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ABSTRACT:  

This research paper concerns with the population dynamics of a multi-species 

and multi-chemicals chemotaxis system characterized by a parabolic-parabolic-

elliptic-elliptic structure under no-flux boundary conditions in a smooth 

bounded domain. This research study examines the global existence, global 

boundedness, and persistence of mass of solutions of the system   mentioned 

above. In all spatial dimensional settings, we first demonstrate the global 𝐿𝑝-

boundedness of solutions under some explicit parameter conditions that notably 

exclude any dependence on the dimensionality. Then, it has been establihed 

that the global existence and boundedness of positive solutions are implied by 

𝐿𝑝-bounds of solutions under the exact same hypotheses. In addition to these 

ones, we prove that any globally bounded classical solution eventually persist 

as a whole under the same conditions. The results obtained in this study 

contribute to a more profound theoretical understanding of chemotaxis models 

in multi-species and multi-chemical environments. In order to establish the 

qualitative properties of chemotaxis model mentioned in the above, some 

advanced mathematical techniques and strategies has been developed.  
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INTRODUCTION 

The term chemotaxis models explain the movement of motile species in response for some 

certain chemical gradient in their regions. Keller and Segel promoted a notable differential equations 

sytem to characterize this phenomenon both mathematically and biologically (see references in (Keller 

& Segel, 1970; Keller & Segel, 1971).  This natural event is observed in many biological procedure 

such as tumor growth, immune cell migration, and population dynamics. Numerous authors 

investigated chemotaxis models from various perspectives, including local existence, uniqueness, 

finite time blow-up, global existence and boundedness, persistence, and stability. The readers are 

referred to the research papers (Horstmann, 2004; Hillen & Painter, 2009; Bellomo et al., 2015) for 

additional information. 

Throughout this research article, the subsequent parabolic-parabolic-elliptic-elliptic chemotaxis 

model that includes two-mobile species and two-chemicals as well as two-logistics kinetics has been 

considered 

{
 
 

 
 
  𝑢𝑡 = Δ𝑢 − 𝜒∇ ⋅ (𝑢∇𝑧) + 𝑎𝑢 − 𝑏𝑢2,       𝑥 ∈ Ω,   

  𝑣𝑡 = Δ𝑣 − 𝜆∇ ⋅ (𝑢∇𝑧) + 𝑐𝑣 − 𝑑𝑣
2,        𝑥 ∈ Ω,   

 0 = Δ𝑧 − 𝑧 + 𝑤,                                        𝑥 ∈ Ω,
 0 = Δ𝑤 − 𝑤 + 𝑢 + 𝑣,                              𝑥 ∈ Ω,

  
∂𝑢

∂𝜈
=

∂𝑣

∂𝜈
=

∂𝑧

∂𝜈
=

∂𝑤

∂𝜈
= 0,                            𝑥 ∈ ∂Ω,

                                                                            (1) 

along with the initial 𝑢(𝑥, 0):= 𝑢0(𝑥) and 𝑣(𝑥, 0): = 𝑣0(𝑥) fulfilling  

 𝑢0, 𝑣0 ∈ 𝐶
0(Ω̅)    a𝑛𝑑    𝑢0, 𝑣0 ≥ 0,                                                 (2) 

and together with a smooth domain Ω ⊂ ℝ𝑛 with 𝑛 ≥ 1 and 𝑎, 𝑐 > 0 and 𝑏, 𝑑, 𝜒, 𝜆 > 0 are positive 

constants such that  

 𝑏 > 4𝜒 + 𝜆,                                                                   (3)   

 and 

 𝑑 > 𝜒 + 4𝜆.                                                                   (4) 

From the biological aspects, model Eq. (1) represents the growing of two species that are in 

competition and subject to two chemical substance in their neighborhood. We point out that this is the 

first research work associated with the system Eq. (1). Throughout this study, we will investigate the 

𝐿𝑝-bounds, global existence, global bounds and long-range behaviors for any global positive solution 

such as mass persistence of the system Eq. (1). 

