ÖZET: Süt şekeri fermentasyonu ile oluşan süt asidinin L(+) ve D(-) süt asidinin olmak üzere iki izomeri mevcuttur. Bu yüzden ferment süt ürünlerinde L(+) ve D(-) veya bu iki süt asidinin karışımları olan DL süt asidi bulunmaktadır. Bunların ferment süt ürünlerindeki miktarı ve birbirlerine oranısı, süt ürününün çeşidine, asitliğine, ürünün olgunumunda rol oynamayı bakteri suyunun özellikle göre değişmektedir. L(+) süt asidi kolaylıkla hazırlanıldığı halde fazla miktarda D(-) süt asidi alan küçük çocuklarda hâlî karmalar ortaya çıkılmaktadır. FAO-WHO uzmanlar komitesi, bebeklerin D(-) süt asidi alamamasını ve üç aylıktan küçük bebeklere eksik süt ürünleri verilmemesini önermişlerdir.

Importance of L(+) and D(-) Lactic Acid in Fermented Milk Products

Abstract: Lactic acid produced during the fermentation of lactose has two optic isomers named L(+) and D(-) lactic acid. Therefore, in fermented milk products L(+), D(-) lactic acid or their mixture DL are present. The amount of these and their ratio in fermented milk products depend on kind of milk products, their acidity and the strains of bacteria used in fermented milk products. L(+) lactic acid is digested easily. But high amount of D(-) lactic acid could cause some problem in infants. Experts from FAO-WHO committee are suggesting that fermented milk products could not give to infants less than three month old.

GİRİŞ

Süt, içerdigi besin maddelerinin çeşitliliği ve miktarı nedeniyle her yaşta ki kişilerin sağlıklı beslenmesi için büyük önem arzetmektedir. Sütte temel besin maddeleri olan protein, yağ, karbonhidrat, mineral maddeler ve vitaminler mevcuttur. Süt proteini beslenme için gerekli olan tüm eksogen amino asitleri; süt yağları da çok önemli eksogen yağ Asitlerini içermekte ve sütte organizmanın ihtiyaç duyduğu tüm vitaminler ve mineral maddeler yer almaktadır.

Sütteki karbonhidrat olan süt şekeri, diğer adıyla laktoz; glikoz ve galaktozdan meydana gelen bir disakkarittır. Bunun inek, koyun ve keçi sütündeki miktarı % 4.5, kadın sütündeki miktarı ise % 7 civarındadır. Beslenme fiziolojisi...
bakımından birçok yararları bulunan laktoz, birçok süt ürününün oluşumunda çok önemli rol oynamaktadır. Çeşitli yollara süte geçen mikroorganizmalar ve bazı süt ürünlerinin üretiminde süte katılan bakteriler; faaliyetleri için ihtiyac duymaktadırlar. Enerjiyi sağlamak, yeni hücrelerin oluşumu için gereklidir. Maddeleri sentezlemek, yani çoğalmak ve faaliyet göstermek için süt şekerine ihtiyaç duyularlar ve süt şekerini parçalarlar (1).

Enerjice zengin organik maddelerin mikroorganizmalar tarafından enzymatik olarak enerjice fakir organik maddelere parçalanmasına, termantasyon denir. Süte katılan süt asidi bakterileri de süt şekerini termente ederek süt asidi ile diğer bazı maddeleri oluştururlar. Süt asidinin oluşumunun bir etabı olarak, bir höchden meydana gelişen süt asidi bakterileri çıkardıkları laktaz (B-galaktosidaz) enzimi ile süt şekerini glikoz ve galaktoz halinde parçalarlar. Daha sonra bu şekillerin çeşitli enzimlerin etkisi ile aşağıdaki görüldüğü gibi süt asidine dönüşür ve bir mol süt şekerinden 4 mol süt asidi meydana gelir (2, 3).

