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Abstract: Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, accounting for 32% of global deaths.
Electrocardiography (ECG) is a widely used, cost-effective, and non-invasive diagnostic tool for detecting cardiac abnormalities.
However, ECG interpretation remains challenging due to noise interference, physiological variations, and the need for expert
evaluation. This study proposes a machine learning-based approach for automatic classification of cardiac conditions using ECG
images. The methodology involves feature extraction using Wavelet Transform (WT) and Gray-Level Co-occurrence Matrix (GLCM),
followed by feature fusion to enhance classification. A total of 928 ECG images from four categories—Myocardial Infarction (MI),
Abnormal Heartbeat (ABH), History of MI (HMI), and Normal—were analyzed. The extracted features were classified using XGBoost,
Random Forest, Support Vector Machine, K-Nearest Neighbors, Decision Tree, and Logistic Regression. Results showed that XGBoost
achieved the highest accuracy (93.55%), followed by Random Forest (93.01%), outperforming conventional methods. The findings
suggest that feature fusion enhances classification and offers an interpretable, computationally efficient alternative to deep learning.
This study contributes to automated cardiac diagnostics by providing a robust framework suitable for clinical applications and wearable
ECG systems.
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EKG Goériintiilerinde Dalgacik Déniisiimii ve GLCM Ozellik Fiizyonu Kullanarak Farkh Kardiyak Durumlarin
Makine Ogrenmesi ile Tespiti

Oz. Kardiyovaskiiler hastaliklar (KVH), kiiresel dliimlerin %32’sinden sorumlu olup, en yaygin liim nedenidir. Elektrokardiyografi
(EKG), kardiyak anormalliklerin tespitinde yaygin kullanilan, diigiik maliyetli ve non-invaziv bir yontemdir. Ancak giiriiltii, bireysel
fizyolojik farkliliklar ve uzman degerlendirme gereksinimi EKG yorumlamada zorluk yaratmaktadir. Bu c¢alismada, EKG
goriintiileriyle farkli kardiyak durumlar1 otomatik siniflandiran yeni bir makine 6grenmesi yontemi Onerilmektedir. Yontem
kapsaminda Dalgacik Déniisiimii (WT) ve Gri-Seviye Es-Olusum Matrisi (GLCM) ile 6zellik ¢ikarimi yapilmis, 6zellik fiizyonu
gerceklestirilmistir. 928 EKG goriintiisti dort kategori Miyokard Enfarktiisii — (MI), Anormal Kalp Atis1 — (ABH), Gegmis MI — (HMI),
Normal i¢inde analiz edilmistir. Cikarilan 6zellikler XGBoost, Random Forest, Destek Vektor Makineleri, K-En Yakin Komsu, Karar
Agaci ve Lojistik Regresyon ile simflandirilmistir. Sonuglar, XGBoost’un %93.55 dogrulukla en iyi performansi sergiledigini, onu
%93.01 ile Random Forest modelinin takip ettigini gostermistir. Bulgular, 6nerilen ozellik fiizyonunun siniflandirma basarisini
artirdigini ve derin 6grenmeye kiyasla daha yorumlanabilir, hesaplama agisindan verimli bir alternatif sundugunu gostermektedir.
Calisma, otomatik kardiyak tan1 sistemlerine katkida bulunarak klinik uygulamalara ve taginabilir EKG cihazlarina entegre edilebilir
bir makine 6grenmesi ¢ergevesi sunmaktadir.

Anahtar kelimeler: Kardiyak tespit, EKG suniflandirma, GLCM, Makine 6grenmesi, Dalgacik déniistimii
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1. Introduction

Cardiovascular diseases (CVDs), which represent 32% of all
global deaths, are recognized as the leading cause of mortality
worldwide [1]. Early diagnosis of these conditions is regarded
as crucial for minimizing the risk of death and facilitating
pharmacological management. Electrocardiograms (ECGs)
are commonly employed as the most widespread, cost-
effective, and non-invasive diagnostic method for
cardiovascular diseases. However, several disadvantages are
observed in ECG-based diagnoses. The ECG signal is
susceptible to contamination by various unwanted artifacts—
such as baseline wandering, power-line interference, and
muscle noise—and is subject to variations among individuals
due to different physiological states (e.g., during sleep or
exercise) and demographic factors [2]. Furthermore, ensuring
consistency and accuracy in ECG interpretations can be
challenging, even for experts, under these constraints.