We point out that up to now, many variants of the system Eq. (1) have been investigated in many 

research works. In particular, let us mention about the related literature for one species or multi-species 

and one-multi type chemical substance models. First, assume that 𝑣(𝑥, 𝑡) = 0 and 𝑤(𝑥, 𝑡) = 0, which 

corresponds to  

{
𝑢𝑡 = 𝑘𝑢 − 𝜒∇ ⋅ (𝑢∇𝑧) + 𝑎𝑢 − 𝑏𝑢2,    𝑥 ∈ Ω, 𝑡 > 0,
 0 = 𝑘𝑧 − 𝑧 + 𝑢,                                      𝑥 ∈ Ω, 𝑡 > 0,

                                                                       (5)  

  

Case I: Assume 𝑛 ≥ 2 and 𝑎 = 𝑏 = 0. Then system Eq. (5) has a finite-time blows-up in 

solutions of Eq. (1) under some restriction on the initial data. The reader are directed to the papers 

(Herrero et al., 1996; Herrero & Velzquez, 1997; Nagai & Senba, 1998;Nagai, 2001) for more details. 

Case II: Assume 𝑎, 𝑏 > 0. Then model Eq. (5) has a globally bounded solution under the 

restriction 𝑛 < 2 or 𝑛 ≥ 3 whenever 𝜒 <
𝑏𝑛

𝑛−2
, see (Tello & Winkler, 2007). This result was extended 

in in (Hu & Tau, 2017) and they proved that the global existence and boundedness of this model was 

obtained at the critical point, which is 𝜒 =
𝑏𝑛

𝑛−2
 with 𝑛 ≥ 3. In addition, the mass persistence of 
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solutions of Eq. (5) was first studied in (Tao & Winkler, 2015a) and it was shown that in any space 

dimensional setting, when Ω is a convex domain, then all positive solutions to model Eq. (1) always 

persists as a whole. Then the convexity condition for the persistence of mass of solutions has just been 

eliminated in (Kurt, 2025b) under the the following explicit conditions  

 𝑛 ≤ 2    or    𝜒 ≤
𝑘

𝑏
⋅
𝑛

𝑛−2
    with    𝑛 ≥ 3. 

For the other dynamical behaviors of solutions for similar chemotaxis models including weak 

solutions, stability, persistence, the readers are referred to the papers (Chaplain & Tello, 2016; Hu & 

Tau, 2017; Issa & Shen, 2017; Kurt, 2025a; Kurt, 2025c; Kurt & Shen, 2021; Lankeit, 2015; Lankeit, 

2015b; Tello, 2004; Viglialoro, 2016; Winkler, 2010). 

Now we give some known results for the similar models of Eq. (1). Consider the subsequent 

chemotaxis model which includes a two-species and a one-chemoattractant as well as a Lotka-Volterra 

kinetics:  

{
𝑢𝑡 = Δ𝑢 − 𝜒∇ ⋅ (𝑢∇𝑧) + 𝜇1𝑢(1 − 𝑢 − 𝑎1𝑣),           𝑥 ∈ Ω,

 𝑣𝑡 = Δ𝑣 − 𝜆∇ ⋅ (𝑢∇𝑧) + 𝜇2𝑣(1 − 𝑎2𝑢 − 𝑣),          𝑥 ∈ Ω,
0 = Δ𝑧 − 𝑧 + 𝑢 + 𝑣,                                                     𝑥 ∈ Ω,

                                                                (6) 

Tello and Winkler in (Tello & Winkler, 2012) established the global existence, boundedness and 

asymptotic stability for the sytem Eq. (6) under the explicit restrictions 2(𝜒 + 𝜆) + 𝑎2𝜇1 < 𝜇2 and 

2(𝜒 + 𝜆) + 𝑎1𝜇2 < 𝜇1. Some developed results related to system Eq. (6) can be found in (Tello, 2004; 

Black et al., 2016; Lin et al., 2017; Mizukami, 2018). We refer the readers to the articles (Bai & 

Winkler, 2016; Issa & Salako, 2017; Kurt & Ekici, 2025; Lin & Mu, 2017; Xiang, 2018; Issa & Shen, 

2019; Xie, 2019) for the existence, boundedness, long-term behavior of solutions such as asymptotic 

stability, persistence, competitive exclusion, coexistence, etc for the similar models of  Eq. (6). 

