Artan Azot Dozlarının İki Ekmeklik Buğday Çeşidinde
Tane Verimi Üzerine Etkisi

Ş.Metin Kara
Karadeniz Teknik Üniversitesi
Ordu Ziraat Fakültesi, Tarla Bitkileri Bölümü, Ordu

M.İlite Ağdağ
Karadeniz Tanımsal Araştırma Enstitüsü, Samsun

Anahtar kelimeler: Buğday, Triticum aestivum L., azotlu gübre, azot dozu.

Effect of increasing nitrogen levels on grain yield in two bread wheat cultivars

Abstract: This research has been carried out to determine the effect of increasing nitrogen rates on grain yield of Çukurova-86 and İzmir-85 bread wheat cultivars in Sinop ecological conditions. Response to increasing nitrogen rates was adequately described by a 2nd-degree polynomial with the models of $Y = 198.24 + 11.26X - 0.429X^2$ and $Y = 173.31 + 18.60X - 0.455X^2$ for Çukurova-86 and İzmir-85 cultivars, respectively. The models were used to estimate the nitrogen level corresponding to a maximum yield and an economically optimal yield. According to the quadratic equations obtained, maximum yield levels were attained from 13.12 and 20.44 kg N/da doses for Çukurova-86 and İzmir-85 cultivars, respectively. Based on price relationships between nitrogen fertilizer and grain, however, the most economic nitrogen rates for Çukurova-86 and İzmir-85 cultivars were 11 kg N/da and 18 kg N/da, respectively.

Index words: Wheat, Triticum aestivum L., nitrogen, nitrogen fertilizer, nitrogen rates.
Giriş

Modern teknoloji ve üretim girdilerinin kullanımının yaygınlaştırılarak, değişik ekolojiler için, ekonomik optimum ürün bileşenlerinin belirlenmesi birim alan verimliğinin artırılması yönünden çok önemlidir. Bu bakımdan, antansif tarım işletmeciliğinde yeterli, dengeli ve özellikle ekonomik gübre kullanımı ayrı bir öneme sahiptir. Diğer kültür bitkilerinde olduğu gibi, ülkemizde ekim alan ve üretim bakımından tahillar içinde ilk sırayı alan buğdayda da (1), verim ve kaliteyi artırmada, azotlu gübreleme en önemli girdilerden birisidir.

Buğdayda azotlu gübrelemeye ilişkin araştırmalarda, çoğunlukla azot miktarı ve uygulama zamanının verim, kalite ve verim unsurlarını üzerine etkileri incelenmiştir. Azotlu gübreler, buğdaya bitki gelişiminin erken devrelerinde kullanılarak, daha ziyade verimi artırma (2), buna karşılık, geç devrelerdeki azot uygulamaları protein miktarı üzerine etkili olmaktadır (3, 4). Azotlu gübreleme ile gerçekleşen verim artışının esas olarak m2 de fertil başak sayısı ve başakta tane sayısının artışından kaynaklandığı literatürdeki çoğu araştırmalarda açıklanmıştır (2, 5, 6). Diğer taraftan, kimi araştırmalarda (8, 7, 8, 9), fazla azot uygulamasıyla tane ağırlığında dikkate değer azalmalar olduğu ileri sürülmektedir.

Azotlu gübrelerin verim ve kalite üzerine olumlu etkileri bilinmekle beraber, fazla azot yoğun yatmayı artırığı, olgunlaşmayı geçiktirdiği, hastalıktan etkilenmemesi ve yabancıot gelişmesini teşvik ettiği için verim ve kalitede önemli azalmaya yol açabilir (8, 10, 11).

Azotlu gübrelemeye ilişkin araştırmalar, bitki türlerinin ihtiyaç duyduğu besin elementi miktarlarının bölgeye, iklime, uygulanmış tarım sisteminine ve çeşide göre değişiklik gösterdiği ortaya koymuştur. Nitekim, ülkemizde sulamalı şartlarda yürütülen araştırmalarda (12, 13, 14), 6-10 kg N/da arasında değişen azot dozları ekonomik optimum miktarlar olarak önerilirken, sulamalı şartlardaki araştırmalarda (12, 15, 16, 17) belirlenen ekonomik azot seviyeleri daha yüksek olup, 13-20 kg/da arasında azot miktarları tavsiye edilmiştir. Kısa boylu ve sağlam küçük ve gövde yapısıyla yatmaya dayanıklı
buğday çeşitleri, azotlu gübreye reaksiyonların yüksek olduğu için, fazla azot seviyelerinde üstün verim potansiyeline ulaşabilmeler (18).

