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Abstract: Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, accounting for 32% of global deaths. 

Electrocardiography (ECG) is a widely used, cost-effective, and non-invasive diagnostic tool for detecting cardiac abnormalities. 

However, ECG interpretation remains challenging due to noise interference, physiological variations, and the need for expert 

evaluation. This study proposes a machine learning-based approach for automatic classification of cardiac conditions using ECG 

images. The methodology involves feature extraction using Wavelet Transform (WT) and Gray-Level Co-occurrence Matrix (GLCM), 

followed by feature fusion to enhance classification. A total of 928 ECG images from four categories—Myocardial Infarction (MI), 

Abnormal Heartbeat (ABH), History of MI (HMI), and Normal—were analyzed. The extracted features were classified using XGBoost, 

Random Forest, Support Vector Machine, K-Nearest Neighbors, Decision Tree, and Logistic Regression. Results showed that XGBoost 

achieved the highest accuracy (93.55%), followed by Random Forest (93.01%), outperforming conventional methods. The findings 

suggest that feature fusion enhances classification and offers an interpretable, computationally efficient alternative to deep learning. 

This study contributes to automated cardiac diagnostics by providing a robust framework suitable for clinical applications and wearable 

ECG systems. 
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EKG Görüntülerinde Dalgacık Dönüşümü ve GLCM Özellik Füzyonu Kullanarak Farklı Kardiyak Durumların 

Makine Öğrenmesi ile Tespiti 

Öz. Kardiyovasküler hastalıklar (KVH), küresel ölümlerin %32’sinden sorumlu olup, en yaygın ölüm nedenidir. Elektrokardiyografi 

(EKG), kardiyak anormalliklerin tespitinde yaygın kullanılan, düşük maliyetli ve non-invaziv bir yöntemdir. Ancak gürültü, bireysel 

fizyolojik farklılıklar ve uzman değerlendirme gereksinimi EKG yorumlamada zorluk yaratmaktadır. Bu çalışmada, EKG 

görüntüleriyle farklı kardiyak durumları otomatik sınıflandıran yeni bir makine öğrenmesi yöntemi önerilmektedir. Yöntem 

kapsamında Dalgacık Dönüşümü (WT) ve Gri-Seviye Eş-Oluşum Matrisi (GLCM) ile özellik çıkarımı yapılmış, özellik füzyonu 

gerçekleştirilmiştir. 928 EKG görüntüsü dört kategori Miyokard Enfarktüsü – (MI), Anormal Kalp Atışı – (ABH), Geçmiş MI – (HMI), 

Normal içinde analiz edilmiştir. Çıkarılan özellikler XGBoost, Random Forest, Destek Vektör Makineleri, K-En Yakın Komşu, Karar 

Ağacı ve Lojistik Regresyon ile sınıflandırılmıştır. Sonuçlar, XGBoost’un %93.55 doğrulukla en iyi performansı sergilediğini, onu 

%93.01 ile Random Forest modelinin takip ettiğini göstermiştir. Bulgular, önerilen özellik füzyonunun sınıflandırma başarısını 

artırdığını ve derin öğrenmeye kıyasla daha yorumlanabilir, hesaplama açısından verimli bir alternatif sunduğunu göstermektedir. 

Çalışma, otomatik kardiyak tanı sistemlerine katkıda bulunarak klinik uygulamalara ve taşınabilir EKG cihazlarına entegre edilebilir 

bir makine öğrenmesi çerçevesi sunmaktadır. 

Anahtar kelimeler: Kardiyak tespit, EKG sınıflandırma, GLCM, Makine öğrenmesi, Dalgacık dönüşümü  
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1. Introduction 

Cardiovascular diseases (CVDs), which represent 32% of all 

global deaths, are recognized as the leading cause of mortality 

worldwide [1]. Early diagnosis of these conditions is regarded 

as crucial for minimizing the risk of death and facilitating 

pharmacological management. Electrocardiograms (ECGs) 

are commonly employed as the most widespread, cost-

effective, and non-invasive diagnostic method for 

cardiovascular diseases. However, several disadvantages are 

observed in ECG-based diagnoses. The ECG signal is 

susceptible to contamination by various unwanted artifacts—

such as baseline wandering, power-line interference, and 

muscle noise—and is subject to variations among individuals 

due to different physiological states (e.g., during sleep or 

exercise) and demographic factors [2]. Furthermore, ensuring 

consistency and accuracy in ECG interpretations can be 

challenging, even for experts, under these constraints. 

An increase in ECG recordings has been observed due to the 

growing prevalence of cardiovascular diseases and the 

emergence of wearable health technologies [3]. This 

expansion in data has generated a need for efficient and timely 

analysis, leading to a higher demand for specialists. More than 

three-quarters of deaths associated with cardiovascular 

diseases occur in low- and middle-income countries, 

indicating a shortage of specialized physicians worldwide, 

particularly in these regions [1]. An automated ECG analysis 

system is regarded as a pioneering solution for addressing the 

current lack of specialized healthcare professionals and for 

ensuring consistency and accuracy in ECG interpretations. 