An increase in ECG recordings has been observed due to the
growing prevalence of cardiovascular diseases and the
emergence of wearable health technologies [3]. This
expansion in data has generated a need for efficient and timely
analysis, leading to a higher demand for specialists. More than
three-quarters of deaths associated with cardiovascular
diseases occur in low- and middle-income countries,
indicating a shortage of specialized physicians worldwide,
particularly in these regions [1]. An automated ECG analysis
system is regarded as a pioneering solution for addressing the
current lack of specialized healthcare professionals and for
ensuring consistency and accuracy in ECG interpretations.

Various benefits are provided by computer-aided diagnosis
applications designed to assist physicians in diagnosing
diseases, including enhanced diagnostic accuracy and
efficiency, reduced errors and variability among physicians,
and lower healthcare costs through the prevention of
unnecessary tests and procedures. The development of
intelligent computer-aided diagnosis applications capable of
automated analysis has been enabled by recent advances in
artificial intelligence, particularly in deep learning and
machine learning methods. In the literature, several artificial
intelligence approaches that prioritize deep learning have been
proposed for the development of computer-aided diagnosis
systems intended for the automatic detection of cardiovascular
diseases [4].

A deep learning-based model was employed by Oke et al. [5],
to distinguish among six categories of heart disease, yielding
an accuracy of 95%. An embedded system approach relying
on deep learning models was proposed by Mhamdi et al. [6],
to analyze ECG images and automatically classify cardiac
arrhythmias, achieving an average accuracy above 98%. A
lightweight CNN combined with an attention module was
introduced by Sadad et al. [7], to classify real-time ECG
images in an loT environment, resulting in a 98.39% accuracy
rate.

A classification approach based on the vectorization of ECG
images was developed by Ashtaiwi et al. [8], with the aim of
enhancing heart disease diagnosis. In that study, ECG images
were subjected to feature extraction and vectorization
processes, and the resulting vectors were then transferred to a
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machine learning-based classification model. The proposed
method attained an accuracy of approximately 90% on the test
data.

In research conducted by Sattar et al. [9], advanced deep
learning models—such as CNNs and RNNs featuring various
layers and architectures—were utilized to automatically
process ECG waveforms, and their classification accuracies
were compared. An accuracy level of nearly 98% was reported
on the test data. A 2D CNN-based approach was employed by
Aversano et al. [10], for the early detection of heart diseases
through ECG images, reaching an accuracy of around 97-98%.
In another study by the same authors [11], ECG signals were
converted into image format and trained using a 2D CNN
model, allowing the automatic extraction of discriminative
features among different cardiac disorders. According to the
reported findings, the CNN-2D-based model was shown to be
effective and reliable for characterizing heart diseases, even
when single-lead ECG data were employed.

An ensemble compression technique was developed by
Mohanty et al. [12], with the aim of more efficiently storing
and transmitting cardiac data in smart healthcare systems by
combining various compression algorithms or machine
learning methods. The proposed technique was reported to
preserve decompressed data with an average accuracy
exceeding 95%, indicating that sufficient quality for diagnosis
and analysis can be maintained while reducing data storage
and transmission costs. In a study by Venkataiah et al. [13],
classical machine learning and deep learning models were
compared for the classification of ECG images. A CNN-based
approach was found to achieve the highest accuracy, generally
outperforming classical machine learning methods (e.g., SVM,
KNN) with a rate of approximately 98%. Beyond the diagnosis
of heart diseases, deep learning models have also been
frequently proposed for identifying COVID-19 based on ECG
images [14-16].

Despite the frequent proposal of deep learning-based methods
for ECG image analysis in the literature, several disadvantages
of deep learning require attention. In particular, deep
learning—especially models such as CNNs—often demands
very large datasets. By contrast, conventional pattern
recognition and classification methods can achieve reasonable
performance with limited data, a critical consideration in
medical fields where obtaining sufficient labeled data poses
significant challenges. Furthermore, the internal filters and
neuron learning mechanisms in deep learning are typically
treated as a “black box,” complicating the explanation of how
specific pixel or gradient information drives a model’s
decisions. Features extracted via conventional pattern
recognition methods tend to be more interpretable for medical
experts. Moreover, deep learning architectures such as CNNs
or RNNs involve a large number of parameters and may
require substantial GPU power and memory capacity, whereas
conventional methods can usually run on CPUs and often
exhibit advantages in embedded systems or resource-
constrained environments (e.g., 10T devices).