Bu araştırmada, sahilli kuşağı buğday üretim alanlarında önerilen yazılık Çukurova-86 ve İzmir-85 ekmeklik buğday çeşitlerinde azot dozu-verim ilişkisini incelemek, ekonomik optimum azot miktarının belirlenmesi amaçlanmıştır.

Materyal ve Metod

Tarda denemeleri Sinop ilı, Erefek ilçesi, Çelen köyü çiftçi şartlarında, tesadüf blokları deneme deseninde, dört tekrarlamalı olarak yürütülmüştür. Deneme alanlarının toprak yapısı tınlı-kılli buňyede ve hafif-alkali olup, elverişli potasyumca zengin, elverişli fosfor ve organik madde bakımından orta seviyededir.

Deneme parselleri altı sırallı ve 1.20 m x 6.0 m = 7.2 m² büyüklüğünde olup, m²'ye 500 tohum düşecek siklikta ekimler yapılmıştır. Parsellere yansı ekime birlikte, diğer yansı erken ilkbaharda, kardeşlenme devresinde, olmak

Araştırma Sonuçları ve Tartışma

Çukurova-86 ve İzmir-85 çeşitlerinde farklı azot seviyelerinden elde edilen tane verimlerine ait ortalama değerler Çizelge 1'de, verim değerlerinin regresyon analizi sonucu Çizelge 2'de verilmiştir. Her iki bölgenin indeki azot dozunun artmasına paralel olarak tane verimi de o oranda artmış, takat belirli bir seviyeden sonra da dozlar arasında verim düşme görülmüştür. Çeşitlerin azota reaksiyonlarını farklı olup, Çukurova-86 çeşidinde verim azalması İzmir-85 çeşidine göre daha yüksek azot seviyelerinde görülmüştür. En fazla tane verimi Çukurova-86 çeşidinde 12 kg N/da, İzmir-85 çeşidinde 18 kg N/da seviyelerinden elde edilmiştir. Her iki çeşitte de 1988 yılı verimleri 1987 yılı verimlerinden daha fazla olmuştur.

Çizelge 2'de verilen regresyon analizi sonuçları aran azot dozları ile tane verimi arasındaki ilişkinin fonksiyonel bir ifade edilebileceğini ortaya koymıştır. Farklı dozlardaki verim değerlerinin azot dozları üzerine regresyonu çeşitlerin ortalama tane verimlerinde gözlenen toplam varyasyonun çok büyük bir kısmını açıklamaktadır.
Çizelge 1. Çukurova-86 ve İzmir-85 Ekmeklik Buğday Çeşitlerinde Farklı Azot Seviyelerinden Elde Edilen Ortalama Verim Değerleri (kg/da).

<table>
<thead>
<tr>
<th>Azot (kg N/da)</th>
<th>Çukurova-86</th>
<th>İzmir-85</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>193</td>
<td>205</td>
</tr>
<tr>
<td>3</td>
<td>224</td>
<td>243</td>
</tr>
<tr>
<td>6</td>
<td>191</td>
<td>285</td>
</tr>
<tr>
<td>9</td>
<td>210</td>
<td>311</td>
</tr>
<tr>
<td>12</td>
<td>234</td>
<td>344</td>
</tr>
<tr>
<td>15</td>
<td>211</td>
<td>332</td>
</tr>
<tr>
<td>18</td>
<td>174</td>
<td>325</td>
</tr>
<tr>
<td>21</td>
<td>174</td>
<td>326</td>
</tr>
</tbody>
</table>

Determinasyon katsaylarının (R^2) Çukurova 86 ve İzmir 85 çeşitleri için sırasıyla 0.87 ve 0.94 olması, regresyonun toplam varyasyondaki etkisi payının ne denli önemli olduğunu belirtmektedir. Azot dozları ile bu dozlardaki verim değerleri arasındaki korelasyon katsayları (R_{xy}) her iki çeşitte de çok önemli olup, Çukurova-86 ve İzmir-85 çeşitleri için sırasıyla 0.93** ve 0.97** değerleri elde edilmiştir.