Various benefits are provided by computer-aided diagnosis 

applications designed to assist physicians in diagnosing 

diseases, including enhanced diagnostic accuracy and 

efficiency, reduced errors and variability among physicians, 

and lower healthcare costs through the prevention of 

unnecessary tests and procedures. The development of 

intelligent computer-aided diagnosis applications capable of 

automated analysis has been enabled by recent advances in 

artificial intelligence, particularly in deep learning and 

machine learning methods. In the literature, several artificial 

intelligence approaches that prioritize deep learning have been 

proposed for the development of computer-aided diagnosis 

systems intended for the automatic detection of cardiovascular 

diseases [4]. 

A deep learning-based model was employed by Oke et al. [5], 

to distinguish among six categories of heart disease, yielding 

an accuracy of 95%. An embedded system approach relying 

on deep learning models was proposed by Mhamdi et al. [6], 

to analyze ECG images and automatically classify cardiac 

arrhythmias, achieving an average accuracy above 98%. A 

lightweight CNN combined with an attention module was 

introduced by Sadad et al. [7], to classify real-time ECG 

images in an IoT environment, resulting in a 98.39% accuracy 

rate. 

A classification approach based on the vectorization of ECG 

images was developed by Ashtaiwi et al. [8], with the aim of 

enhancing heart disease diagnosis. In that study, ECG images 

were subjected to feature extraction and vectorization 

processes, and the resulting vectors were then transferred to a 

machine learning-based classification model. The proposed 

method attained an accuracy of approximately 90% on the test 

data. 

In research conducted by Sattar et al. [9], advanced deep 

learning models—such as CNNs and RNNs featuring various 

layers and architectures—were utilized to automatically 

process ECG waveforms, and their classification accuracies 

were compared. An accuracy level of nearly 98% was reported 

on the test data. A 2D CNN-based approach was employed by 

Aversano et al. [10], for the early detection of heart diseases 

through ECG images, reaching an accuracy of around 97-98%. 

In another study by the same authors [11], ECG signals were 

converted into image format and trained using a 2D CNN 

model, allowing the automatic extraction of discriminative 

features among different cardiac disorders. According to the 

reported findings, the CNN-2D-based model was shown to be 

effective and reliable for characterizing heart diseases, even 

when single-lead ECG data were employed. 

An ensemble compression technique was developed by 

Mohanty et al. [12], with the aim of more efficiently storing 

and transmitting cardiac data in smart healthcare systems by 

combining various compression algorithms or machine 

learning methods. The proposed technique was reported to 

preserve decompressed data with an average accuracy 

exceeding 95%, indicating that sufficient quality for diagnosis 

and analysis can be maintained while reducing data storage 

and transmission costs. In a study by Venkataiah et al. [13], 

classical machine learning and deep learning models were 

compared for the classification of ECG images. A CNN-based 

approach was found to achieve the highest accuracy, generally 

outperforming classical machine learning methods (e.g., SVM, 

KNN) with a rate of approximately 98%. Beyond the diagnosis 

of heart diseases, deep learning models have also been 

frequently proposed for identifying COVID-19 based on ECG 

images [14–16]. 

Despite the frequent proposal of deep learning-based methods 

for ECG image analysis in the literature, several disadvantages 

of deep learning require attention. In particular, deep 

learning—especially models such as CNNs—often demands 

very large datasets. By contrast, conventional pattern 

recognition and classification methods can achieve reasonable 

performance with limited data, a critical consideration in 

medical fields where obtaining sufficient labeled data poses 

significant challenges. Furthermore, the internal filters and 

neuron learning mechanisms in deep learning are typically 

treated as a “black box,” complicating the explanation of how 

specific pixel or gradient information drives a model’s 

decisions. Features extracted via conventional pattern 

recognition methods tend to be more interpretable for medical 

experts. Moreover, deep learning architectures such as CNNs 

or RNNs involve a large number of parameters and may 

require substantial GPU power and memory capacity, whereas 

conventional methods can usually run on CPUs and often 

exhibit advantages in embedded systems or resource-

constrained environments (e.g., IoT devices). 

In the present study, an automatic and high-performance 

diagnosis of cardiovascular diseases was conducted using 

conventional pattern recognition and machine learning 

methods on ECG images. A review of the existing literature 
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indicates that no prior approach combining these methods for 

diagnosing cardiovascular diseases on the dataset employed in 

this study has been proposed thus far. To the best of our 

knowledge, this is the first study that integrates WT and 

GLCM feature fusion with ensemble machine learning 

classifiers for cardiac condition detection in ECG images. The 

suggested method addresses the limitations of deep learning 

and contributes to the literature by achieving high performance 

even in situations where data are limited. 

