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Abstract 

Portfolio managers’ first concern is the accuracy of the measurement and the allocation of the risk of the 

portfolio. There exists many risk measures in the literature which provide a solution to the former 

problem. On the other hand, risk capital allocation provides an efficient portfolio management. It 

distributes the diversification benefits among the sub-portfolios. It is known that one of the important 

steps of the risk management is the determination of the dependence structure of sub-portfolios. Copula 

provides a nice and easy solution to this problem. In this study it is shown that the dependence structure 

plays an important role for risk capital allocation and inaccurate selection of copula can create 

ineffective allocations.  

Keywords: risk capital allocation, copula, risk measures, geometric Brownian motion  

Öz 

 Risk Sermayesi Dağıtımında Bağımlılık Modellemesinin Önemi 

Portföy yöneticilerinin en önemli kaygılarından biri portföy risklerinin ölçümünün ve bu risklerin 

dağıtımının doğruluğudur. Literatürde birçok risk ölçümü ilk soruna çözüm üretmektedir. Diğer taraftan 

risk sermayesi dağıtımı, çeşitlendirmeden kaynaklanan faydaları portföye dağıtarak etkin bir portföy 

yönetimi sağlar. Bilindiği gibi risk yönetiminde en önemli adımlardan biri portföyün bağımlılık 

modellemesidir. Copula bağımlılık modellemesinde etkin ve kullanışlı bir yöntemdir. Bu çalışmada 

bağımlılık modellemesinin risk sermayesi dağıtımında çok önemli bir rol oynadığı ve uygun olmayan 

copula seçiminin etkin olmayan risk sermayesi dağıtımına yol açabileceği gösterilmiştir. 

Anahtar sözcükler: risk sermayesi dağıtımı, copula, risk ölçümleri, geometrik Brownian hareketi  

 

 

1. Introduction 

Risk capital allocation is of special interest to the financial companies (which is referred by the term 

portfolios in this study). An important issue is the solvency of these companies. Risk capital is held to 

assure risk managers that the company stays solvent even if claims are larger than expected. Risk 

capital is basically determined by a risk measure. Many risk measures exist in the literature, commonly 

used ones are Value at Risk and expected shortfall. 

On the other hand, risk capital allocation is mainly used for certain type of decisions as e.g. risk 

management, pricing, financial decisions concerning the investment problem [3]. The risk capital 
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allocation in financial firms has already been discussed by several authors (see [1, 2, 7, 11, 12, 15, 16]). 

An important property of the allocation method is the coherency. The concept of coherent allocation of risk 

capital has been introduced by [2] which define some set of properties to be fulfilled by an allocation 

method. 

Perhaps the most important point in risk management is the determination of the dependency structure of 

portfolios. This structure is directly affects the total return on portfolios and should be studied in detail. In 

a well diversified portfolio one can overcome bad market conditions and still can make profit. For the 

determination of the dependence between sub-portfolios, well known Markowitz model uses variance-

covariance matrix. However, this setup can neglect the non-linear dependency structure between the sub-

portfolios. Therefore, we need to use an approach that considers these types of structures. Copula methods 

are easy and tractable for these purposes.  

 

The contribution of this study is the investigation of the effects of different dependency structures on a 

stock portfolio and their effects on the risk contributions of sub-portfolios. The layout of this study is as 

follows. Section 2 introduces the definitions of risk measures. Section 3 defines the risk capital allocation 

and a particular allocation method. Section 4 describes the copula approach and some particular copulas. 

Section 5 presents a case study which simulates a stock portfolio with different dependency structures and 

the comparison of allocations on these portfolios. The final section concludes. 

2. Risk Measures 

Given a probability space (Ω, F, P), we will consider the vector space L
p
(Ω, F, P), for 1 ≤ p ≤ ∞. We treat 

L
p
(P)’s elements as random variables. We have || X ||p= (EP | X |

p
)

1/p
. A risk measure, ρ, is a mapping 

from a set of random variables L
p
(P), 1 ≤ p ≤ ∞ to the real line R, i.e.  

 

ρ: Lp
(P) → R 

 

X → ρ(X) 

An unacceptable risk can be transformed into an acceptable risk by adding other instruments to the position 

and the cost of this instrument (minimum cash) measures the risk of the position. In this study we only 

employed popular risk measures namely, Value at Risk and expected shortfall.  