In the present study, an automatic and high-performance
diagnosis of cardiovascular diseases was conducted using
conventional pattern recognition and machine learning
methods on ECG images. A review of the existing literature
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indicates that no prior approach combining these methods for
diagnosing cardiovascular diseases on the dataset employed in
this study has been proposed thus far. To the best of our
knowledge, this is the first study that integrates WT and
GLCM feature fusion with ensemble machine learning
classifiers for cardiac condition detection in ECG images. The
suggested method addresses the limitations of deep learning
and contributes to the literature by achieving high performance
even in situations where data are limited.

Another key contribution of this study is the demonstration
that machine learning models, particularly XGBoost and
Random Forest, can achieve high classification accuracy
(93.55%) without requiring large-scale datasets. Compared to
deep learning-based models, the proposed method offers a
more computationally efficient and interpretable alternative,
making it suitable for embedded systems and clinical
applications where computational resources are limited.

Additionally, our approach provides a robust, interpretable,
and cost-effective solution for real-time ECG analysis, with
potential applications in wearable health devices, telemedicine
platforms, and automated clinical decision support systems.
Given the increasing prevalence of cardiovascular diseases
and the demand for automated diagnostic solutions, our work
presents an innovative framework that bridges the gap between
traditional handcrafted feature-based approaches and modern
Al-driven methodologies.

Beyond technical accuracy, the proposed method addresses the
growing need for interpretable and resource-efficient Al
solutions in healthcare. Its transparent feature extraction
process allows clinicians to better understand and trust the
model's decisions, which is essential for real-world adoption.
Moreover, the lightweight structure supports deployment on
low-power devices, making it ideal for remote monitoring,
mobile health systems, and underserved clinical settings. Thus,
this study not only contributes a novel methodological
approach but also offers a practical and scalable solution that
bridges the gap between academic innovation and clinical
applicability.

2. Materials and Methods

An overview of the proposed method is presented in Figure 1.
ECG images were initially provided as input and were then
subjected to a series of data preprocessing steps that included
resizing, normalization, and filtering. Wavelet Transform
(WT) and the Gray-Level Co-occurrence Matrix (GLCM)
were subsequently employed to extract and fuse the most
informative features. Afterward, the data was partitioned into
training and test sets for classification. During the training
phase, machine learning models were designed, cross-
validated, and refined through hyperparameter tuning. The test
set was subsequently used to evaluate the performance of these
models, and finally, various cardiac conditions were predicted
as the output of the classification process.
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Figure 1. Overview of the proposed method

2.1. Dataset

The ECG Images dataset of Cardiac Patients, published in
2021 by Khan et al. [17], contained four different cardiac
conditions:

« Ml (Myocardial Infarction Patients) with 239 images
*  ABH (Abnormal Heartbeat) with 233 images

«  HMI (History of MI) with 172 images

«  Normal (Normal Person) with 284 images

A total of 928 ECG images were included in the dataset, which
were split into training (742 images) and test (186 images) sets
using the Stratified Shuffle Split method with an %80-20 ratio.
Validation data were then partitioned in real time from the
training set by applying five-fold cross-validation. Samples
from the dataset were illustrated in Figure 2.
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Figure 2. Samples from the dataset
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2.2. Data Preprocessing

All images in the dataset were resized to 224 x 224 using the
Bilinear interpolation algorithm and were utilized in RGB
(red, green, blue) mode. The pixel values were then rescaled
from 0-255 to 0-1 for normalization.

A wavelet-based preprocessing method was applied to reduce
noise components in ECG images. The observed ECG data,
denoted by I,,,4 (i, j), is modeled as the sum of the underlying
clean ECG image I;,,. (i, j) and additive white Gaussian noise
N(,j), ie.,

Iabs (l']) = Il:‘rue (l,j) + N(i,j) (1)

By applying the two-dimensional Discrete Wavelet Transform
(2D DWT), the image is decomposed into lower-frequency
(LL) and higher-frequency (LH, HL, HH) subbands. Since
noise is typically more pronounced in higher-frequency
components, a thresholding operation is performed on those
subbands. In particular, Donoho and Johnstone’s [18]
universal threshold A = ¢/2In (N) is often adopted, where &
is an estimate of the noise standard deviation and N represents
the total number of pixels. The thresholded wavelet
coefficients are then reconstructed via the inverse wavelet
transform (IDWT) along with the unaltered low-frequency
subband, yielding a denoised ECG image in which critical
morphological features, such as the P and T waves, are
preserved.

