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ABSTRACT:

This research paper concerns with the population dynamics of a multi-species
and multi-chemicals chemotaxis system characterized by a parabolic-parabolic-
elliptic-elliptic structure under no-flux boundary conditions in a smooth
bounded domain. This research study examines the global existence, global
boundedness, and persistence of mass of solutions of the system mentioned
above. In all spatial dimensional settings, we first demonstrate the global LP-
boundedness of solutions under some explicit parameter conditions that notably
exclude any dependence on the dimensionality. Then, it has been establihed
that the global existence and boundedness of positive solutions are implied by
LP-bounds of solutions under the exact same hypotheses. In addition to these
ones, we prove that any globally bounded classical solution eventually persist
as a whole under the same conditions. The results obtained in this study
contribute to a more profound theoretical understanding of chemotaxis models
in multi-species and multi-chemical environments. In order to establish the
qualitative properties of chemotaxis model mentioned in the above, some
advanced mathematical techniques and strategies has been developed.
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INTRODUCTION

The term chemotaxis models explain the movement of motile species in response for some
certain chemical gradient in their regions. Keller and Segel promoted a notable differential equations
sytem to characterize this phenomenon both mathematically and biologically (see references in (Keller
& Segel, 1970; Keller & Segel, 1971). This natural event is observed in many biological procedure
such as tumor growth, immune cell migration, and population dynamics. Numerous authors
investigated chemotaxis models from various perspectives, including local existence, uniqueness,
finite time blow-up, global existence and boundedness, persistence, and stability. The readers are
referred to the research papers (Horstmann, 2004; Hillen & Painter, 2009; Bellomo et al., 2015) for
additional information.

Throughout this research article, the subsequent parabolic-parabolic-elliptic-elliptic chemotaxis
model that includes two-mobile species and two-chemicals as well as two-logistics kinetics has been
considered

U = Au— yV- (uVz) + au — bu?, x€qQ,
v, = Av— AV - (uVz) + cv —dv?, x€Q,

0=Az—z+w, x €, (1)
L O=Aw—-—-w+u+v, x €,
ou ov 0z ow
5—5—5—5—0, x € 0Q,
along with the initial u(x, 0): = uy(x) and v(x, 0): = vy (x) fulfilling
Uy, Vg € C°(Q) and ug, vy =0, (2)

and together with a smooth domain Q ¢ R™ withn > 1 and a,c > 0 and b,d, y,A > 0 are positive
constants such that

b >4y + 4, (3)
and

d >y + 4A. 4)
From the biological aspects, model Eq. (1) represents the growing of two species that are in
competition and subject to two chemical substance in their neighborhood. We point out that this is the
first research work associated with the system Eq. (1). Throughout this study, we will investigate the
LP-bounds, global existence, global bounds and long-range behaviors for any global positive solution
such as mass persistence of the system Eq. (1).

We point out that up to now, many variants of the system Eqg. (1) have been investigated in many
research works. In particular, let us mention about the related literature for one species or multi-species
and one-multi type chemical substance models. First, assume that v(x,t) = 0 and w(x, t) = 0, which
corresponds to

ur = ku—yV-(uVz)+au—bu? x€Q, t>0,
{Ozkz—z+u, x€eEN t>0,

()

Case I: Assume n>2 and a = b = 0. Then system Eq. (5) has a finite-time blows-up in
solutions of Eqg. (1) under some restriction on the initial data. The reader are directed to the papers
(Herrero et al., 1996; Herrero & Velzquez, 1997; Nagai & Senba, 1998;Nagai, 2001) for more details.

Case Il: Assume a,b > 0. Then model Eqg. (5) has a globally bounded solution under the

restriction n < 2 or n = 3 whenever y < %, see (Tello & Winkler, 2007). This result was extended
in in (Hu & Tau, 2017) and they proved that the global existence and boundedness of this model was
obtained at the critical point, which is y = % with n > 3. In addition, the mass persistence of
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solutions of Eq. (5) was first studied in (Tao & Winkler, 2015a) and it was shown that in any space
dimensional setting, when ( is a convex domain, then all positive solutions to model Eq. (1) always
persists as a whole. Then the convexity condition for the persistence of mass of solutions has just been
eliminated in (Kurt, 2025b) under the the following explicit conditions

n<2 or )(SS-% with n > 3.

