(t))βS(λ1(t)− λ3(t))

+ (1− u2(t))β̂Ŝ(λ2(t)− λ3(t))

)
+ λ4(t)(γ̂ + µ)− λ5(t)γ̂,

λ′5(t) =

(
(I + kÎ)

N2

)(
(1− u1(t))βS(λ3(t)− λ1(t))

+ (1− u2(t))β̂Ŝ(λ3(t)− λ2(t))

)
+ λ5(t)µ,

and λi(T ) = 0 for i = 1, 2, . . . , 5. Moreover, the optimal controls satisfy

u∗1(t) = min
{

max
{
0,

−βS (I + kÎ)

N
(λ1 − λ3)

w1

}
, 0.95

}
,

u∗2(t) = min
{

max
{
0,

−β̂Ŝ (I + kÎ)

N
(λ2 − λ3)

w2

}
, 0.95

}
, (11)

u∗3(t) = min
{

max
{
0,

(1− ϵ)S(λ1(t)− λ2(t)) + ψI(λ3(t)− λ4(t))

w3

}
, 1

}
.

FBS algorithm is used to solve the OCP numerically [23]. The algorithm firstly requires a control

function taken from the set U in (5). The state equation firstly is solved forward in time. Then, the

adjoint equation is solved backward in time. Afterwards, the optimality condition is recalculated at

each iteration. This procedure is repeated iteratively, until the stopping criterion is satisfied. In the next

section, we continue with some simulation results.
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Simulation Results

Simulation results have been obtained by modifying the code of Silva et al. given in the study [25].

Indeed, the fourth-order Runge Kutta method is used for discretization of the model, while FBS method

is incorporated to solve the OCP [23]. We fix the parameter values in the model and list them in Table 1.

Table 1. Values of the parameters.
Parameters Definition Values

β Transmission rate for S 5

β̂ Transmission rate for Ŝ (0.5)× β

γ Recovery rate for I 0.29

γ̂ Recovery rate for Î 0.5

µ Mortality rate 1/70

d Rate to return to Ŝ 0.9

θ = rψ Rate to enter Î 0.2188

c = r(1− ϵ) Rate to enter Ŝ 0.0125

k Self-protection rate of infected individuals 0.5

Σ Recruitment rate 10000

M1 Upper bound for u1, u2 0.95
M2 Upper bound for u2 1

r Testing rate 0.25
ϵ Test specificity 0.95
ψ Test sensitivity 0.875

We compare three different intervention strategies. Firstly, we investigate the quarantine and isolation of

the infected individuals by fixing the testing rate in the subsection of optimal control of quarantine and

isolation strategies. Then, we proceed with the optimal testing rate, whereas quarantine or isolation are

not put into action. Lastly, we consider the optimal quarantine and isolation together with the optimal

testing strategy in the last subsection. The corresponding cost functionals are defined as J1, J2 and J3,

respectively.

Optimal control of quarantine and isolation strategies

In the definition of the cost functional (6), w1 and w2 are positive weight constants associated with

quarantine and isolation, respectively, where we fix ω3 = 0. We assume that the initial conditions

S(0) = 1000000, Ŝ(0) = 100, I(0) = 50000, Î(0) = 1000 and R(0) = 10.

We present the number of infected individuals with and without control in Fig. 1. The case before

applying the optimal control strategy is shown as u1(t) = u2(t) = 0 with blue dashed lines, while

solutions for which we apply the optimal control intervention are shown with red solid lines. We observe

that the number of infected individuals I(t) and Î(t) decrease over time as a result of quarantine and

isolation. As it can be seen in Fig. 2, quarantine or isolation must be applied for long time. In this case,

it can be deduced that the epidemic is very severe and the number of death could be very high in case of

no interventions. Therefore, quarantine or isolation must be implemented very seriously. Fig. 2 shows

a strict application of quarantine, while it results in a more flexible isolation strategy. Susceptible but

incorrectly identified individuals can protect themselves from infection, so this could be the main reason

for such a relaxed intervention u2(t).
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(a) I . (b) Ĩ .