This wavelet-based denoising process significantly enhances
the clarity of ECG signals, thereby improving the reliability of
both machine learning and classical methods used in
subsequent clinical or research-oriented tasks. In particular,
high-frequency artifacts that could distort vital waveform
characteristics are attenuated, ensuring more accurate
detection and measurement of ECG features.

2.3. Feature Extraction and Feature-Level Fusion

The Gray-Level Co-occurrence Matrix (GLCM) [19] is a
second-order statistical method used to model the spatial
relationship between pairs of pixel intensity values in an
image. Let | be a grayscale image with intensity values in the
range {0,1,...,.L-1}. For a specified displacement vector §
(defined by distance and orientation, e.g., § = (d,0) for
horizontal adjacency), the GLCM, denoted as P;(i,j), is
constructed such that each entry represents the probability (or
frequency) of observing intensity i at a reference pixel and
intensity j at the neighbor pixel offset by §. The co-occurrence
matrix is given in Eq. (2) where N; is a normalization factor.

L 1 1,if I(x,y) =iand (x +d,,y +98,) =,

RGj) = EZ(W fite) 0, othengse g Y) ! @)
Among the various descriptors derivable from the GLCM, four
fundamental measures typically employed to characterize
textural patterns are contrast, correlation, energy, and
homogeneity. Contrast quantifies the spatial frequency of
intensity differences, essentially capturing how sharply or
smoothly intensities change within the image. In Eq. (3), L is
the number of gray levels and P, (i, j) denotes the probability of
observing the pixel-intensity pair (i,j) under the specified
offset §.
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Contrast = Y120 ¥520(i — )* Py(i,)) @3)

Correlation, on the other hand, measures the linear dependency
between intensities in neighboring pixels. In Eq. (4), ; and y;
are the means, and o; and o; are the standard deviations of the
row and column sums of B, respectively. A higher correlation
value indicates a strong linear relationship among neighboring
intensities.

Correlation = ¥}2) Y525 107 U= 1) ﬂ;): ) IAGIING

J

Energy corresponds to the sum of squared entries in the
GLCM, reflecting uniformity within the image and is
calculated as given in Eq. (5). Higher energy values indicate
more frequent occurrence of certain density pairs and therefore
less textural variation.

Energy = Yo XizolPs (i, )]? )

Finally, homogeneity emphasizes the distribution of elements
near the diagonal of the co-occurrence matrix, providing a
measure of local similarity or smoothness and is calculated as
given in Eg. (6). Images exhibiting consistent or slowly
varying intensities tend to yield higher homogeneity scores.
. P (i,

Homogeneity = Y120 ¥iZ é1+((z ]]))2 (6)
Taken together, these four descriptors allow for a robust
characterization of the spatial relationships in ECG images,
capturing pertinent texture cues that can significantly aid in
subsequent classification tasks. To complement the spatial
descriptors obtained from GLCM, wavelet-based features are
extracted from ECG images to encode multi-resolution and
frequency-domain features. Specifically, the 2D DWT [20] is
applied to each ECG image I(x,y), decomposing it into
subbands at multiple scales. At each decomposition level s,
four subband coefficient matrices are generated: LL (low—
low), LH (low-high), HL (high-low), and HH (high-high).
Denoting the wavelet coefficients at level s and subband b by
W (x,y), @ common approach is to calculate the subband-
specific energies as given in Eq. (7). In Eq. (7), (x,y) spans all
coefficients in the subband b at level s.

Es,b = Z(x,y) |Ws,b (x, y)lz @)

In addition to energy, other statistical measures—such as
mean, variance, or entropy of the wavelet coefficients—can
also be extracted. These wavelet-based descriptors provide
insight into local frequencies and transient behaviors in the
ECG image, capturing edge-like features and subtle amplitude
variations that may be diagnostic in distinguishing specific
cardiac conditions.

A combined feature vector (F) is created by combining the sets
of GLCM and WT features. Specifically, let g = [g1, 92, -]
denote the GLCM feature vector and w = [wy,wy,...]
represent the wavelet-based feature vector. The resulting
combined feature vector was constructed as F = [g,w]
thereby integrating both the textural relationships captured by
GLCM descriptors and the multi-resolution information
derived from the wavelet coefficients. This comprehensive
representation facilitated more robust classification of the
ECG images.
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2.3. Classification

In the classification phase, features were classified using
machine learning techniques and tools. During the model
design stage, the Logistic Regression (LR), Support Vector
Machine (SVM), Random Forest (RF), K-Nearest Neighbor
(KNN), XGBoost (XGB), and Decision Tree (DT) algorithms
were used. In the modeling phase of the machine learning
classifiers, the GridSearchCV approach was employed to carry
out hyperparameter optimization. This method systematically
evaluates all possible hyperparameter value combinations,
thereby identifying the configurations that yield the highest
performance metrics.