The fundamental consequences of this paper read as below. 

Theorem 1 (Global existence and boundedness)  Assume that Eq. (3) and Eq. (4) are valid. 

Then for any given initial functions u0, v0 fulfilling Eq. (2), the solution triple  (𝑢, 𝑣, 𝑤, 𝑧) is global, 

which means,  

 𝑇max(𝑢0, 𝑣0) = ∞. 
Moreover, there exists a positive number 𝐾∞ ∈ (0,∞) such that  

 sup
𝑡>0

∥ 𝑢 + v ∥𝐿∞(Ω)≤ 𝐾∞. 

 Theorem 2 (Mass persistence)  Assume that Eq. (3) and Eq. (4) hold. Then for any given initial 

functions u0, v0 fulfilling Eq. (2), there is σ > 0 such that  

 ∫
Ω
𝑢 + ∫

Ω
𝑣 ≥ 𝜎 for every 𝑡 > 0. 

MATERIALS AND METHODS  

The next lemma is related to the local existence of solution of Eq. (1), which is obtained from 

[(Tello & Winkler, 2007), Theorem 7]. 

Lemma 1.  Assume u0, v0 satisfy (2). There exists Tmax(u0, v0) ∈ (0,∞] fulfilling Eq. (1) 

derives a classical solution that is unique on (0, Tmax(u0, v0)). Moreover, u, v ∈ C((0, Tmax) × Ω̅) ∩

C2,1((0, Tmax) × Ω̅)) and z, w ∈ C2,0((0, Tmax) × Ω̅)). If Tmax < ∞, then limsupt→Tmax‖u +

v‖C0(Ω̅) = ∞.  

We now provide some basic estimates in the following. 

Lemma 2.  It holds that  

 ∫
Ω
𝑢 ≤ 𝑚1: = m𝑎𝑥{

𝑎

𝑏
|Ω|, ∫

Ω
𝑢0}, 

 and  
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 ∫
Ω
𝑣 ≤ 𝑚2: = m𝑎𝑥{

𝑐

𝑑
|Ω|, ∫

Ω
𝑣0}, 

 for all 𝑡 ∈ (0, 𝑇max). 
 

Proof. Using integration by parts on the equations Eq.(1) 1 and Eq.(1) 2, respectively, as well as 

using Hölder inequality, we get  

 
𝑑

𝑑𝑡
∫
Ω
𝑢 = 𝑎 ∫

Ω
𝑢 − 𝑏 ∫

Ω
𝑢2 ≤ 𝑎 ∫

Ω
𝑢 −

𝑏

|Ω|
(∫
Ω
𝑢)2, 

 and  

 
𝑑

𝑑𝑡
∫
Ω
𝑣 = 𝑐 ∫

Ω
𝑣 − 𝑑 ∫

Ω
𝑣2 ≤ 𝑐 ∫

Ω
𝑣 −

𝑑

|Ω|
(∫
Ω
𝑣)2, 

 for all 𝑡 ∈ (0, 𝑇max). The ODE's comparison principle completes the proof.  

 

Lemma 3.  For any p ≥ 1,  

 ∫
Ω
𝑤𝑝+1 ≤ 2𝑝{∫

Ω
𝑢𝑝+1 + ∫

Ω
𝑣𝑝+1} 

  

Proof. First, by multiplying the equation Eq.(1) 4 by 𝑢𝑝−1 and employing integration by parts, 

one entail  

 ∫
Ω
𝑢𝑝−1 ⋅ (𝑘𝑤 − 𝑤 + 𝑢 + 𝑣) = 0, 

 which entails  

 𝑝 ∫
Ω
𝑤𝑝−1|∇𝑤|2 + ∫

Ω
𝑤𝑝+1 = ∫

Ω
𝑢𝑤𝑝 + ∫

Ω
𝑣𝑤𝑝. 