For the other dynamical behaviors of solutions for similar chemotaxis models including weak
solutions, stability, persistence, the readers are referred to the papers (Chaplain & Tello, 2016; Hu &
Tau, 2017; Issa & Shen, 2017; Kurt, 2025a; Kurt, 2025¢; Kurt & Shen, 2021; Lankeit, 2015; Lankeit,
2015b; Tello, 2004; Viglialoro, 2016; Winkler, 2010).

Now we give some known results for the similar models of Eq. (1). Consider the subsequent
chemotaxis model which includes a two-species and a one-chemoattractant as well as a Lotka-Volterra

kinetics:

ur =Au— V- uvz) + pyu(l —u —a,v), X €EQ,
vy = Av — AV - (uVz) + pup,v(1 — a,u — v), x € Q, (6)
O0=Az—z+u+v, X € Q,

Tello and Winkler in (Tello & Winkler, 2012) established the global existence, boundedness and
asymptotic stability for the sytem Eq. (6) under the explicit restrictions 2(y + A1) + a,u; < u, and
2(x + 1) + a4y < py. Some developed results related to system Eq. (6) can be found in (Tello, 2004;
Black et al., 2016; Lin et al., 2017; Mizukami, 2018). We refer the readers to the articles (Bai &
Winkler, 2016; Issa & Salako, 2017; Kurt & EKkici, 2025; Lin & Mu, 2017; Xiang, 2018; Issa & Shen,
2019; Xie, 2019) for the existence, boundedness, long-term behavior of solutions such as asymptotic
stability, persistence, competitive exclusion, coexistence, etc for the similar models of Eg. (6).

The fundamental consequences of this paper read as below.

Theorem 1 (Global existence and boundedness) Assume that Eq. (3) and Eq. (4) are valid.
Then for any given initial functions ug, v, fulfilling Eq. (2), the solution triple (u,v,w,z) is global,
which means,

Timax(Uo, Vo) = 0.
Moreover, there exists a positive number K, € (0, o) such that

sup l u + v o)< Keo-
t>0
Theorem 2 (Mass persistence) Assume that Eq. (3) and Eqg. (4) hold. Then for any given initial

functions uy, v, fulfilling Eq. (2), there is ¢ > 0 such that
Jou+J,v=oforeveryt > 0.

MATERIALS AND METHODS

The next lemma is related to the local existence of solution of Eq. (1), which is obtained from
[(Tello & Winkler, 2007), Theorem 7].

Lemma 1. Assume ug,v, satisfy (2). There exists Ty.x(ug, Vo) € (0, 00] fulfilling Eq. (1)
derives a classical solution that is unique on (0, Tpax(Uo, vo)). Moreover, u,v € C((0, Tyax) X Q) N
C*1((0, Tpay) X 1)) and z,w € C*°((0, Tppax) X ). If Typax <o, then limsupe,r . [lu+
V”Co(ﬁ) = 00,

We now provide some basic estimates in the following.

Lemma 2. It holds that

Jousm:= max{%|ﬂ|,fQ U},
and
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fﬂ v<m,: = max{§|ﬂ|'fg Vo},
forall t € (0, Trax)-

Proof. Using integration by parts on the equations Eq.(1) ; and Eq.(1) ,, respectively, as well as
using Holder inequality, we get

d b
Efﬂuzafﬂu—bfﬂuzSafﬂu—ﬁ(fﬂu)z,
and
d d
Efﬂvchﬂv—dfﬂvzScfﬂv—ﬁ(fﬂv)z,

forall t € (0, Ty,ax)- The ODE's comparison principle completes the proof.

Lemma 3. Foranyp > 1,
fﬂ wPtl < zp{fﬂ uPtl 4 fﬂ Up+1}

Proof. First, by multiplying the equation Eq.(1) , by u?~! and employing integration by parts,
one entail
Jou™t(kw —w+u+v) =0,
which entails
p [ wPTHVW| + [, wPT = [ uwP + [ vwP,
Here, Holder's inequality directs to