Table 1 presents the Scikit-learn [21] classification algorithms
used in the application, along with the specific hyperparameter
ranges explored during optimization. The selection of
appropriate hyperparameters is crucial for optimizing the
performance of machine learning models. In this study,
various classifiers were employed, each with a set of
predefined hyperparameters to fine-tune their learning
behavior. LR was configured with L2 regularization (C = 1.0)
to prevent overfitting, while the Newton-Conjugate Gradient
(newton-cg) solver was chosen for its efficiency in handling
multinomial LR problems. The maximum number of iterations
(max_iter = 100) ensures convergence, and one-vs-rest (ovr)
multi-class strategy was used to facilitate multi-class
classification. For the SVM classifier, a linear kernel was
utilized, given its suitability for high-dimensional data, while
C = 0.1 was selected to balance the trade-off between margin
maximization and misclassification cost.

For ensemble-based methods, XGB and RF classifiers were
optimized using hyperparameters tailored to their specific
learning mechanisms. In XGB, the number of boosting rounds
was set to 100 (n_estimators = 100), while a learning rate of
0.1 ensured a gradual update of weights, preventing
overfitting. The maximum tree depth (max_depth = 3) was
constrained to control model complexity. Similarly, RF was
configured with 20 decision trees (n_estimators = 20), while
max_depth =20 and min_samples_split =5 were set to balance
depth and data splitting criteria. DT utilized the Gini impurity
criterion for split evaluation, with a maximum depth of 10 and
a minimum sample split threshold of 2 to avoid excessive
fragmentation. Lastly, KNN was set with 5 neighbors
(n_neighbors = 5), using the Minkowski distance metric (p =
2), which corresponds to the Euclidean distance, ensuring an
effective similarity measure for classification.

During the training phase, a five-fold cross-validation strategy
was implemented for these classifiers. In each iteration, the
training set was randomly partitioned into five distinct subsets,
from which four were used for training and one was designated
as the validation subset. Fig. 3 illustrates the learning curves
of the machine learning classifiers derived during the training
process. In these curves, the x-axis corresponds to the
algorithms’ accuracy, while the y-axis indicates the amount of
training data. Within each learning curve in Fig. 3, the red line
represents the training accuracy, and the green line denotes the
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cross-validation accuracy obtained via the five-fold cross-
validation procedure.

Overall, the learning curves indicate that RF, SVM, and XGB
achieve the highest validation accuracies, approaching
approximately 90-95% as the number of training samples
increases. LR also exhibits strong performance, converging to
a validation accuracy close to 85-88%. In contrast, KNN
maintains the lowest validation accuracy throughout the
training process, and the DT model settles at an intermediate
level of performance around 75-80%. These outcomes suggest
that ensemble methods (RF and XGB) and SVM are
particularly well-suited to the problem setup, whereas KNN’s
simpler, distance-based approach is comparatively less
effective.

From an overfitting perspective, both DT and RF display near-
perfect training scores accompanied by comparatively lower
validation accuracies, indicating a degree of overfitting in
those models (particularly in the early training stages).
However, the gap between training and validation scores
narrows as the sample size increases, suggesting that
additional data helps mitigate overfitting. SVM, XGB and LR
similarly achieve high training accuracy but ultimately
generalize well, evidenced by validation scores that steadily
rise and closely track the training curves at higher sample
sizes.

Table 1 The values of the hyperparameters

Classifier Hyperparameter Value

Logistic regression

C 1.0
solver newton-cg

max_iter 100

multi_class ovr

Support vector machine

C 0.1
kernel linear
XGBoost
n_estimators 100
learning_rate 0.1
max_depth 3
K-nearest neighbors
n_neighbors 5
p 2
metric Minkowski

Decision Tree

criterion Gini
max_depth 10
min_samples_split 2

Random Forest

max_depth 20
min_samples_split 5
n_estimators 20
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Figure 1. Learning curves of machine learning algorithms

3. Results and Discussion
3.1. Performance Metrics

The confusion matrix provides a tabular representation of the
classification outcomes, comparing predicted labels to true
labels. In binary classification, the matrix commonly reports
four types of results: True Positives (TP), False Positives (FP),
True Negatives (TN), and False Negatives (FN). By examining
these outcomes, one can diagnose specific error patterns, such
as how frequently the model inaccurately identifies positive
samples as negative and vice versa.