Another key contribution of this study is the demonstration 

that machine learning models, particularly XGBoost and 

Random Forest, can achieve high classification accuracy 

(93.55%) without requiring large-scale datasets. Compared to 

deep learning-based models, the proposed method offers a 

more computationally efficient and interpretable alternative, 

making it suitable for embedded systems and clinical 

applications where computational resources are limited. 

Additionally, our approach provides a robust, interpretable, 

and cost-effective solution for real-time ECG analysis, with 

potential applications in wearable health devices, telemedicine 

platforms, and automated clinical decision support systems. 

Given the increasing prevalence of cardiovascular diseases 

and the demand for automated diagnostic solutions, our work 

presents an innovative framework that bridges the gap between 

traditional handcrafted feature-based approaches and modern 

AI-driven methodologies. 

Beyond technical accuracy, the proposed method addresses the 

growing need for interpretable and resource-efficient AI 

solutions in healthcare. Its transparent feature extraction 

process allows clinicians to better understand and trust the 

model's decisions, which is essential for real-world adoption. 

Moreover, the lightweight structure supports deployment on 

low-power devices, making it ideal for remote monitoring, 

mobile health systems, and underserved clinical settings. Thus, 

this study not only contributes a novel methodological 

approach but also offers a practical and scalable solution that 

bridges the gap between academic innovation and clinical 

applicability. 

2. Materials and Methods 

An overview of the proposed method is presented in Figure 1. 

ECG images were initially provided as input and were then 

subjected to a series of data preprocessing steps that included 

resizing, normalization, and filtering. Wavelet Transform 

(WT) and the Gray-Level Co-occurrence Matrix (GLCM) 

were subsequently employed to extract and fuse the most 

informative features. Afterward, the data was partitioned into 

training and test sets for classification. During the training 

phase, machine learning models were designed, cross-

validated, and refined through hyperparameter tuning. The test 

set was subsequently used to evaluate the performance of these 

models, and finally, various cardiac conditions were predicted 

as the output of the classification process. 

 

Figure 1. Overview of the proposed method 

2.1. Dataset 

The ECG Images dataset of Cardiac Patients, published in 

2021 by Khan et al. [17], contained four different cardiac 

conditions: 

• MI (Myocardial Infarction Patients) with 239 images 

• ABH (Abnormal Heartbeat) with 233 images 

• HMI (History of MI) with 172 images 

• Normal (Normal Person) with 284 images 

A total of 928 ECG images were included in the dataset, which 

were split into training (742 images) and test (186 images) sets 

using the Stratified Shuffle Split method with an %80-20 ratio. 

Validation data were then partitioned in real time from the 

training set by applying five-fold cross-validation. Samples 

from the dataset were illustrated in Figure 2. 

 

Figure 2. Samples from the dataset 
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2.2. Data Preprocessing 

All images in the dataset were resized to 224 × 224 using the 

Bilinear interpolation algorithm and were utilized in RGB 

(red, green, blue) mode. The pixel values were then rescaled 

from 0–255 to 0–1 for normalization. 

A wavelet-based preprocessing method was applied to reduce 

noise components in ECG images. The observed ECG data, 

denoted by 𝐼𝑜𝑏𝑠(𝑖, 𝑗), is modeled as the sum of the underlying 

clean ECG image 𝐼𝑡𝑟𝑢𝑒(𝑖, 𝑗) and additive white Gaussian noise 

𝑁(𝑖, 𝑗), i.e., 

𝐼𝑜𝑏𝑠(𝑖, 𝑗) =  𝐼𝑡𝑟𝑢𝑒(𝑖, 𝑗) + 𝑁(𝑖, 𝑗)                 (1)  

By applying the two-dimensional Discrete Wavelet Transform 

(2D DWT), the image is decomposed into lower-frequency 

(LL) and higher-frequency (LH, HL, HH) subbands. Since 

noise is typically more pronounced in higher-frequency 

components, a thresholding operation is performed on those 

subbands. In particular, Donoho and Johnstone’s [18] 

universal threshold 𝜆 =  𝜎√2ln (𝑁) is often adopted, where 𝜎 

is an estimate of the noise standard deviation and N represents 

the total number of pixels. The thresholded wavelet 

coefficients are then reconstructed via the inverse wavelet 

transform (IDWT) along with the unaltered low-frequency 

subband, yielding a denoised ECG image in which critical 

morphological features, such as the P and T waves, are 

preserved. 

This wavelet-based denoising process significantly enhances 

the clarity of ECG signals, thereby improving the reliability of 

both machine learning and classical methods used in 

subsequent clinical or research-oriented tasks. In particular, 

high-frequency artifacts that could distort vital waveform 

characteristics are attenuated, ensuring more accurate 

detection and measurement of ECG features. 