[, uw? < (f, w1 - (f, WPt

and
1
foy o < ([ PP (f w P
It then follows with the nonnegativity of [ w?~!|Vw|? that
N i S i
fQ wP+l < (fﬂ up+1)p+1 . (fﬂ Wp+1)p+1 + (fﬂ vp+1)p+1 . (fﬂ Wp+1)p+1,
which gives
1 1 \pt+1
fo w?t < {(fy )+ (f, w2 *1))
< 2P{f uP*t + [ vPH)
The proof is over.
Lemma4. Forall p > 1, we have
_
_ 2p+1
Jo uPIVu - Vz < ot {@p+1) [ wptt+ [ vPtt),
and

p

2p+1
p(p+1) {out+@p+ 1D [, vP*}

Jo P Vr - Vz <

forevery t € (0, Thax)-

Proof. By integration by parts over Q together with Eq. (1) 5, H6lder's inequality and Lemma 3
yields
pfuP™ Vu - Vz=— [ uPAz
= — [y zu? + [, wuP

= (fg Wp+1)p1? ) (fg up+1)ﬁ
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1 p
< (2 {f w4 fy v ([ w
1
S 2% fQ up+1 + Zﬁ(»fﬂ vp+1)m . (J.Q up+1)%
2p+1 £
ﬁfn uP+1 4 2p+1 'Efn pPb+1
for every t € (0, Tinax)- Similarly, we can obtain

[ VPV Wz < 2901 i [yt gpe ALyt
plyv v-Vz < il A

P
< 2p+1.

for every t € (0, Tphax)- The proof thus finishes.

We now establish LP-bounds.
Lemma 5. (LP-bounds) Assume that u,, v, satisfy Eq. (2), and the parameters x, A, b, d satisfy

Eqg. (3) and Eq. (4). Then for any given p > 1, one have K(p) > 0 such that
JouP + [ vP S K(®) Vt € (0, Tax).
Proof. First, testing the Eq. (1) ; by u?~! with p > 1 and the Eq.(1) , by v?~! with p > 1 and
adding both equations arrives at

» dt(f up+f Up>=—(p—1)fup 2|Vu|? — (p—1)fvp 2|72

+(p = Dx [ uP™'Vu-Vz+ (p— DA [, vP~ Vv Vz
taf uP +cf vP—b [ uPtt —d [ vP*, (7)
for t € (0, Tpax)- In view of Lemma 4, we have

@ - Dy [, uP~'Vu - vz < E&@, p+1)(f WPt 4 Pl

P
p+1 vp+1
P+ 1) xJo v

(p+1)
and

p+1” yp+1 4 @TDEPHY Zﬁlfﬂ pPHL

— r-1
(p—DA[ v’ Vv - Vz < D

which yields
(p—DxJ,uP™'Vu - Vz+ (p— DA J, vP7'Vv - Vz

( +1)

_ p_
P-1)(@p+1)x+A)2Pt1 uP+1 (-1 (x+(@2p+1)A)2P+1 p+1
= p(p+1) fﬂ + p(p+1) fﬂ v ®)
for t € (0, Tmayx)- In addition, in lights of Young's inequality,
afyuP <ef uP™ +C(a,p &0, (9)
and
cfyvP <ef, vP* +C(c,p, e Q) (10)

for t € (0, Tmax). Collecting Eq. (7)-(10) entails

_b_ _b_
p dt (f up + f vp) {(p_l)(2p+1)2p+1X + (p_1)2p+1l + £ — b} fQ up‘l‘l

p(p+1) p(p+1)
_p_ _p_
(p—1)2p+1 (p—1)(2p+1)2p+1

p(p+1) p(p+1)
—e(f uP + [ uP)+ C forall t € (0, Tyax),

A

/1+e—d}f vPHl

due to the fact
P P
p(p+1) p(p+1)
and the main assumptions Eqg. (3) and Eq. (4) thatare b > 4y + A and d > y + 44, which implies that
h> (p—l)(2p+1)2# (p—l)Zﬁ)L te
p(p+1) p(p+1)

and
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P P
(p—1)2p+1 (p—1)(2p+1)2P+1 Ite
p(p+1) p(p+1)

Therefore, the Gronwall's inequality concludes that
2C
Jo u? + [, vP < K(p):= malx{fQ ug + [, 4, ?} for all t € (0, Tpax)-
The proof is over.
RESULTS AND DISCUSSION

Now, one will first examine global existence and global boundedness, and then mass persistence
in Eq. (2).
Global existence and boundedness

We point out that if p > % then global L?-boundedness of solutions in time implies the L*-

boundedness in time of solutions. Since we showed the LP-bounds of solutions without any restrictions
in Lemma 5, one simply prove the existence and boundedness results using the well-known approach.