Çizelge 2. Çukurova-86 ve İzmir-85 Ekmeklik Buğday Çeşitlerinde Artan Azot Dozları ile Tane Verimi İlişkisinin Regresyon Analizi Sonuçları.

<table>
<thead>
<tr>
<th>Varyasyon Kaynakları</th>
<th>Çukurova-86</th>
<th>İzmir-85</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K. T.</td>
<td>K. O.</td>
</tr>
<tr>
<td>Regresyon</td>
<td>4414.24</td>
<td>2207.12**</td>
</tr>
<tr>
<td>Regresyonordan sapma</td>
<td>673.14</td>
<td>134.63</td>
</tr>
<tr>
<td>Genel</td>
<td>5087.38</td>
<td>35755.72</td>
</tr>
<tr>
<td>Determinasyon (R^2)</td>
<td>0.87</td>
<td>0.94</td>
</tr>
<tr>
<td>Korolasyon (R_{xy})</td>
<td>0.93**</td>
<td>0.97**</td>
</tr>
</tbody>
</table>

**: 0.01 seviyesinde önemli.

Çizelge 2'deki regresyon analizi sonuçlarına göre, azotlu gübre dozları ile buğday verimleri arasındaki fonksiyonel ilişkiyi açıklayan denklemler Çukurova-86 çeşidi için $Y = 198.24 + 11.26X - 0.429X^2$, İzmir-85 çeşidi için $Y = 173.31 + 18.60X - 0.455X^2$ olarak hesaplanmıştır. Bu denklemlerden de görüleceği gibi, Çukurova-86 çeşidi artan azot dozlarına daha yüksek verim seviyesine ulaşabilmektedir.
Bu araştırmada olduğu gibi, verim ile azot dozu arasındaki ilişkinin ikinci dereceden bir polinomial ile tasfır edilmesi durumunda, maksimum verim seviyesi ve bu verimi sağlayacak azot dozu tahmin edilebilir (24). Buna göre, \(X_{\text{max}} = -b/2c \) formülü uvarınca hesaplanan maksimum azot dozları Çukurova-86 çesidinde 13.12 kg/da, İzmir-85 çesidinde 20.44 kg/da'dir. Bu dozlarda elde edilecek maksimum buğday verimleri ise sırasıyla 272.13 ve 363.4 kg/da olacaktır.

Uyaranın fonksiyonel denklemlerden yararlanılarak çizilen azot dozu-verim ilişkisini gösteren regresyon çizimleri Çukurova-86 ve İzmir-85 için sırasıyla Şekil 1 ve Şekil 2'de verilmiştir.

1989 yılı azotlu gübre ve ürün fiyatları, % 26'lık kalsiyum amonyum nitrat kilosu 172 TL, buğday kilosu 300 TL, baz alınarak uygulanan Marginal Ürün Analizi sonuçları çeşitlere göre Çizelge 3 ve Çizelge 4'de verilmiştir. Artan gübre dozlarının paralel olarak gittikçe azalan oranlarda verim artışı olmakla beraber, Çukurova-86 çesidinde 13, İzmir-85 çesidinde 20 kg N/da dozundan...
sonraki azot uygulamaları verimde azalmaya yol açmaktadır. Ekonomik analize göre, Çukurova-86 çesidinde 11 kg/da azot dozunda 622,2 TL marjinal gübre değeri karşılık 810 TL marjinal ürün değeri elde edilmiştir. Ancak, azot dozu 1 kg/da artırıldıkça (12 kg N/da), elde edilen marjinal ürün değeri (500,4 TL) 1 kg/da’lık gübre artışı maliyetinin (622,2 TL) altında olup, 11 kg N/da dozundan sonraki uygulamalar ekonomik değildir.

Şekil 2. İzmir-85 ekmeklik buğday çesidinde azotlu gübre dozu / buğday verimi ilişkisi.