 Here, Hölder's inequality directs to  

 ∫
Ω
𝑢𝑤𝑝 ≤ (∫

Ω
𝑢𝑝+1)

1

𝑝+1 ⋅ (∫
Ω
𝑤𝑝+1)

𝑝

𝑝+1, 

 and  

 ∫
Ω
𝑣𝑤𝑝 ≤ (∫

Ω
𝑣𝑝+1)

1

𝑝+1 ⋅ (∫
Ω
𝑤𝑝+1)

𝑝

𝑝+1, 

 It then follows with the nonnegativity of ∫
Ω
𝑤𝑝−1|∇𝑤|2 that  

 ∫
Ω
𝑤𝑝+1 ≤ (∫

Ω
𝑢𝑝+1)

1

𝑝+1 ⋅ (∫
Ω
𝑤𝑝+1)

𝑝

𝑝+1 + (∫
Ω
𝑣𝑝+1)

1

𝑝+1 ⋅ (∫
Ω
𝑤𝑝+1)

𝑝

𝑝+1, 

 which gives  

 ∫
Ω
𝑤𝑝+1 ≤ {(∫

Ω
𝑢𝑝+1)

1

𝑝+1 + (∫
Ω
𝑣𝑝+1)

1

𝑝+1}
𝑝+1

 

                   ≤ 2𝑝{∫
Ω
𝑢𝑝+1 + ∫

Ω
𝑣𝑝+1}. 

 The proof is over.  

 

Lemma 4.  For all p ≥ 1, we have  

 ∫
Ω
𝑢𝑝−1∇𝑢 ⋅ ∇𝑧 ≤

2
𝑝
𝑝+1

𝑝(𝑝+1)
{(2𝑝 + 1) ∫

Ω
𝑢𝑝+1 + ∫

Ω
𝑣𝑝+1}, 

 and  

 ∫
Ω
𝑣𝑝−1∇𝑣 ⋅ ∇𝑧 ≤

2
𝑝
𝑝+1

𝑝(𝑝+1)
{∫
Ω
𝑢𝑝+1 + (2𝑝 + 1) ∫

Ω
𝑣𝑝+1}, 

 for every 𝑡 ∈ (0, 𝑇max).  
 

Proof. By integration by parts over Ω together with Eq. (1) 3, Hölder's inequality and Lemma 3 

yields  

 𝑝 ∫
Ω
𝑢𝑝−1∇𝑢 ⋅ ∇𝑧 = −∫

Ω
𝑢𝑝Δ𝑧 

                                  = −∫
Ω
𝑧𝑢𝑝 + ∫

Ω
𝑤𝑢𝑝 

                                  ≤ (∫
Ω
𝑤𝑝+1)

1

𝑝+1 ⋅ (∫
Ω
𝑢𝑝+1)

𝑝

𝑝+1 
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                                  ≤ (2𝑝{∫
Ω
𝑢𝑝+1 + ∫

Ω
𝑣𝑝+1})

1

𝑝+1 ⋅ (∫
Ω
𝑢𝑝+1)

𝑝

𝑝+1 

                                  ≤ 2
𝑝

𝑝+1 ∫
Ω
𝑢𝑝+1 + 2

𝑝

𝑝+1(∫
Ω
𝑣𝑝+1)

1

𝑝+1 ⋅ (∫
Ω
𝑢𝑝+1)

𝑝

𝑝+1 

                                  ≤ 2
𝑝

𝑝+1 ⋅
2𝑝+1

𝑝+1
∫
Ω
𝑢𝑝+1 + 2

𝑝

𝑝+1 ⋅
1

𝑝+1
∫
Ω
𝑣𝑝+1 

for every 𝑡 ∈ (0, 𝑇max). Similarly, we can obtain  

 𝑝 ∫
Ω
𝑣𝑝−1∇𝑣 ⋅ ∇𝑧 ≤ 2

𝑝

𝑝+1 ⋅
1

𝑝+1
∫
Ω
𝑢𝑝+1 + 2

𝑝

𝑝+1 ⋅
2𝑝+1

𝑝+1
∫
Ω
𝑣𝑝+1, 

 for every 𝑡 ∈ (0, 𝑇max). The proof thus finishes.  

 

We now establish 𝐿𝑝-bounds. 

Lemma 5. (𝑳𝒑-bounds)  Assume that u0, v0 satisfy Eq. (2), and the parameters χ, λ, b, d satisfy 

Eq. (3) and Eq. (4). Then for any given p ≥ 1, one have K(p) > 0 such that  

 ∫
Ω
𝑢𝑝 + ∫

Ω
𝑣𝑝 ≤ 𝐾(𝑝)    ∀𝑡 ∈ (0, 𝑇max). 