2.3. Feature Extraction and Feature-Level Fusion 

The Gray-Level Co-occurrence Matrix (GLCM) [19] is a 

second-order statistical method used to model the spatial 

relationship between pairs of pixel intensity values in an 

image. Let I be a grayscale image with intensity values in the 

range {0,1,…,L-1}. For a specified displacement vector 𝛿 

(defined by distance and orientation, e.g., 𝛿 = (𝑑, 0) for 

horizontal adjacency), the GLCM, denoted as 𝑃𝑠(𝑖, 𝑗), is 

constructed such that each entry represents the probability (or 

frequency) of observing intensity i at a reference pixel and 

intensity j at the neighbor pixel offset by 𝛿. The co-occurrence 

matrix is given in Eq. (2) where 𝑁𝑠  is a normalization factor. 

𝑃𝑠(𝑖, 𝑗) =  
1

𝑁𝑠

∑
1, 𝑖𝑓 𝐼(𝑥, 𝑦) = 𝑖 𝑎𝑛𝑑 (𝑥 + 𝛿𝑥 , 𝑦 + 𝛿𝑦) = 𝑗,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(𝑥,𝑦)    (2) 

Among the various descriptors derivable from the GLCM, four 

fundamental measures typically employed to characterize 

textural patterns are contrast, correlation, energy, and 

homogeneity. Contrast quantifies the spatial frequency of 

intensity differences, essentially capturing how sharply or 

smoothly intensities change within the image. In Eq. (3), L is 

the number of gray levels and 𝑃𝑠(𝑖, 𝑗) denotes the probability of 

observing the pixel-intensity pair (𝑖, 𝑗) under the specified 

offset 𝛿. 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ ∑ (𝑖 − 𝑗)2𝐿−1
𝑗=0

𝐿−1
𝑖=0 𝑃𝑠(𝑖, 𝑗)                     (3) 

Correlation, on the other hand, measures the linear dependency 

between intensities in neighboring pixels. In Eq. (4), 𝜇𝑖 and 𝜇𝑗 

are the means, and 𝜎𝑖 and 𝜎𝑗 are the standard deviations of the 

row and column sums of 𝑃𝑠 , respectively. A higher correlation 

value indicates a strong linear relationship among neighboring 

intensities.  

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  ∑ ∑
(𝑖−  𝜇𝑖)(𝑗− 𝜇𝑗) 

𝜎𝑖𝜎𝑗

𝐿−1
𝑗=0

𝐿−1
𝑖=0 𝑃𝑠(𝑖, 𝑗)        (4) 

Energy corresponds to the sum of squared entries in the 

GLCM, reflecting uniformity within the image and is 

calculated as given in Eq. (5). Higher energy values indicate 

more frequent occurrence of certain density pairs and therefore 

less textural variation. 

𝐸𝑛𝑒𝑟𝑔𝑦 =  ∑ ∑ [𝑃𝑠(𝑖, 𝑗)]2𝐿−1
𝑗=0

𝐿−1
𝑖=0                      (5) 

Finally, homogeneity emphasizes the distribution of elements 

near the diagonal of the co-occurrence matrix, providing a 

measure of local similarity or smoothness and is calculated as 

given in Eq. (6). Images exhibiting consistent or slowly 

varying intensities tend to yield higher homogeneity scores. 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑ ∑
𝑃𝑠(𝑖,𝑗) 

1+(𝑖−𝑗)2
𝐿−1
𝑗=0

𝐿−1
𝑖=0                 (6)        

Taken together, these four descriptors allow for a robust 

characterization of the spatial relationships in ECG images, 

capturing pertinent texture cues that can significantly aid in 

subsequent classification tasks. To complement the spatial 

descriptors obtained from GLCM, wavelet-based features are 

extracted from ECG images to encode multi-resolution and 

frequency-domain features. Specifically, the 2D DWT [20] is 

applied to each ECG image I(x,y), decomposing it into 

subbands at multiple scales. At each decomposition level s, 

four subband coefficient matrices are generated: LL (low–

low), LH (low–high), HL (high–low), and HH (high–high). 

Denoting the wavelet coefficients at level s and subband b by 

𝑊𝑠,𝑏(𝑥, 𝑦), a common approach is to calculate the subband-

specific energies as given in Eq. (7). In Eq. (7), (x,y) spans all 

coefficients in the subband b at level s. 

𝐸𝑠,𝑏 =  ∑ |𝑊𝑠,𝑏(𝑥, 𝑦)|2
(𝑥,𝑦)                           (7) 

In addition to energy, other statistical measures—such as 

mean, variance, or entropy of the wavelet coefficients—can 

also be extracted. These wavelet-based descriptors provide 

insight into local frequencies and transient behaviors in the 

ECG image, capturing edge-like features and subtle amplitude 

variations that may be diagnostic in distinguishing specific 

cardiac conditions. 