Figure 1. Case 1 - Model prediction with and without optimal intervention (Solid and dashed lines
represent the cases with and without optimal control, respectively.).

(a) u1(t). (b) u2(t).

Figure 2. Case 1 - Optimal control functions.

Optimizing the testing rate

We proceed with the optimization of the testing rate, so we replace r with u3(t) in Eq. (7). The weights

w1 and w2 are set as zero in the cost functional (6), while ω3 is a positive constant. We choose the

initial conditions as S(0) = 1000, Ŝ(0) = 0, I(0) = 1, Î(0) = 1 and R(0) = 0. We assume that a

limited number of tests are available, so r = 0.0009 is chosen for the uncontrolled case. We observe a

decrease in the total number of infected individuals due to a higher testing rate in Fig. 3, while the testing

rate reveals importance of testing in the peak of the epidemic. We conclude that after enough testing is

conducted, testing speed can be reduced; but, the number of infected individuals is quite high, as it can

be seen from Fig. 3. Therefore, quarantine or isolation strategies must be incorporated to slow down the

spread.

Optimal control of quarantine and isolation strategies together with the testing rate

We aim to find an optimal control strategy to minimize the number of infected individuals by testing

the individuals in the community together with quarantine and isolation. We set the values of three

weight constants as positive values. We choose the initial conditions as S(0) = 1000000, Ŝ(0) = 100,
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(a) I + Î . (b) u3(t).

Figure 3. Case 2 - Model prediction with and without optimal intervention (left) and the optimal
control function (right) (Solid and dashed lines represent the cases with and without optimal control,
respectively.).

I(0) = 50000, Î(0) = 1000 and R(0) = 10.

(a) I . (b) Ĩ .

Figure 4. Case 3 - Model prediction with and without optimal intervention (Solid and dashed lines
represent the cases with and without optimal control, respectively.).

(a) u1(t). (b) u2(t). (c) u3(t).

Figure 5. Case 3 - The optimal control functions.

In Fig. 4, the number of infected individuals (I and Î) decreases over time when three intervention

strategies are implemented. It is observed that the impact of quarantine is very important (see Fig. 5),

since it is applied on a long time interval. In addition, we see that it is vital to test people rapidly in the
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beginning of the epidemic, and the test rate can be reduced over time.

In addition, we compare the values of the cost functionals J1, J2 and J3 by fixing the initial conditions

as S(0) = 1000000, Ŝ(0) = 100, I(0) = 50000, Î(0) = 1000, R(0) = 10. We obtain that J1 =

3.2264e + 05, J2 = 2.5333e + 06 and J3 = 2.8691e + 05, which gives us the order J3 < J1 < J2.

Optimizing quarantine/isolation and testing ensures the smallest value of J . The next best strategy is

to apply quarantine/isolation via u1(t) and u2(t) (J1). Therefore, applying three controls together gives

better results than applying quarantine/isolation alone. When the testing rate is optimized only (J2), the

largest value of J is obtained. Therefore, we see that implementation of quarantine/isolation is inevitable.

Summary and conclusion

In this study, a mathematical model is constructed for an infectious disease, motivated by the work

of Villela [21]. The DFE point of the model is derived and stability analysis is presented. Then,

three OCPs are constructed to control the spread of disease. Indeed, the testing rate is optimized

together with quarantine/isolation together or separately.We observe that applying three control strategies

together gives better results than applying quarantine/isolation alone. If the testing rate is optimized and

quarantine/isolation is not applied (J2), the largest value of the cost functional is obtained.

Preventing contact between infected and susceptible individuals via quarantine/isolation is of great impor-

tance together with the optimal testing strategy. As a result of the simulations results, quarantine should

be applied for a very long time in case of a severe epidemic. We acknowledge that quarantine for such

long periods is not realistic; however, we believe that this study could motivate construction of new

mathematical models with the use of real data by incorporating the idea of imperfect testing.
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