Proof. First, testing the Eq. (1) 1 by 𝑢𝑝−1 with 𝑝 > 1 and the Eq.(1) 2 by 𝑣𝑝−1 with 𝑝 > 1 and 

adding both equations arrives at  

1

𝑝
⋅
𝑑

𝑑𝑡
(∫

Ω

𝑢𝑝 +∫
Ω

𝑣𝑝) = −(𝑝 − 1)∫
Ω

𝑢𝑝−2|∇𝑢|2 − (𝑝 − 1)∫
Ω

𝑣𝑝−2|∇𝑣|2 

                                              +(𝑝 − 1)𝜒∫
Ω
𝑢𝑝−1∇𝑢 ⋅ ∇𝑧 + (𝑝 − 1)𝜆 ∫

Ω
𝑣𝑝−1∇𝑣 ⋅ ∇𝑧 

                                              +𝑎 ∫
Ω
𝑢𝑝 + 𝑐 ∫

Ω
𝑣𝑝 − 𝑏 ∫

Ω
𝑢𝑝+1 − 𝑑 ∫

Ω
𝑣𝑝+1,                  (7) 

 for 𝑡 ∈ (0, 𝑇max). In view of Lemma 4, we have  

 (𝑝 − 1)𝜒 ∫
Ω
𝑢𝑝−1∇𝑢 ⋅ ∇𝑧 ≤

(𝑝−1)(2𝑝+1)

𝑝(𝑝+1)
2

𝑝

𝑝+1𝜒 ∫
Ω
𝑢𝑝+1 +

𝑝−1

𝑝(𝑝+1)
2

𝑝

𝑝+1𝜒∫
Ω
𝑣𝑝+1, 

 and  

 (𝑝 − 1)𝜆 ∫
Ω
𝑣𝑝−1∇𝑣 ⋅ ∇𝑧 ≤

𝑝−1

𝑝(𝑝+1)
2

𝑝

𝑝+1𝜆 ∫
Ω
𝑢𝑝+1 +

(𝑝−1)(2𝑝+1)

𝑝(𝑝+1)
2

𝑝

𝑝+1𝜆 ∫
Ω
𝑣𝑝+1, 

 which yields  

 (𝑝 − 1)𝜒 ∫
Ω
𝑢𝑝−1∇𝑢 ⋅ ∇𝑧 + (𝑝 − 1)𝜆 ∫

Ω
𝑣𝑝−1∇𝑣 ⋅ ∇𝑧 

 ≤
(𝑝−1)((2𝑝+1)𝜒+𝜆)2

𝑝
𝑝+1

𝑝(𝑝+1)
∫
Ω
𝑢𝑝+1 +

(𝑝−1)(𝜒+(2𝑝+1)𝜆)2
𝑝
𝑝+1

𝑝(𝑝+1)
∫
Ω
𝑣𝑝+1                                (8) 

 for 𝑡 ∈ (0, 𝑇max). In addition,  in lights of Young's inequality, 

𝑎 ∫
Ω
𝑢𝑝 ≤ 𝜀 ∫

Ω
𝑢𝑝+1 + 𝐶(𝑎, 𝑝, 𝜀, |Ω|),                                                                                                (9) 

 and  

𝑐 ∫
Ω
𝑣𝑝 ≤ 𝜀 ∫

Ω
𝑣𝑝+1 + 𝐶(𝑐, 𝑝, 𝜀, |Ω|),                                                                                                 (10) 