\[
\begin{align*}
&\text{Laktaz} \\
&\text{1 2 11 2} \\
&\text{Süt şeker} \quad \text{Su} \\
&\text{Glikoz} \quad \text{Galaktoz}
\end{align*}
\]

\[
\begin{align*}
&\text{CH}_2\text{O} + \text{HO}_2 \rightarrow \text{CH}_2\text{O} + \text{CHO} \\
&12 12 11 \quad 6 12 6
\end{align*}
\]

\[
\begin{align*}
&\text{Glikoz} \quad \text{Galaktoz} \\
&\text{CH}_2\text{O} + \text{CHO} \rightarrow 4\text{CH} + \text{CH}_2\text{OH} + \text{COOH} \\
&6 12 6 \quad 6 12 6
\end{align*}
\]

\[
\begin{align*}
&\text{Glikoz} \quad \text{Galaktoz} \\
&\text{süt asidi}
\end{align*}
\]

Fermentasyon sırasında homofermentatif süt sığı bakterileri % 90 min üzerinde süt asidi oluşturdukları halde, heterofermentatif süt asidi bakterileri ise % 70 oranında süt asidi ile diğer bazı maddeleri meydana getirirler. Noyalar ise fermentasyonla esas olarak etil alkol, CO2 ve H2 oluştururlar (4).

Süt Asidinin Özellikleri

süt şekerinin fermentasyonu sonucu oluşan süt asidinin iki izomeri bulunmaktadır.

- L (+) süt asidi
- D (-) süt asidi

Süt asidi bakterilerinin süt şekerinin fermantasyonu ile oluşturdukları süt asidinin optik özellikleri ayrı ayrı belirtilmiştir. Çizelge 1 de görüleceği gibi Bifidobacterium bifidum, Bifidobacterium longum, Lactobacillus casei, Streptococcus thermophilus, Lactococcus lactis subsp. lactis ve Lactococcus lactis subsp. cremoris sadece L(+) ; Lactobacillus delbrueckii subsp. lactis, Lactobacillus delbrueckii subsp. bulgaricus, Lueconostoc mesenteroides subsp cremoris ve Lueconostoc mesenteroides subsp. dextransum sadece D(-); Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus helveticus ve Pediococcus acidolactic DL süt asidi meydana getirmektedir. Pakat araştırmalar Bifidobacterium bifidum ve Bifidobacterium longum'un % 5; Lactococcus lactis subsp. lactis 'in % 3 oranında D(-) süt asidi oluşturduklarını ortaya çıkarmıştır (5,6).