A combined feature vector (F) is created by combining the sets 

of GLCM and WT features. Specifically, let 𝑔 = [𝑔1 , 𝑔2 , … ] 

denote the GLCM feature vector and 𝑤 = [𝑤1 , 𝑤2 , … ] 

represent the wavelet-based feature vector. The resulting 

combined feature vector was constructed as 𝐹 = [𝑔, 𝑤] 

thereby integrating both the textural relationships captured by 

GLCM descriptors and the multi-resolution information 

derived from the wavelet coefficients. This comprehensive 

representation facilitated more robust classification of the 

ECG images. 
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2.3. Classification 

In the classification phase, features were classified using 

machine learning techniques and tools. During the model 

design stage, the Logistic Regression (LR), Support Vector 

Machine (SVM), Random Forest (RF), K-Nearest Neighbor 

(KNN), XGBoost (XGB), and Decision Tree (DT) algorithms 

were used. In the modeling phase of the machine learning 

classifiers, the GridSearchCV approach was employed to carry 

out hyperparameter optimization. This method systematically 

evaluates all possible hyperparameter value combinations, 

thereby identifying the configurations that yield the highest 

performance metrics.  

Table 1 presents the Scikit-learn [21] classification algorithms 

used in the application, along with the specific hyperparameter 

ranges explored during optimization. The selection of 

appropriate hyperparameters is crucial for optimizing the 

performance of machine learning models. In this study, 

various classifiers were employed, each with a set of 

predefined hyperparameters to fine-tune their learning 

behavior. LR was configured with L2 regularization (C = 1.0) 

to prevent overfitting, while the Newton-Conjugate Gradient 

(newton-cg) solver was chosen for its efficiency in handling 

multinomial LR problems. The maximum number of iterations 

(max_iter = 100) ensures convergence, and one-vs-rest (ovr) 

multi-class strategy was used to facilitate multi-class 

classification. For the SVM classifier, a linear kernel was 

utilized, given its suitability for high-dimensional data, while 

C = 0.1 was selected to balance the trade-off between margin 

maximization and misclassification cost. 

For ensemble-based methods, XGB and RF classifiers were 

optimized using hyperparameters tailored to their specific 

learning mechanisms. In XGB, the number of boosting rounds 

was set to 100 (n_estimators = 100), while a learning rate of 

0.1 ensured a gradual update of weights, preventing 

overfitting. The maximum tree depth (max_depth = 3) was 

constrained to control model complexity. Similarly, RF was 

configured with 20 decision trees (n_estimators = 20), while 

max_depth = 20 and min_samples_split = 5 were set to balance 

depth and data splitting criteria. DT utilized the Gini impurity 

criterion for split evaluation, with a maximum depth of 10 and 

a minimum sample split threshold of 2 to avoid excessive 

fragmentation. Lastly, KNN was set with 5 neighbors 

(n_neighbors = 5), using the Minkowski distance metric (p = 

2), which corresponds to the Euclidean distance, ensuring an 

effective similarity measure for classification.  

During the training phase, a five-fold cross-validation strategy 

was implemented for these classifiers. In each iteration, the 

training set was randomly partitioned into five distinct subsets, 

from which four were used for training and one was designated 

as the validation subset. Fig. 3 illustrates the learning curves 

of the machine learning classifiers derived during the training 

process. In these curves, the x-axis corresponds to the 

algorithms’ accuracy, while the y-axis indicates the amount of 

training data. Within each learning curve in Fig. 3, the red line 

represents the training accuracy, and the green line denotes the 

cross-validation accuracy obtained via the five-fold cross-

validation procedure. 

Overall, the learning curves indicate that RF, SVM, and XGB 

achieve the highest validation accuracies, approaching 

approximately 90-95% as the number of training samples 

increases. LR also exhibits strong performance, converging to 

a validation accuracy close to 85-88%. In contrast, KNN 

maintains the lowest validation accuracy throughout the 

training process, and the DT model settles at an intermediate 

level of performance around 75-80%. These outcomes suggest 

that ensemble methods (RF and XGB) and SVM are 

particularly well-suited to the problem setup, whereas KNN’s 

simpler, distance-based approach is comparatively less 

effective. 

From an overfitting perspective, both DT and RF display near-

perfect training scores accompanied by comparatively lower 

validation accuracies, indicating a degree of overfitting in 

those models (particularly in the early training stages). 

However, the gap between training and validation scores 

narrows as the sample size increases, suggesting that 

additional data helps mitigate overfitting. SVM, XGB and LR 

similarly achieve high training accuracy but ultimately 

generalize well, evidenced by validation scores that steadily 

rise and closely track the training curves at higher sample 

sizes. 