 for 𝑡 ∈ (0, 𝑇max). Collecting Eq. (7)-(10) entails  

 
1

𝑝
⋅
𝑑

𝑑𝑡
(∫
Ω
𝑢𝑝 + ∫

Ω
𝑣𝑝) ≤ {

(𝑝−1)(2𝑝+1)2
𝑝
𝑝+1

𝑝(𝑝+1)
𝜒 +

(𝑝−1)2
𝑝
𝑝+1

𝑝(𝑝+1)
𝜆 + 𝜀 − 𝑏} ∫

Ω
𝑢𝑝+1 

                                           ≤ {
(𝑝−1)2

𝑝
𝑝+1

𝑝(𝑝+1)
𝜒 +

(𝑝−1)(2𝑝+1)2
𝑝
𝑝+1

𝑝(𝑝+1)
𝜆 + 𝜀 − 𝑑}∫

Ω
𝑣𝑝+1 

                                           ≤ −𝜀̃(∫
Ω
𝑢𝑝 + ∫

Ω
𝑢𝑝) + 𝐶̃    for all  𝑡 ∈ (0, 𝑇max), 

due to the fact  

 max {
(𝑝−1)(2𝑝+1)2

𝑝
𝑝+1

𝑝(𝑝+1)
} < 4    and    

(𝑝−1)2
𝑝
𝑝+1

𝑝(𝑝+1)
< 1,    ∀𝑝 > 1, 

and the main assumptions Eq. (3) and Eq. (4) that are 𝑏 > 4𝜒 + 𝜆 and 𝑑 > 𝜒 + 4𝜆, which implies that  

 𝑏 >
(𝑝−1)(2𝑝+1)2

𝑝
𝑝+1

𝑝(𝑝+1)
𝜒 +

(𝑝−1)2
𝑝
𝑝+1

𝑝(𝑝+1)
𝜆 + 𝜀, 

and 
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 𝑑 >
(𝑝−1)2

𝑝
𝑝+1

𝑝(𝑝+1)
𝜒 +

(𝑝−1)(2𝑝+1)2
𝑝
𝑝+1

𝑝(𝑝+1)
𝜆 + 𝜀. 

 Therefore, the Gronwall's inequality concludes that  

 ∫
Ω
𝑢𝑝 + ∫

Ω
𝑣𝑝 ≤ K(𝑝):= max {∫

Ω
𝑢0
𝑝 + ∫

Ω
𝑣0
𝑝,

2𝐶̃

𝜀̃
}     for  all  𝑡 ∈ (0, 𝑇max). 

 The proof is over.  

RESULTS AND DISCUSSION  

Now, one will first examine global existence and global boundedness, and then mass persistence 

in Eq. (1). 

Global existence and boundedness 

We point out that if 𝑝 >
𝑛

2
, then global 𝐿𝑝-boundedness of solutions in time implies the 𝐿∞-

boundedness in time of solutions. Since we showed the 𝐿𝑝-bounds of solutions without any restrictions 

in Lemma 5, one simply prove the existence and boundedness  results using the well-known approach. 

Proof (Theorem 1). We shall show that 𝑇max = ∞ through the contradiction method. First, 

thanks to the constant formula, one can write 

𝑢(𝑡,⋅) = 𝑒−(𝐼−Δ)𝑡𝑢0 − 𝜒∫
𝑡

0

𝑒−(𝐼−Δ)𝑡∇ ⋅ (𝑢(⋅, 𝑠)∇𝑧(⋅, 𝑠))𝑑𝑠 

                 + ∫
𝑡

0
𝑒−(𝐼−Δ)𝑡𝑢(⋅, 𝑠)(𝑎 + 1 − 𝑏𝑢(⋅, 𝑠))𝑑𝑠 

 =: 𝐼1 + 𝐼2 + 𝐼3    for all    𝑡 ∈ (0, 𝑇max),                                                                                              (11) 

 and  

 𝑣(𝑡,⋅) = 𝑒−(𝐼−Δ)𝑡𝑣0 − 𝜒∫
𝑡

0
𝑒−(𝐼−Δ)𝑡∇ ⋅ (𝑣(⋅, 𝑠)∇𝑧(⋅, 𝑠))𝑑𝑠 

     + ∫
𝑡

0
𝑒−(𝐼−Δ)𝑡𝑣(⋅, 𝑠)(𝑐 + 1 − 𝑑𝑣(⋅, 𝑠))𝑑𝑠 

=: 𝐽1 + 𝐽2 + 𝐽3    forall    𝑡 ∈ (0, 𝑇max),                                                                                                (12) 

where 𝐼 − Δ:𝒟(𝐼 − Δ) ⊂ 𝐿𝑝(Ω) → 𝐿𝑝(Ω) with 𝒟(𝐼 − Δ) = {𝑢 ∈ 𝑊2,𝑝(Ω) | ∂𝑢 ⋅ 𝜈 = 0 on ∂Ω}, and 