Several metrics can be derived from the confusion matrix, and
their formulas are presented in Table 2. Accuracy captures the
proportion of correct predictions among all predictions.
Precision quantifies how many of the predicted positive cases
are truly positive, while recall indicates the fraction of actual
positive cases correctly identified. The F1 score is a harmonic
mean of precision and recall, thus balancing both metrics in a
single measure. ROC AUC (Area Under the Receiver
Operating Characteristic Curve) assesses the model’s ability to
distinguish between classes over varying decision thresholds,
and higher values suggest better overall performance. Lastly,
the Jaccard similarity coefficient (JSC) measures the similarity
between the predicted and actual positive sets, reflecting how
much overlap exists between these two sets.

These evaluation metrics, derived from the confusion matrix,
provide a multifaceted view of model performance beyond
overall accuracy. While accuracy gives a general sense of
correctness, it may be misleading in imbalanced datasets,
making precision, recall, and F1 score crucial for a more
nuanced understanding. Precision is particularly important in
medical diagnostics where false positives may lead to
unnecessary stress or treatment, whereas recall is vital when
missing true cases—such as undiagnosed cardiovascular
conditions—poses significant risk. The F1 score balances
these two concerns, offering a more reliable indicator when
class distributions are uneven. Additionally, ROC AUC serves

as a threshold-independent metric, revealing how well the
model distinguishes between classes across various sensitivity
levels. Jaccard similarity further complements these measures
by quantifying the overlap between predicted and actual
positive cases, providing insight into the consistency of model
predictions.

Table 2 Performance metrics

Metric Formula
Accuracy TP+TN
TP +FP +FN+TN

Precision TP

TP + FP
Recall TP

TP +FN
F, Score Precision X Recall

Precision + Recall

Jaccard  similarity TP
coefficient TP+ FN + FP

3.2. Test Results

During the testing phase, a total of 186 images were employed,
consisting of 57 Normal, 47 ABH, 34 HMI, and 48 MI. In Fig.
4, the confusion matrices of the classifiers are presented.

Overall, the confusion matrices revealed that the Ml class was
predicted with near-perfect accuracy by all models, indicating
that minimal misclassification was observed for this specific
category. In contrast, the ABH and HMI classes were
misclassified to varying degrees, suggesting that these
categories posed more challenges for certain algorithms. In
particular, the KNN model was found to struggle considerably
in distinguishing ABH, leading to a large portion of ABH
instances being misclassified as other classes.

By comparison, the ensemble methods (RF and XGB) were
observed to achieve near-flawless performance, as almost all
samples were assigned to the correct classes. Similarly, SVM
was found to yield strong overall accuracy, although
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occasional confusion was noted between ABH and HML.
While the DT and LR models also performed favorably,
slightly higher misclassification rates were exhibited,
especially at the boundary between ABH and HMI. Taken
together, these findings suggest that ensemble approaches
offered the most robust classification performance, whereas
KNN emerged as the least effective within this particular
context.

In Table 3, the performance metrics for all six classification
algorithms were presented. It was observed that XGB achieved
the highest accuracy (93.55%), precision (93.70%), recall
(93.55%), F1 score (93.45%), and JSC (87.25%), thereby
establishing itself as the most robust method among the
models considered. Although RF registered a slightly lower
accuracy (93.01%), it was found to surpass all other algorithms
in terms of ROC-AUC (99.48%), indicating strong
discriminative power. KNN, on the other hand, exhibited the
weakest outcomes, as evidenced by its notably low accuracy
(61.29%) and comparatively modest values for precision,
recall, and F1 score.

These discrepancies in performance were likely attributable to
the inherent strengths of ensemble methods, which combine
multiple decision boundaries to reduce variance and enhance
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generalization. Specifically, XGB was observed to benefit
from gradient boosting strategies that fine-tune weak learners,
while RF leveraged bootstrap aggregation to mitigate
overfitting. By contrast, the distance-based approach of KNN,
which relies on local similarity, appeared inadequate in
capturing the nuances of the feature space without additional
optimization or feature engineering. Meanwhile, the DT and
LR classifiers maintained respectable accuracy levels of
81.72% and 83.87%, respectively, yet they were outperformed
by ensemble methods in all other key metrics, particularly in
ROC-AUC and JSC.