Table 1 The values of the hyperparameters 

Classifier Hyperparameter Value 

Logistic regression  

C 1.0 

solver newton-cg  

max_iter 100 

multi_class ovr 

Support vector machine  

C 0.1 

kernel linear 

XGBoost  

n_estimators 100 

learning_rate 0.1 

max_depth 3 

K-nearest neighbors  

n_neighbors 5 

p 2 

metric Minkowski 

Decision Tree   

criterion Gini 

max_depth 10 

min_samples_split 2 

Random Forest  

max_depth 20 

min_samples_split 5 

n_estimators 20 
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Figure 1. Learning curves of machine learning algorithms 

3. Results and Discussion 

3.1. Performance Metrics 

The confusion matrix provides a tabular representation of the 

classification outcomes, comparing predicted labels to true 

labels. In binary classification, the matrix commonly reports 

four types of results: True Positives (TP), False Positives (FP), 

True Negatives (TN), and False Negatives (FN). By examining 

these outcomes, one can diagnose specific error patterns, such 

as how frequently the model inaccurately identifies positive 

samples as negative and vice versa. 

Several metrics can be derived from the confusion matrix, and 

their formulas are presented in Table 2. Accuracy captures the 

proportion of correct predictions among all predictions. 

Precision quantifies how many of the predicted positive cases 

are truly positive, while recall indicates the fraction of actual 

positive cases correctly identified. The F1 score is a harmonic 

mean of precision and recall, thus balancing both metrics in a 

single measure. ROC AUC (Area Under the Receiver 

Operating Characteristic Curve) assesses the model’s ability to 

distinguish between classes over varying decision thresholds, 

and higher values suggest better overall performance. Lastly, 

the Jaccard similarity coefficient (JSC) measures the similarity 

between the predicted and actual positive sets, reflecting how 

much overlap exists between these two sets. 

These evaluation metrics, derived from the confusion matrix, 

provide a multifaceted view of model performance beyond 

overall accuracy. While accuracy gives a general sense of 

correctness, it may be misleading in imbalanced datasets, 

making precision, recall, and F1 score crucial for a more 

nuanced understanding. Precision is particularly important in 

medical diagnostics where false positives may lead to 

unnecessary stress or treatment, whereas recall is vital when 

missing true cases—such as undiagnosed cardiovascular 

conditions—poses significant risk. The F1 score balances 

these two concerns, offering a more reliable indicator when 

class distributions are uneven. Additionally, ROC AUC serves 

as a threshold-independent metric, revealing how well the 

model distinguishes between classes across various sensitivity 

levels. Jaccard similarity further complements these measures 

by quantifying the overlap between predicted and actual 

positive cases, providing insight into the consistency of model 

predictions. 

Table 2 Performance metrics 

Metric Formula 

Accuracy 𝑇𝑃 + T𝑁

𝑇𝑃 + F𝑃 + F𝑁 + T𝑁
 

Precision 𝑇𝑃

𝑇𝑃 + F𝑃
 

Recall 𝑇𝑃

𝑇𝑃 + F𝑁
 

𝐹1 Score 
2 𝑋 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
  

Jaccard similarity 

coefficient 

𝑇𝑃

𝑇𝑃 + F𝑁 + 𝐹𝑃
 

3.2. Test Results 

During the testing phase, a total of 186 images were employed, 

consisting of 57 Normal, 47 ABH, 34 HMI, and 48 MI. In Fig. 

4, the confusion matrices of the classifiers are presented.  

Overall, the confusion matrices revealed that the MI class was 

predicted with near‐perfect accuracy by all models, indicating 

that minimal misclassification was observed for this specific 

category. In contrast, the ABH and HMI classes were 

misclassified to varying degrees, suggesting that these 

categories posed more challenges for certain algorithms. In 

particular, the KNN model was found to struggle considerably 

in distinguishing ABH, leading to a large portion of ABH 

instances being misclassified as other classes. 

By comparison, the ensemble methods (RF and XGB) were 

observed to achieve near‐flawless performance, as almost all 

samples were assigned to the correct classes. Similarly, SVM 

was found to yield strong overall accuracy, although 
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occasional confusion was noted between ABH and HMI. 

While the DT and LR models also performed favorably, 

slightly higher misclassification rates were exhibited, 

especially at the boundary between ABH and HMI. Taken 

together, these findings suggest that ensemble approaches 

offered the most robust classification performance, whereas 

KNN emerged as the least effective within this particular 

context. 

In Table 3, the performance metrics for all six classification 

algorithms were presented. It was observed that XGB achieved 

the highest accuracy (93.55%), precision (93.70%), recall 

(93.55%), F1 score (93.45%), and JSC (87.25%), thereby 

establishing itself as the most robust method among the 

models considered. Although RF registered a slightly lower 

accuracy (93.01%), it was found to surpass all other algorithms 

in terms of ROC-AUC (99.48%), indicating strong 

discriminative power. KNN, on the other hand, exhibited the 

weakest outcomes, as evidenced by its notably low accuracy 

(61.29%) and comparatively modest values for precision, 

recall, and F1 score. 