𝑒−𝑡(𝐼−Δ) represents an analytic semigroup which is generated by −(𝐼 − Δ) on 𝐿𝑝(Ω). We now give the 

following estimates for 𝐼1, 𝐼2, 𝐼3 and 𝐽1, 𝐽2, 𝐽3. First,  

∥ 𝐼1 ∥𝐿∞(Ω)=∥ 𝑒
−(𝐼−Δ)𝑡𝑢0 ∥𝐿∞(Ω)≤∥ 𝑢0 ∥𝐿∞     ∀𝑡 > 0.                                                                       (13) 

 and  

∥ 𝐽1 ∥𝐿∞(Ω)=∥ 𝑒
−(𝐼−Δ)𝑡𝑣0 ∥𝐿∞(Ω)≤∥ 𝑣0 ∥𝐿∞     ∀𝑡 > 0.                                                                       (14) 

 

Next, 

 

∥ 𝐼3 ∥𝐿∞(Ω)= ∫
𝑡

0
𝑒−(𝐼−Δ)𝑡𝑢(⋅, 𝑠)(𝑎 + 1 − 𝑏𝑢(⋅, 𝑠))𝑑𝑠 ≤

(𝑎+1)2

4𝑏
    ∀𝑡 ∈ [0, 𝑇max).                              (15) 

 and  

∥ 𝐽3 ∥𝐿∞(Ω)= ∫
𝑡

0
𝑒−(𝐼−Δ)𝑡𝑣(⋅, 𝑠)(𝑐 + 1 − 𝑑𝑣(⋅, 𝑠))𝑑𝑠 ≤

(𝑐+1)2

4𝑑
    ∀𝑡 ∈ [0, 𝑇max).                               (16) 

 

Third, let 𝑝 ≥ 1 and assume that 
𝑛

2
< 𝑝 < 𝑛 < 𝑞 and 𝑟 ∈ (1,∞) such that 

1

𝑝
−

1

𝑛
<

1

𝑞
 and 

1

𝑟
< 1 −

𝑞(
1

𝑝
−

1

𝑛
). Now the Gagliardo-Nirenberg inequality and Lemma 5 direct to  

∥ ∇𝑧 ∥
𝐿
𝑞𝑟
𝑟−1(Ω)

≤ 𝐶 ∥ ∇𝑧 ∥
𝐿
𝑛𝑝
𝑛−𝑝(Ω)

≤ 𝐶 ∥ 𝑢 + 𝑣 ∥𝐿𝑝(Ω)≤ 𝐶(∥ 𝑢 ∥𝐿𝑝(Ω) +∥ 𝑣 ∥𝐿𝑝(Ω)) ≤ 𝐶𝑝,                   (17) 

 for all 𝑡 ∈ (0, 𝑇max), due to 
𝑞𝑟

𝑟−1
=

𝑞

1−
1

𝑟

<
𝑞

(
1

𝑝
−
1

𝑛
)𝑞
=

1
1

𝑝
−
1

𝑛

=
𝑛𝑝

𝑛−𝑝
. Now, Lemma 2 and Hölder inequality, 

and Eq. (17), we get  

∥ 𝑢∇𝑧 ∥𝐿𝑞(Ω)≤∥ 𝑢 ∥𝐿𝑞𝑟(Ω)⋅∥ ∇𝑧 ∥
𝐿
𝑞𝑟
𝑟−1(Ω)
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≤∥ 𝑢 ∥
𝐿1(Ω)

1
𝑞𝑟 ⋅∥ 𝑢 ∥

𝐿∞(Ω)

1−
1
𝑞𝑟 ⋅∥ ∇𝑧 ∥

𝐿
𝑛𝑝
𝑛−𝑝(Ω)

 

≤ (𝑚1)
1

𝑞𝑟𝐶𝑝 ⋅∥ 𝑢 ∥𝐿∞(Ω)
1−

1

𝑞𝑟     for all    𝑡 ∈ (0, 𝑇max).                                                                               (18) 