 

2.1. Value at Risk 

Value at Risk (VaR) is based on standard portfolio theory which uses estimates of the standard deviations 

and correlations between the losses to different instruments. It measures the maximum potential loss of a 

given portfolio over a prescribed holding period at a given confidence level α where α ∈ (0, 1). For given 

confidence level α, VaR can be defined as,  

VaRα(X) = − inf{x ∈ R: P(X ≤ x) > α}.                                                (2.1) 

VaR has many pros: it provides a common measure of risk across different positions, it is probabilistic and 

gives useful information on the probabilities associated with specified loss amounts and it can be expressed 

as ‘lost money’ [4].  

However, VaR has a number of cons as well. VaR can not consider tail losses beyond the selected 

quantile. It can penalize the diversification in portfolios instead of rewarding it. Because of these 

shortcomings, a number of consistent risk measures have been introduced in the literature.  

 

2.2. The Expected Shortfall  

The expected shortfall (ES) at level α can be described as an average of VaRs at level α and higher. It is 

defined as in the following equation. 



U. Karabey / İstatistikçiler Dergisi: İstatistik&Aktüerya, 2015, 8, 1-9 3 

ESα(X) = −E[X | X ≤ −VaRα(X)]                                                   (2.2) 

VaR gives only the potential loss amount in the ‘bad’ cases which happens with the probability α, 

whereas ES measures the average loss in these ‘bad’ cases. Moreover, expected shortfall belongs to the 

family of coherent risk measures (note that the coherency of risk measures are out of this papers’ scope.) 

and it provides better approach for risk measurement. It is more sensitive to the shape of the return 

distribution and it counts tail of the distribution completely. For more details, see [10].  

 

3. Risk Capital Allocation 

Risk capital allocation can be used for many purposes. Firstly, by comparing different losses on capital 

for each portfolio, one can answer if a portfolio is worth to keep or not. Secondly, allocation provides a 

useful device for assessment of performance of managers, which can be linked to their compensations. 

Moreover, allocation can be used in pricing. The following definitions are adapted
 
from [10].

 
  

 

Consider now that a portfolio has n sub-portfolios where N={1,2,...,n} is the set of all sub-portfolios. 

Each sub-portfolio’s loss is represented by Xi, i ∈ N then, aggregate loss of the portfolio can be described as 

in the following.        

XX
n

i i =∑ =1  
 

In the literature, many researchers have proposed a set of axioms that any desirable allocation method is 

expected to satisfy [2, 8]. 
  

 

Let D be the set of risk capital allocation problems: pairs (N, ρ) composed of a set of n lines and a 

coherent risk measure ρ. Allocated capital for line i is denoted by ai. An allocation is a functional Π: D → 

R
n
 that maps each allocation problem, (N, ρ), into a unique allocation: 
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3.1. Properties for a coherent allocation 

An allocation Π is said to be coherent, if for every allocation problem (N, ρ) satisfies the following 

properties.  

 

Full Allocation: The allocated capitals add up to the total capital.  
 

∑ =
=

n

i iaX
1

)(ρ  

 

 
No Undercut: The risk of any subset M of the total risk N is always lower than the sum of stand-alone 

risks of that subset. 

 

)(, ∑∑ ∈∈
≤⊆∀

Mi iMi i XaNM ρ  
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Symmetry: For any subset M ⊆ N \ {i, j}, if sub-portfolios i and j make the same contribution to 

the risk capital of subset M, then ai = aj. This property ensures that a sub-portfolio’s allocation depends 

only on its contribution to risk within the portfolio.  

Riskless Allocation: Assume that last portfolio (line) is riskless with the initial price 1 and strictly 

positive price r in any state of nature at time T. Therefore, Xn = αr and  

an = ρ(Xn) = ρ(αr) = −α 

According to this axiom, a riskless portfolio should be allocated exactly its risk measure which can be 

negative. It is easy to see that this axiom is related to the translation invariance axiom of coherent risk 

measures.  

 

3.2. Methods of Allocation 

 

There are various allocation methods exist in the literature namely, variance-covariance method, 

proportional method, Merton-Perold method, The Shapley method, The Aumann-Shapley method and 

Euler method. Theoretical and practical aspects of these allocation methods have been analyzed in a number 

of papers [2, 6, 9, 10, 14, 16, 17].  However, in this particular study, we focus on the Euler method. The Euler 

allocation method has been suggested by several authors for different reasons: 

 

• Tasche [1999] shows that the Euler principle is compatible with portfolio optimization / performance 

measurement for a positive homogeneous and differentiable risk measure. 