These discrepancies in performance were likely attributable to 

the inherent strengths of ensemble methods, which combine 

multiple decision boundaries to reduce variance and enhance 

generalization. Specifically, XGB was observed to benefit 

from gradient boosting strategies that fine-tune weak learners, 

while RF leveraged bootstrap aggregation to mitigate 

overfitting. By contrast, the distance-based approach of KNN, 

which relies on local similarity, appeared inadequate in 

capturing the nuances of the feature space without additional 

optimization or feature engineering. Meanwhile, the DT and 

LR classifiers maintained respectable accuracy levels of 

81.72% and 83.87%, respectively, yet they were outperformed 

by ensemble methods in all other key metrics, particularly in 

ROC-AUC and JSC.  

In conclusion, the superiority of ensemble classifiers was 

consistently highlighted by their elevated performance across 

multiple evaluation criteria. Although SVM also demonstrated 

commendable results, achieving an accuracy of 86.02% and a 

high ROC-AUC (98.14%), the methods based on boosted or 

bagged decision trees proved more adept at optimizing both 

sensitivity and specificity. Consequently, these findings 

suggest that, for this specific classification task, XGB and RF 

present the most effective solutions, whereas KNN’s 

performance may be improved through further feature 

engineering or hyperparameter tuning. 

 

Figure 2. Confusion matrices of machine learning algorithm

Table 3 Test results 

Classifier 
ACC 

(%) 

Precision 

(%) 

Recall 

(%) 

𝑭𝟏 

Score 

(%) 

ROC-

AUC 

(%) 

JSC 

(%) 

RF 93.01 93.62 93.01 92.88 99.48 86.30 

SVM 86.02 86.66 86.02 85.50 98.14 75.25 

KNN 61.29 73.64 61.29 53.57 79.95 43.13 

DT 81.72 81.82 81.72 80.72 88.05 68.45 

LR 83.87 84.35 83.87 83.24 96.10 71.27 

XGB 93.55 93.70 93.55 93.45 98.93 87.25 

4. Discussion 

The findings of this study highlight the effectiveness of 

combining WT and GLCM feature fusion with machine 

learning algorithms for classifying different cardiac conditions 

based on ECG images. The results indicate that ensemble-

based classifiers, particularly XGB and RF, outperform other 

models by achieving high classification accuracy and robust 

generalization. However, several aspects require further 

discussion regarding the limitations, advantages, 

disadvantages, and clinical implications of the proposed 

method. 

Despite its promising results, the proposed method is not 

without limitations. First, the dataset size (928 images) 

remains relatively small, which may impact the 

generalizability of the model to broader clinical applications. 

While machine learning models, particularly ensemble 
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methods, demonstrated strong performance, deep learning-

based approaches might outperform them if larger datasets 

were available. Additionally, the reliance on handcrafted 

features (WT and GLCM), although advantageous for 

interpretability, may not capture all latent patterns present in 

ECG images as efficiently as deep learning-based feature 

extraction methods. 

Another limitation pertains to class imbalance issues, 

particularly in the HMI and ABH categories, which exhibited 

higher misclassification rates. While stratified cross-validation 

and ensemble techniques mitigated this issue to some extent, 

further optimization, such as using synthetic data 

augmentation techniques, could improve classification 

performance. Furthermore, the study only focuses on ECG 

images, whereas integrating raw ECG signals or multimodal 

physiological data (e.g., heart rate variability, patient 

demographics) could enhance diagnostic accuracy. 

One of the most notable advantages of the proposed 

methodology is its efficacy in scenarios with limited data 

availability. Unlike deep learning methods, which typically 

require thousands of labeled samples, the machine learning 

approach combined with feature engineering provides high 

performance without excessive computational demands. This 

makes the method highly suitable for resource-constrained 

environments, such as embedded systems in portable and 

wearable ECG monitoring devices. 

Moreover, wavelet-based denoising significantly enhances the 

clarity of ECG images, which is a crucial advantage in medical 

image analysis. The feature-level fusion of GLCM and WT 

captures both spatial and frequency-based characteristics, 

leading to more robust feature representations. Additionally, 

the use of interpretable handcrafted features improves model 

explainability, a critical factor in medical applications where 

decisions must be justified to clinicians. 

A comprehensive comparison of the proposed method with 

relevant studies in the literature is presented in Table 4. While 

most existing studies adopt deep learning-based approaches—

particularly CNNs—for ECG image classification and report 

high accuracy levels (e.g., Sadad et al., [7]: 98.39%, Mhamdi 

et al., [6]: 95%, Aversano et al., [11]: 97%), these models often 

require large-scale datasets, GPU-based hardware, and entail 

limited explainability due to their black-box nature. In 

contrast, our study employs a handcrafted feature fusion 

method based on WT and GLCM, followed by conventional 

machine learning classifiers. Despite using the same dataset 

size (928 ECG images), our approach achieved a high 

classification accuracy of 93.55% with the XGB model, while 

maintaining low computational complexity and high 

interpretability—features that are especially beneficial for 

real-world clinical applications and deployment in embedded 

or mobile systems. 