In conclusion, the superiority of ensemble classifiers was
consistently highlighted by their elevated performance across
multiple evaluation criteria. Although SVM also demonstrated
commendable results, achieving an accuracy of 86.02% and a
high ROC-AUC (98.14%), the methods based on boosted or
bagged decision trees proved more adept at optimizing both
sensitivity and specificity. Consequently, these findings
suggest that, for this specific classification task, XGB and RF
present the most effective solutions, whereas KNN’s
performance may be improved through further feature
engineering or hyperparameter tuning.
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Figure 2. Confusion matrices of machine learning algorithm

Table 3 Test results

Classifier (AO/S)C ;’);)e)cision ?z)c)all géore 285 _ 202():
(%) (%)

RF 93.01 93.62 93.01 9288 99.48 86.30
SVM 86.02 86.66 86.02 85,50 98.14 7525
KNN 61.29 73.64 61.29 53,57 79.95 43.13
DT 81.72 81.82 81.72 80.72 88.05 6845
LR 83.87 84.35 83.87 83.24 96.10 71.27
XGB 9355 93.70 93.55 9345 9893 87.25

4. Discussion

The findings of this study highlight the effectiveness of
combining WT and GLCM feature fusion with machine
learning algorithms for classifying different cardiac conditions
based on ECG images. The results indicate that ensemble-
based classifiers, particularly XGB and RF, outperform other
models by achieving high classification accuracy and robust
generalization. However, several aspects require further
discussion  regarding the limitations, advantages,
disadvantages, and clinical implications of the proposed
method.

Despite its promising results, the proposed method is not
without limitations. First, the dataset size (928 images)
remains relatively small, which may impact the
generalizability of the model to broader clinical applications.
While machine learning models, particularly ensemble
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methods, demonstrated strong performance, deep learning-
based approaches might outperform them if larger datasets
were available. Additionally, the reliance on handcrafted
features (WT and GLCM), although advantageous for
interpretability, may not capture all latent patterns present in
ECG images as efficiently as deep learning-based feature
extraction methods.

Another limitation pertains to class imbalance issues,
particularly in the HMI and ABH categories, which exhibited
higher misclassification rates. While stratified cross-validation
and ensemble techniques mitigated this issue to some extent,
further optimization, such as wusing synthetic data
augmentation techniques, could improve classification
performance. Furthermore, the study only focuses on ECG
images, whereas integrating raw ECG signals or multimodal
physiological data (e.g., heart rate variability, patient
demographics) could enhance diagnostic accuracy.

One of the most notable advantages of the proposed
methodology is its efficacy in scenarios with limited data
availability. Unlike deep learning methods, which typically
require thousands of labeled samples, the machine learning
approach combined with feature engineering provides high
performance without excessive computational demands. This
makes the method highly suitable for resource-constrained
environments, such as embedded systems in portable and
wearable ECG monitoring devices.

Moreover, wavelet-based denoising significantly enhances the
clarity of ECG images, which is a crucial advantage in medical
image analysis. The feature-level fusion of GLCM and WT
captures both spatial and frequency-based characteristics,
leading to more robust feature representations. Additionally,
the use of interpretable handcrafted features improves model
explainability, a critical factor in medical applications where
decisions must be justified to clinicians.

A comprehensive comparison of the proposed method with
relevant studies in the literature is presented in Table 4. While
most existing studies adopt deep learning-based approaches—
particularly CNNs—for ECG image classification and report
high accuracy levels (e.g., Sadad et al., [7]: 98.39%, Mhamdi
etal., [6]: 95%, Aversano et al., [11]: 97%), these models often
require large-scale datasets, GPU-based hardware, and entail
limited explainability due to their black-box nature. In
contrast, our study employs a handcrafted feature fusion
method based on WT and GLCM, followed by conventional
machine learning classifiers. Despite using the same dataset
size (928 ECG images), our approach achieved a high
classification accuracy of 93.55% with the XGB model, while
maintaining low computational complexity and high
interpretability—features that are especially beneficial for
real-world clinical applications and deployment in embedded
or mobile systems.