• Denault [2001] derives the Euler allocation principle by game theory and argues that the allocation based 

on the Euler method is the unique fair allocation for a coherent risk measure. 

• Myers and Read [2001] argues that in order to determine line by line surplus requirements effectively in 

an insurance company the most appropriate way is to apply the Euler principle. 

• Kalkbrener [2005] argues that the Euler principle is the only allocation principle that is compatible with 

the diversification effects which plays an important role in the portfolio management. 

 

For the reasons outlined above, we consider the Euler method as our only allocation method in this study.  

 

3.2.1. Euler Method 

Consider a function ρ: Lp
(P) → R, if ρ is positively homogeneous and differentiable at u ∈ R

n
, then we 

have 

 

( ) ( )
∑

= ∂

∂
=

n

i i

i
u

uX
uuX

1

)(
)(

ρ
ρ

                                                                               (3.1)

 

Under the Euler method the capital allocated to the sub-portfolio Xi of X is the derivative of associated 

risk measure ρ at X in direction of Xi. Note also that in this study all used risk measures are positive 

homogeneous and differentiable.  

For the calculation of allocations under Euler principle we need partial derivatives of risk measures 

with respect to asset weights. Detailed information about partial derivatives of risk measures can be found 

in [9].  

 
4. Copula 
 

Copula methods have become very popular in modelling dependency and they provide a flexible way 

to express joint distributions of random variables. A d-dimensional copula is a distribution function, 

defined on [0,1]
d
 with standard uniform marginals. It combines univariate distributions to obtain a 
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joint distribution with a particular dependence structure. The foundation theorem for copulas, Sklar's 

theorem, states that for a given joint multivariate distribution function and relevant marginal 

distributions, there exists a copula function which relates them. 

 

Sklar's Theorem (Bivariate Case) 
For ease of notation take d=2. Let FXY be a joint distribution with margins FX and FY, then there exists 

a function C: [0,1]
2
 � [0,1] such that 

 

(y))F (x),C(Fy)Y x,P(Xy)(x, F YXXY =≤≤=  

 

If X and Y are continuous, then C is unique. On the other hand, if C is a copula and FX and FY are 

distribution functions, then the function FXY defined by above equation is a joint distribution function 

with margins FX and FY, see [13]. 

 
Sklar’s theorem allows separating the marginal feature and the dependence structure which is represented 

by the copula. The function C is the cumulative distribution function of the pair (U, V) where U= FX (X) 

and V= FY (Y), and 

),(),(
2

vu
vu

C
vuc

∂∂

∂
=  

 
is the associated probability density function. Sklar’s theorem proves the existence and uniqueness of the 

copula. At the same time it shows how to construct the copula from the initial distribution. The copula is 

given by 

))(),((),( 11 vFuFFvuC YXXY

−−=  

where )(1 uFX

−  and )(1 vFY

−
 are the inverse functions with 1,0 ≤≤ vu . Using a copula to build 

multivariate distributions is efficient technique, because it gives flexibility of choosing different marginals 

and the derived multivariate distribution contains the information about the dependence structure of its 

components. The simplest copula types are independence, comonotony (for extreme positive dependence) 

and counter-comonotony (for extreme negative dependence). More advanced ones are called elliptical and 

Archimedean copulas. For more information about copula see [18]. 

 

For this particular study we employed Gaussian and t copula which are the members of elliptical copula 

family. The class of elliptical distributions provides many multivariate distributions which enables 

modelling of multivariate extremes and other type of non-normal dependences.  

 

Gaussian Copula 
Gaussian copula is defined by, 

(4.0) 

where ]1,1[−∈ρ  is linear correlation coefficient of corresponding bivariate  normal distribution. 

Gaussian copula is useful for its easy simulation method. However, it does not have tail dependence on 

both tails. 

 

t-Copula 
t-copula is defined by, 

(4.1) 
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where ρ  is linear correlation coefficient of corresponding bivariate υt  distribution for 2>υ . This copula 

has symmetric tail dependency and degree of tail dependency can be set by degrees of freedom parameter, 

for more information see [5]. 