Proof (Theorem 1). We shall show that T,,,, = o through the contradiction method. First,
thanks to the constant formula, one can write

t
u(t,) = e =Dy, — )(f e~ U=Dty . (u(., s)Vz(-, s))ds

0

+ [ e U=Dty(, s)(a + 1 — bu(,s))ds
=11+, +1; forall te€ (0, Thax), (11)
and
v(t,) = e =Mty — )(fot e~ U=ty . (p(-,5)Vz(:,5))ds
+ [ e =D, 5)(c + 1 — dv(, 5))ds

=:J;+J,+]J; forall t € (0,Tpax), (12)
where I — A:D(I —A) c LP(Q) - LP(Q) with D(I —A) ={u € W2P(Q)]| du-v =0 on 00}, and
e~tU=2) represents an analytic semigroup which is generated by —(I — A) on LP (). We now give the
following estimates for I, I,, I; and J;, J,, J5. First,

I I o gy=Il e U™t llpe0qy<ll ug = VE > 0. (13)
and

[ ]1 "L°°(Q):” e_(I_A)tUO "L°°(Q)S” Vo ”L°° vt > 0. (14)
Next,

2

I I3 Nyooy=fy e C™%u(, s)(a+ 1= bu(,5))ds < 25Vt € [0, Tyna). (15)
and

I Js o= Jy e ™Dt (,s)(c + 1 = dv(,5))ds < (”;) Ve € [0, Toa). (16)

Third, let p > 1 and assume that §<p<n<q and r € (1,00) such that %—%<% and %< 1-—

q(% — %). Now the Gagliardo-Nirenberg inequality and Lemma 5 direct to

Y r Z<CIV n <C <C < C,, 17
192 ar  SCUVZL < Clutw ||Lp(m_ (Ul lp gy +1 v lpggy) < (17)
for all ¢ € (0, Tinay), due to - = - L< = z ) == nnp Now, Lemma 2 and Holder inequality,

- TSI
p n

and Eq. (17), we get

uvz <l ulljarcoy:ll Vz r
" ”Lq(g) ” ||Lq Q) ” "qu—_l(Q)
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1 1
S AR I
S 1—i
< (ml)qr Al u ”L°°(Q) forall te (0, Tmax)- (18)

Similarly, we have
I vVz Il a@)y<Il v llar@)-ll Vz IIL%

1 1
<Iv ”Ll(n) Il v ”Loo(Q) Il Vz IILnnpp(Q)

1 1_i
< (mz)qTCp Il v ”L°°(Q) forall t € (0, Tax)- (19)

Now let us fix g € (Z'E) and ¢ € (O,%— B) as well as T € (0, Tpyax)- Hence, by using well-known
semigroup estimates and Lemma 4, we obtain

t
Il I3 Ml oo )=l ){j e~ Uty (uvVz) 0y
0

t
<Cix fo I e"U=tY - (uVz) et @

t
= Cix j I (I — A)Pe~U=DtY . (uVz) llp(q
0

t 1
< Cyx f (t—)PA+ (t—5)2)e ) || uVz g ds
0
1

S

< C3X><f (t =) 2659 w07 d

1
< C,x X (t—s) F2e=5=9)ds x sup Il u(,s) I

0 SE[0,T] LOO(Q)
1
<Gy sup lu(,s) " 20
se[opr] SRR (20)
for every t € [0,T], where C,, € (0, o). Similarly, we have
1
Il J2 oo cqy=1Il 2 f e =Dy . (vV2) llyw@)< G, SEJp] Il v(,s) "me) (21)

Substituting I, I,, I and J;, J,, J5 into EQ. (11), we obtain

sup Il u(t,) e+ sup Nl v(t,) llpe<Il ug iy +Il vo o)+
te[o,T] te[0,T]

+Cp - (sup Nl u(-,t) llpeogqy+ SUP Il v(,t) ”L°°(Q))
te[0,T] tefo,T

forevery T € (0, Tpax), Where 0 < 1 — q—r < 1and Cp > 0. Thus we get

(a+ 12 (c+1)?
4d

_1

limsupllu + vl o q) < o,

t->Tmax

which contradicts to Lemma 7. This entails that Ty, = o0 and sup||u + v|| = (q) is bounded for all

t > 0 such that there is K > 0 such that
supllu + v|l o) < KVt > 0.
Therefore, the proof is complete.