Several studies have emphasized model deployment on edge
devices; for instance, Mhamdi et al., [6] utilized MobileNetV2
and VGG16 models optimized for Raspberry Pi, achieving 92—
94% accuracy on-device. While impressive, such deep models
still necessitate model compression and fine-tuning to function
on limited hardware. Similarly, Aversano et al., [11]
developed two CNN-based architectures with accuracy 97% in
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multi-lead ECG analysis. However, these models demand
significant computational resources and training time, and
their internal operations are less interpretable to clinicians. In
contrast, our method provides transparency through
handcrafted features and operates effectively on CPUs without
specialized hardware. Moreover, unlike deep learning models
that often overfit small datasets or require augmentation, our
feature fusion strategy performs competitively without such
dependencies.

Although our method may not outperform the most advanced
deep models in raw accuracy, it offers significant advantages
in terms of deployment feasibility, explainability, and
efficiency—critical factors in clinical decision support
systems, telemedicine, and wearable health monitoring
technologies. Furthermore, unlike black-box CNNs, our
approach produces interpretable features that align with
clinical expectations. While manual feature engineering may
limit scalability to some extent, future research could explore
hybrid models combining shallow CNN embeddings or
transfer learning with handcrafted features to enhance
performance without compromising transparency. Overall, the
proposed method contributes a valuable alternative to the
literature by offering a reliable, interpretable, and
computationally lightweight solution for ECG image
classification, particularly suited for settings with limited data
and hardware resources.

The proposed approach has substantial potential for real-world
medical applications. With the increasing prevalence of
wearable health technologies, automated ECG classification
models could be integrated into portable monitoring devices,
telemedicine applications, and clinical decision support
systems. Given that more than three-quarters of cardiovascular
disease-related deaths occur in low- and middle-income
countries, where access to specialized cardiologists is limited,
deploying efficient, lightweight, and explainable artificial
intelligence models could significantly improve early
diagnosis and patient management.

Furthermore, early and accurate identification of abnormal
ECG patterns can facilitate timely medical intervention,
reducing the risk of severe cardiac events. The integration of
machine learning-based ECG analysis with electronic health
records (EHR) could enhance personalized treatment
strategies, enabling clinicians to tailor interventions based on
automated insights derived from ECG patterns.

Table 4 Overview of studies classifying ECG images

Author,

i . Data Result
Year, Diagnosis Size Method (ACC %)
Reference
Normal,
MI, ABH,
fi b'rAiItIrz;ztiilon VGG16 +
Oke etal., on, SUM
2025, [5] Ischemic 2848 . 95,00
heart
i Forest
disease,
Sinus

bradycardia
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Mhamdi et Normal, TZ':;_
al., 2022, MI, ABH, 928 . Y 95.00
(6] HMI MobileNe
tv2

Aversano et Normal,
al., 2024, MI, ABH, 928 CNN-2D 97.00

[11] HMI
Sadad et Normal, tiggm 'S
al., 2023, MI, ABH, 928 . 98.39
7] HMI Attention
Module
Ashtaiwi et Normal, ngggiiat
al., 2024, MI, ABH, 928 ion + 89.58
[8] HMI ANN
Normal, WT +
This Study MI, ABH, 928 GLCM + 93.55
HMI XGB

5. Conclusions and Future Directions

This study aimed to develop an effective and interpretable
machine learning-based approach for classifying different
cardiac conditions using ECG images, leveraging WT and
GLCM feature fusion. The experimental results demonstrated
that ensemble classifiers, particularly XGB and RF, achieved
the highest classification performance, with XGB attaining an
accuracy of 93.55%, highlighting the effectiveness of the
proposed methodology in ECG-based diagnosis.

This study demonstrates that WT and GLCM-based feature
fusion, combined with ensemble machine learning classifiers,
can achieve high performance in ECG-based cardiac condition
classification, even with limited data availability. The
proposed approach offers a computationally efficient,
interpretable, and clinically relevant alternative to deep
learning-based methods. While certain limitations remain, this
work contributes to the growing body of research on Al-driven
cardiac diagnostics and highlights the potential of machine
learning in real-world medical applications.

Future research should focus on expanding the dataset size and
diversity to enhance model generalizability. Additionally,
combining deep learning feature extraction with conventional
machine learning classifiers could offer the best of both
worlds-leveraging deep feature representations while
maintaining model interpretability. Exploring ensemble
models that incorporate both handcrafted and deep features
could lead to further performance improvements. Finally,
validating the model on real-world clinical ECG data and
testing its integration with portable ECG devices will be
crucial steps toward practical deployment.
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