 

5. An Application to a Stock Portfolio  

We adapted the same scenario and the same data with [10] for the simulation study. In this empirical 

study we used a stock portfolio of five companies and monthly data, which covers the period from 

February 2003 to February 2012, is taken from the website of the Yahoo Finance. We assume that given 

total wealth is 1,000,000 TL which is equally weighted to the sub-portfolios. We consider one-period 

framework; therefore between time T=0 and T=1 no trading is possible. We assume ‘risk’ to be given by 

a random variable X representing a cash flow at time T=1 such as X = X(1) − X(0). Individual stock 

returns are modelled by geometric Brownian motions (GBM), i.e. price processes Xi (i = 1,...,5) with 

 

( ) 0)2/(exp)0()( 2 ≥+−= tZttXtX iiiii σσµ
                                

(5.0)

 

where µ i is the drift, σi is the diffusion coefficient, Xi(0) is the price of the i-th asset at time 0 and Z is a 

standard normally distributed random variable.  

We compute N=100,000 simulations and by using these realizations we can compute estimates using 

the empirical distribution given by the simulation output. For simulation we need discretization. For 

more details about discretization, see [14]. Note that used time-step is 1/12 (prices are monthly) for 

discretization. Estimated geometric Brownian motion parameters are given in Table 1. Estimated 

covariance matrix of hypothetical historical increments of underlying Brownian motions is given in 

Table 2.  

 

Dependency structure is modelled by three different setups namely, standard covariance based setup, 

Gaussian copula setup and t copula setup. For copula setups model parameters are estimated with 

copula fitting methods. According to the estimation results which is based on the maximum 

likelihood method, t-copula (loglikelihood: 37.646) fits data better than the Gaussian copula 

(loglikelihood: 32.703). 

 

Table 1: Parameters of Stock Return Distributions 

 
Parameters BP Ltd GSK Ltd PRU Ltd TOMK Plc TSCO Plc 

Drift µ  0.093 0.012 0.112 0.016 0.151 
Diffusion σ 0.197 0.172 0.356 0.319 0.207 

 

Table 2: Correlation matrix of hypothetical historical increments 

                     of underlying Brownian motions.  

 
 BP Ltd GSK Ltd PRU Ltd TOMK Plc TSCO Plc 

BP Ltd 1.0000 0.1884 0.2279 0.1447 0.1753 
GSK Ltd 0.1884 1.0000 0.2996 0.2189 0.4457 
PRU Ltd 0.2279 0.2996 1.0000 0.5480 0.4292 

TOMK Plc 0.1447 0.2189 0.5480 1.0000 0.3034 
TSCO Plc 0.1753 0.4457 0.4292 0.3034 1.0000 

 

According to the parameter estimates in Table 1, TSCO Plc has the highest drift and PRU Ltd has the 

highest variation. Table 2 shows that the correlations between different stocks distributed between 0.15 
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and 0.55. Table 3 shows the distributions of log-returns of the stocks. PRU Ltd shows a skewed 

distribution compared to the other stocks. All stocks have a long tail which indicates that the risk of the 

stocks might be high. 

Table 3: Histograms of log-returns 

 

Table 4: Allocation Proportions to Sub-Portfolios for Different Dependency Setups and 

Confidence Levels 
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Allocation proportions of stock portfolio based on two most commonly used risk measures are given in 

Table 4. TOMK Plc. and PRU Ltd. turn out the most risky portfolios whereas BP Ltd. and TSCO Plc. 

seem less risky.  

Allocations based on different dependency setups indicate that allocations show significant differences. 

By considering the fact that VaR is much sensitive to the confidence level, we can expect that these 

differences become more considerable for higher confidence levels.  

Especially, for Value at Risk allocations can be very different for varios type of dependency structure. The 

main reason for this is the tail distributions of the stocks. For different confidence levels allocations vary 

dramatically.  

On the other hand, according to the results with respect to the expected shortfall, variation in the 

allocations seems low. This fact results from the coherency of the expected shortfall.  

Because of the skewed and long tailed shape of the log-return distributions, t-copula fits better than other 

choices. Therefore, allocations stem from the t-copula setup should be fair. 

6. Conclusions 

In this study we have analysed the effects of different dependency structures on risk capital allocations 

by using two commonly used risk measures namely, Value at Risk and expected shortfall. We employed 

the Euler method for the risk capital allocation. We found that dependency setups can change the 

allocations dramatically. Especially for long tailed distributions these changes can be high. Portfolio 

managers need to analyse the dependency on portfolios in detail and should choose an accurate models 

in order to get efficient and accurate results in risk management process.  
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