Beslenme Bakımından L(+) Ve D(-) Süt Asidinin Önemi

Metabolizma sırasında insanlarda süt asidi oluştuğu, fakat bunun sadece L(+) süt asidi olduğu anlaşılmıştır. Yapılan çalışmalar L(+) süt asidinin kalp kasları ile karaciğer, böbrek ve beynin enerji kaynağı olduğunu, hayvansal nişasta olan glikojenin parçalanmasında rol oynadığını ortaya çıkarmıştır. Bu yüzden L(+) süt asidi fiziolojik süt asidi olarak kabul edilir ve vücuda alınan bu asidin tamamı hiç bir sorun ortaya çıkmadan sindirilir. Pakat vucutta oluşmayan H(-) süt asidinin değerlendirilmesi farklıdır. Yetişkin kişiler D(-) süt asidinin en çok bir kısımı tole ettiğili halde küçük çocukların, özellikle süt emen çocuklarn bunun parçalanması için gereklid olan özel enzime sahip olmaları bakımından alınan miktarın çok azını tole edebilirler (6).
<table>
<thead>
<tr>
<th>Bakteri</th>
<th>Optimum gelişme sıcaklığı</th>
<th>Süt asidi</th>
<th>Fermentasyon şekli</th>
<th>Ürünler</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. bifidum</td>
<td>36-38</td>
<td>L(+)</td>
<td></td>
<td>Biyogurt</td>
</tr>
<tr>
<td>B. longum</td>
<td>36-38</td>
<td>L(+)</td>
<td></td>
<td>Biyogurt</td>
</tr>
<tr>
<td>Lb. acidophilus</td>
<td>35-38</td>
<td>DL</td>
<td>Homofer.</td>
<td>Biyogurt, asidofoilucu süt</td>
</tr>
<tr>
<td>Lb. casei</td>
<td>37</td>
<td>L(+)</td>
<td>Homofer.</td>
<td>Yakult</td>
</tr>
<tr>
<td>Lb. lactis</td>
<td>40-43</td>
<td>D(-)</td>
<td>Homofer.</td>
<td>Kefir</td>
</tr>
<tr>
<td>Lb. bulgaricus</td>
<td>40-45</td>
<td>D(-)</td>
<td>Homofer.</td>
<td>Yöyurt</td>
</tr>
<tr>
<td>Lb. brevis</td>
<td>30</td>
<td>DL</td>
<td>Heterofer.</td>
<td>Kefir</td>
</tr>
<tr>
<td>Lb. plantarum</td>
<td>30-45</td>
<td>DL</td>
<td>Heterofer.</td>
<td>Fermente yiyecek</td>
</tr>
<tr>
<td>Lb. helveticus</td>
<td>30-35</td>
<td>DL</td>
<td>Heterofer.</td>
<td>Fermente yiyecek</td>
</tr>
<tr>
<td>Sc. thermophilus</td>
<td>38-42</td>
<td>L(+)</td>
<td>Homofer.</td>
<td>Kefir, eksi süt ürünleri</td>
</tr>
<tr>
<td>Lc. lactis</td>
<td>30</td>
<td>L(+)</td>
<td>Homofer.</td>
<td>Kefir, eksi süt ürünleri</td>
</tr>
<tr>
<td>Lc. cremoris</td>
<td>30</td>
<td>L(+)</td>
<td>Homofer.</td>
<td>Kefir, eksi süt ürünleri</td>
</tr>
<tr>
<td>Leu. cremoris</td>
<td>18-25</td>
<td>D(-)</td>
<td>Heterofer.</td>
<td>Eksi süt Ürünleri</td>
</tr>
<tr>
<td>Leu. dextranicum</td>
<td>20-30</td>
<td>D(-)</td>
<td>Heterofer.</td>
<td>Kefir, eksi süt ürünleri</td>
</tr>
<tr>
<td>Ped. acidilactis</td>
<td>40</td>
<td>D(-)</td>
<td>Homofer.</td>
<td>Eksi süt Ürünleri</td>
</tr>
</tbody>
</table>

Dünya Sağlık Teşkilatı (WHO) ve FAO uzmanlarının 1973 yılında yaptıkları ortak toplantında, insan organizmasının risk olmaksızın 100 mg/kg D(-) süt asidini hazmettiğini ve L(+) süt asidi için bir sınır bulunmadığını kabul etmişlerdir. Örneğin 70 kg ağırlığındaki bir kişi günde 7 gram D(-) süt asidini hazmedebilmektedir. Bu miktar %1 oranında süt asidi içeren ve bunun % 50'si D(-) süt asidi olan 1400 gram yoğurtta mevcuttur. Bu durumda 70 kg ağırlığındaki bir kişi günde rahatlıkla 1400 gram yoğurt yiyebilmektedir. Bu bakımdan pratikte eksi süt ürünlerini tüketen yetişkin kişilere besinlerdeki D(-) süt asidinin sorun yaratması söz konusu değildir (7).

Çocuklar, özellikle beşikler için durum farklıdır. Doğumda karaciğer tiam olarak gelişmediği için bebekler D(-) süt asidini metabolize edemezler ve aldıkları zaman da "asidosis" adı verilen bir rahatsızlık ortaya çıkar. Bu bakımdan yeni doğan bebeklerin süt asidi fazla yiyeceklerle beslenmemesi gerekir. FAO-WHO uzmanları komitesi, üç aylıktan küçük olanların D(-) süt asidi almaması gerektiğini bildirmişlerdir (7,8).
Fermente Süt Ürünlerinde L(+) ve D(−) Süt Asidi Miktari

Süt asidinin beslenme bakımından bilinen bu özelliği nedeniyle birçok ekşi süt ürünlerindeki D(−) ve L(+) süt asıdını belirlemek amacıyla çeşitli çalışmalar yapılmıştır. Bu araştırmaların sonucu çizelge 2. deki gibi özetlenmiştir.

Çizelge 2. Bazı Fermente Süt Ürünlerinde L(+) Süt Asidi Oranı (8).