Several studies have emphasized model deployment on edge 

devices; for instance, Mhamdi et al., [6] utilized MobileNetV2 

and VGG16 models optimized for Raspberry Pi, achieving 92–

94% accuracy on-device. While impressive, such deep models 

still necessitate model compression and fine-tuning to function 

on limited hardware. Similarly, Aversano et al., [11] 

developed two CNN-based architectures with accuracy 97% in 

multi-lead ECG analysis. However, these models demand 

significant computational resources and training time, and 

their internal operations are less interpretable to clinicians. In 

contrast, our method provides transparency through 

handcrafted features and operates effectively on CPUs without 

specialized hardware. Moreover, unlike deep learning models 

that often overfit small datasets or require augmentation, our 

feature fusion strategy performs competitively without such 

dependencies. 

Although our method may not outperform the most advanced 

deep models in raw accuracy, it offers significant advantages 

in terms of deployment feasibility, explainability, and 

efficiency—critical factors in clinical decision support 

systems, telemedicine, and wearable health monitoring 

technologies. Furthermore, unlike black-box CNNs, our 

approach produces interpretable features that align with 

clinical expectations. While manual feature engineering may 

limit scalability to some extent, future research could explore 

hybrid models combining shallow CNN embeddings or 

transfer learning with handcrafted features to enhance 

performance without compromising transparency. Overall, the 

proposed method contributes a valuable alternative to the 

literature by offering a reliable, interpretable, and 

computationally lightweight solution for ECG image 

classification, particularly suited for settings with limited data 

and hardware resources. 

The proposed approach has substantial potential for real-world 

medical applications. With the increasing prevalence of 

wearable health technologies, automated ECG classification 

models could be integrated into portable monitoring devices, 

telemedicine applications, and clinical decision support 

systems. Given that more than three-quarters of cardiovascular 

disease-related deaths occur in low- and middle-income 

countries, where access to specialized cardiologists is limited, 

deploying efficient, lightweight, and explainable artificial 

intelligence models could significantly improve early 

diagnosis and patient management. 

Furthermore, early and accurate identification of abnormal 

ECG patterns can facilitate timely medical intervention, 

reducing the risk of severe cardiac events. The integration of 

machine learning-based ECG analysis with electronic health 

records (EHR) could enhance personalized treatment 

strategies, enabling clinicians to tailor interventions based on 

automated insights derived from ECG patterns. 

Table 4 Overview of studies classifying ECG images 

Author, 

Year, 

Reference 

Diagnosis 
Data 

Size 
Method 

Result 

(ACC %) 

Oke et al., 

2025, [5] 

Normal, 

MI, ABH, 

Atrial 

fibrillation, 

Ischemic 

heart 

disease, 

Sinus 

bradycardia 

2848 

VGG16 + 

SVM + 

Random 

Forest 

95.00 
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Mhamdi et 

al., 2022, 

[6] 

Normal, 

MI, ABH, 

HMI 

928 

Fine-

Tuning 

MobileNe

tV2 

95.00 

Aversano et 

al., 2024, 

[11] 

Normal, 

MI, ABH, 

HMI 

928 CNN-2D 97.00 

Sadad et 

al., 2023, 

[7] 

Normal, 

MI, ABH, 

HMI 

928 

Lightweig

ht CNN + 

Attention 

Module 

98.39 

Ashtaiwi et 

al., 2024, 

[8] 

Normal, 

MI, ABH, 

HMI 

928 

Image 

Vectorizat

ion + 

ANN 

89.58 

This Study 

Normal, 

MI, ABH, 

HMI 

928 

WT + 

GLCM + 

XGB 

93.55 

 

5. Conclusions and Future Directions 

This study aimed to develop an effective and interpretable 

machine learning-based approach for classifying different 

cardiac conditions using ECG images, leveraging WT and 

GLCM feature fusion. The experimental results demonstrated 

that ensemble classifiers, particularly XGB and RF, achieved 

the highest classification performance, with XGB attaining an 

accuracy of 93.55%, highlighting the effectiveness of the 

proposed methodology in ECG-based diagnosis. 

This study demonstrates that WT and GLCM-based feature 

fusion, combined with ensemble machine learning classifiers, 

can achieve high performance in ECG-based cardiac condition 

classification, even with limited data availability. The 

proposed approach offers a computationally efficient, 

interpretable, and clinically relevant alternative to deep 

learning-based methods. While certain limitations remain, this 

work contributes to the growing body of research on AI-driven 

cardiac diagnostics and highlights the potential of machine 

learning in real-world medical applications. 

Future research should focus on expanding the dataset size and 

diversity to enhance model generalizability. Additionally, 

combining deep learning feature extraction with conventional 

machine learning classifiers could offer the best of both 

worlds-leveraging deep feature representations while 

maintaining model interpretability. Exploring ensemble 

models that incorporate both handcrafted and deep features 

could lead to further performance improvements. Finally, 

validating the model on real-world clinical ECG data and 

testing its integration with portable ECG devices will be 

crucial steps toward practical deployment. 
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