Mass persistence of solutions
This subsection analyzes mass persistence of solutions to Eq. (1). Observe that, by Theorem 1,

Tinax(Uo, Vo) = oo, and (u,v,w, z) is the globally bounded classical solution of system Eg. (1) on
(0, 00). Let us begin providing an estimate for (u + v) from below.
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Lemma 6. Assume that k € (0,1). Then there is o > 0 such that
Jouk+ [ v 20 forall t>0.
Proof. First, by multiplying the equation Eq. (1) ; by u*~* with k € (0,1) and the equation Eq.

(1) , by v*~1 with k € (0,1), respectively, and then integrating over Q and adding theses equations to
obtain

1 d
——(f u"+.f v")z(l—k)fu"_2|Vu|2+(1—k)f vF=2|vp|?
ko dt\Jq Q Q Q

—(1- k))(f uk=vu - Vz — (1 — k)/’lf v*1vy - Vz
Q Q
+afyuf+cf, v —b [ uktt —d [ v (22)
for all t > 0. Observe, by Lemma 5, that we can find p > min{2, k + 1} such that
1—-k
(1- k))(f uk=lvu - vz = —uf ukAz
: 1 kk ; 1—-k
__C )xf sk 4 & )xf ik
k Q k Q
LY PRRCEL Y e
Q

“k(k+1)Jg k+1

S(l—k))(zk Juk+1+jvk+1 +(1_k))(f pk+1
k(k+ 1) o Q k+1 Jg

< Cy(k,x) <fﬂ uk+l 4 fﬂ vk“)

and
(1- k))lJ v vy - Vz < C,(k, 2) <f uk+t +J v"*l),
Q Q Q
which gives
(1- k))(j uk V- Vz + (1 — k)AJ v 1vy - Vz < C3(k, x, A) (f uktl +J vk+1>, (23)
Q Q Q Q

for all t > 0. Note that by Theorem 1, we have the boundedness of u and v, which means
supllull = (qy, supllvll o) < Ko
>0 >0

This together with Gagliardo-Nirenberg inequality and Young’s inequality, we get

1_& k(n+1)
Colie 1, 1) f Ukt < Gk, D) (Ko) ' f wow
Q Q

1 1.1

2 2tn Lt
< Cy(k, x, 1,1, Ks) <f u"‘2|Vu|2> <f u") + Co(k, x, 4,1, Ky) <j uk>
Q Q Q

1+% 1+%
S(l—k)f u*2|Vu|? + Cs <f uk> +C4<f uk>
Q Q Q
and similarly,

2 1
1+E 1+ﬁ
C3(k,)(,A)J vl < (1 - k)f vE2|Vp|? + Cq (J v") + C; <f vk>
Q Q Q Q

forall t > 0. Hence we get
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a-wx

ukFlvu vz + (1 - k)/lf v vy - Vz
Q Q

< C3(k,x, 1) (f uk+t +f v"“)
Q Q

<(1- k)f uk2|Vu|? +1 - k)f vF=2|vp|?
Q Q

1+2 1+= 1+2 1+=
+Cs (f uk> + C, <f uk> +Cq (f vk> + C; (f v") (24)
Q Q Q Q

forall t > 0. Thus, we get from Eq. (22) to Eq. (24) that

L Ll )
a(l) el .
2w ([ [ ) ([t [22) "< [t [ )

for all t > 0. One can conclude, by the Lemma (Tao & Winkler, 2015b), that there is o > 0 fulfilling
fuk+ka2(r forall t> 0.

The proof is hence over.

Proof (Theorem 2). First of all, by Holder inequality, for any given k E (0,1), we get

(u+v)>|Q| % {f (u+v) }

>|Q|k {fu +f } forall t> 0.

Next, by Lemma 6, for any given k € (0,1), there is ¢ > 0 such that
uk+f vk >g forall t>0.
Q Q

k-1 1
](u+v)>|ﬂ| K Uu +j } Q| k¥ ok forall t>0.
Q

The theorem thus follows.
CONCLUSION

Hence, we get

In this research artcile, the followings has been shown: First, in Lemma 5, LP-bounds of u is
established under the conditions Eq. (3) and Eq. (4), b >4y +Aand d > y + 44, which are
independent of the parameter p, hence the dimension n. Second, thanks to this achievement, one is
able to derive global existence & boundedness, and persistence of mass as independent of p, hence the
dimension n. This is very exciting result and also shows that dimension n is not a critical parameter in
obtaing the results presented in Theorem 1 and Theorem 2.
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