<table>
<thead>
<tr>
<th>Süt ürünü</th>
<th>L(+) süt asidi oranı %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoğurt</td>
<td>47-60</td>
</tr>
<tr>
<td>Yoğurt (300 örnek ortalaması)</td>
<td>58</td>
</tr>
<tr>
<td>Yoğurt (55 örnek)</td>
<td>50-60</td>
</tr>
<tr>
<td>Meyveli yoğurt (53 örnek)</td>
<td>50</td>
</tr>
<tr>
<td>Yoğurt</td>
<td>65</td>
</tr>
<tr>
<td>Yoğurt</td>
<td>56</td>
</tr>
<tr>
<td>Meyveli yoğurt</td>
<td>53</td>
</tr>
<tr>
<td>Meyveli yoğurt</td>
<td>40</td>
</tr>
<tr>
<td>Sanaoghurt</td>
<td>92-97</td>
</tr>
<tr>
<td>Sanaoghurt (İsviçre)</td>
<td>20-50</td>
</tr>
<tr>
<td>Ekşi süüt</td>
<td>88-96</td>
</tr>
<tr>
<td>Ayran</td>
<td>87</td>
</tr>
<tr>
<td>Biyoğurt</td>
<td>57-79</td>
</tr>
<tr>
<td>Biyoğurt</td>
<td>35-93</td>
</tr>
<tr>
<td>Biyoğurt</td>
<td>85-90</td>
</tr>
<tr>
<td>Biyoğurt</td>
<td>95</td>
</tr>
</tbody>
</table>

Çizelgede süt ürünlerindeki L(+) süt asıdını oranının sabit olmadiği ve her araştırmacının farklı değerlendirmeleri dikkati çekenektedir. Bunun iki önemli nedeni bulunmaktadır. Birincisi saf kültürde yetiş alan bakterilerin özelliklerini, ikincisi ise yoğurduğun asitliği ve inkübasyondan sonra yoğurta olgun asitliği.

Özellikle DL süt asıdı oluşturutan bakterilerin ürünü meydana getirdikleri L(+) ve D(−) süt asıdını oranları bakteri suşları arasında önemli farklılık göstermektedir. Saf kültürde çok fazla L(+) süt asıdı meydana getiren bir bakteri suşi mevcut ise, bu kültürde yapılan fermente süt ürününde L(+) süt asıdını oranı da artmaktadır.

Yoğurtlarda ise bu iki süt asıdı izomerlerinin oranı yoğurduğun asitliği, özellikle inkübasyon sona erdikten sonra oluşan asitliği bağlı olarak değişmektedir. Yoğurt bakterilerinden Streptococcus thermophilus daha çok inkübasyonun başında faaliyet gösteren, düşük pH da faaliyeti duran ve L(+) süt asıdı üreten bir bakteridir. Lactobacillus delbrueckii subsp. bulgaricus daha çok faaliyet gösterdiğiinden, asıdı büyük yoğunlukta yoğurtlarda veya inkübasyonun
bağlancında L(+) süt asidi orani fazla, asitliği yüksek yani pH sı düzük yoğurtta ise D(-) süt asidi orani fazla olmaktadır. Nitekim WIESNER ve arkadaşılarının (9) 243 yoğurt örneği üzerinde yaptıkları bir araştırma sonucu bunun doğru olduğunu görmekteyiz (Çizelge 3).

<table>
<thead>
<tr>
<th>Süt asidi</th>
<th>L(+) süt asidi %</th>
<th>D(-) süt asidi %</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/100 ml.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>68</td>
<td>32</td>
</tr>
<tr>
<td>700-900</td>
<td>68</td>
<td>32</td>
</tr>
<tr>
<td>900-1100</td>
<td>54</td>
<td>46</td>
</tr>
<tr>
<td>1100-1300</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td>1300</td>
<td>56</td>
<td>46</td>
</tr>
</tbody>
</table>

Son yıllarda bazı Avrupa ülkelerinde süt ürünleri ambalajında L(+) süt asidinin oranını bildiren bilgilere rastlanmaktadır ve böylece tüketiciin L(+) süt asidi içeren süt ürünlerini tüketmesi teşvik edilmektedir. Ayrıca süt ürünleri yapımında L(+) süt asidi üreten suşların kullanılmasına çalışılmaktadır.

Kaynaklar