Benzer şekilde, İzmir-85 çesidinde de azot dozu 18 kg/da’dan 19 kg/da’ya artırıldığında, marjinal gübre değerinin (622,2 TL) altında marjinal ürün değeri (619,2 TL) elde edilmiştir. Dolayısıyla, 18 kg N/da dozundan sonraki azot uygulamaları verimi artırsa bile, yapılan gübreleme ekonomik yarar sağlamayacaktır. Bu sonuçlara göre, ekonomik bir gübreleme için gerekli optimum azot dozunun Çukurova-86 çesidinde 11 kg N/da, İzmir-85 çesidinde 18 kg N/da olması gerekeni vurgusuna vanabilir.
Çizelge 3. Çukurova-86 Ekmeklik Buğday Çeşidinde Gübre ve Ürün Fiyatlarına Göre Marjinal Ürün Analizi.

<table>
<thead>
<tr>
<th>Gübre Miktari kg N/da</th>
<th>Marjinal Gübre Dozu kg N/da</th>
<th>Marjinal Gübre Değeri (TL)</th>
<th>Toplam Ürün kg/da</th>
<th>Marjinal Ürün Değeri kg/da</th>
<th>Marjinal Ürün Değeri (TL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3311</td>
<td>108.24</td>
<td>-</td>
<td>16408.8</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>3311</td>
<td>243.82</td>
<td>45.58</td>
<td>8683.2</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>622.2</td>
<td>270.19</td>
<td>2.25</td>
<td>810.0</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>622.2</td>
<td>271.58</td>
<td>1.39</td>
<td>500.4</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>622.2</td>
<td>272.12</td>
<td>0.61</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>622.2</td>
<td>271.80</td>
<td>-0.32</td>
<td>-</td>
</tr>
</tbody>
</table>

Araştırma bulguları az ülkenin laze verimi üzerine etkisinin, diğer faktörlerin yanı sıra, çeşitlere göre farklılık gösterdiğini ortaya koymuştur. İzmir 85 çesidinde azotlu gübre verim ve reaksiyon göstermekte olup, azot azot düzeyinde yüksek verim verilmektedir. Benzer bulgular farklı ekolojilerde değişik çeşitlerle yapılan çalışmalarında da elde edilmiştir.

<table>
<thead>
<tr>
<th>Gübre Miktari kg N/da</th>
<th>Marjinal Gübre Dozu kg N/da</th>
<th>Marjinal Gübre Değeri (TL)</th>
<th>Toplam Ürün kg/da</th>
<th>Marjinal Ürün Değeri kg/da</th>
<th>Marjinal Ürün Değeri (TL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3311</td>
<td>254.94</td>
<td>81.64</td>
<td>29380.4</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>3311</td>
<td>313.82</td>
<td>59.00</td>
<td>21240.0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>622.2</td>
<td>322.85</td>
<td>9.04</td>
<td>3254.4</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>622.2</td>
<td>330.00</td>
<td>8.14</td>
<td>2930.4</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>622.2</td>
<td>338.27</td>
<td>7.23</td>
<td>2603.8</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>622.2</td>
<td>344.53</td>
<td>6.31</td>
<td>2771.6</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>622.2</td>
<td>349.94</td>
<td>5.41</td>
<td>1947.5</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>622.2</td>
<td>354.43</td>
<td>4.49</td>
<td>1616.4</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>622.2</td>
<td>358.02</td>
<td>3.59</td>
<td>1292.4</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>622.2</td>
<td>360.69</td>
<td>2.67</td>
<td>961.2</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>622.2</td>
<td>362.42</td>
<td>1.72</td>
<td>619.2</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>622.2</td>
<td>363.31</td>
<td>0.89</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>622.2</td>
<td>363.25</td>
<td>-0.06</td>
<td>-</td>
</tr>
</tbody>
</table>

Özdemir ve Güner (26) Samsun şartlarında Cumhuriyet-75 ekmeklik buğday çesidinde ekonomik ürün için 20 kg/da azot ovoliyasi önerırken, Kara ve Ağdağ (21) Marmara-86 çesidinde Sinop için 14, Samsun için 16 kg/da azot

Kaynaklar