Similarly, we have  

∥ 𝑣∇𝑧 ∥𝐿𝑞(Ω)≤∥ 𝑣 ∥𝐿𝑞𝑟(Ω)⋅∥ ∇𝑧 ∥
𝐿
𝑞𝑟
𝑟−1(Ω)

 

≤∥ 𝑣 ∥
𝐿1(Ω)

1
𝑞𝑟 ⋅∥ 𝑣 ∥

𝐿∞(Ω)

1−
1
𝑞𝑟 ⋅∥ ∇𝑧 ∥

𝐿
𝑛𝑝
𝑛−𝑝(Ω)

 

≤ (𝑚2)
1

𝑞𝑟𝐶𝑝 ⋅∥ 𝑣 ∥𝐿∞(Ω)
1−

1

𝑞𝑟     for all    𝑡 ∈ (0, 𝑇max).                                                                               (19) 

Now let us fix 𝛽 ∈ (
𝑁

2𝑝
,
1

2
) and 𝜁 ∈ (0,

1

2
− 𝛽) as well as 𝑇 ∈ (0, 𝑇max). Hence, by using well-known 

semigroup estimates and Lemma 4, we obtain  

∥ 𝐼2 ∥𝐿∞(Ω)=∥ 𝜒∫
𝑡

0

𝑒−(𝐼−Δ)𝑡∇ ⋅ (𝑢∇𝑧) ∥𝐿∞(Ω) 

≤ 𝐶1𝜒∫
𝑡

0

∥ 𝑒−(𝐼−Δ)𝑡∇ ⋅ (𝑢∇𝑧) ∥
𝑋𝑝
𝛽
(Ω)

 

= 𝐶1𝜒∫
𝑡

0

∥ (𝐼 − Δ)𝛽𝑒−(𝐼−Δ)𝑡∇ ⋅ (𝑢∇𝑧) ∥𝐿𝑝(Ω) 

≤ 𝐶2𝜒∫
𝑡

0

(𝑡 − 𝑠)−𝛽(1 + (𝑡 − 𝑠)−
1
2)𝑒−𝜁(𝑡−𝑠) ∥ 𝑢∇𝑧 ∥𝐿𝑝(Ω) 𝑑𝑠 

≤ 𝐶3𝜒 × ∫
𝑡

0

(𝑡 − 𝑠)−𝛽−
1
2𝑒−𝜁(𝑡−𝑠) ∥ 𝑢 ∥

𝐿∞(Ω)

1−
1
𝑞𝑟  𝑑𝑠 

≤ 𝐶4𝜒 × ∫
∞

0

(𝑡 − 𝑠)−𝛽−
1
2𝑒−𝜁(𝑡−𝑠)𝑑𝑠 × sup

𝑠∈[0,𝑇]
∥ 𝑢(⋅, 𝑠) ∥

𝐿∞(Ω)

1−
1
𝑞𝑟

 

≤ 𝐶̃𝑝 sup
𝑠∈[0,𝑇]

∥ 𝑢(⋅, 𝑠) ∥
𝐿∞(Ω)

1−
1

𝑞𝑟
                                                                                                                (20) 

for every 𝑡 ∈ [0, 𝑇], where 𝐶̃𝑝 ∈ (0,∞). Similarly, we have  

∥ 𝐽2 ∥𝐿∞(Ω)=∥ 𝜆 ∫
𝑡

0
𝑒−(𝐼−Δ)𝑡∇ ⋅ (𝑣∇𝑧) ∥𝐿∞(Ω)≤ 𝐶̃𝑝 sup

𝑠∈[0,𝑇]
∥ 𝑣(⋅, 𝑠) ∥

𝐿∞(Ω)

1−
1

𝑞𝑟
                                        (21) 

Substituting 𝐼1, 𝐼2, 𝐼3 and 𝐽1, 𝐽2, 𝐽3 into Eq. (11), we obtain  

 sup
𝑡∈[0,𝑇]

∥ 𝑢(𝑡,⋅) ∥𝐿∞+ sup
𝑡∈[0,𝑇]

∥ 𝑣(𝑡,⋅) ∥𝐿∞≤∥ 𝑢0 ∥𝐿∞(Ω) +∥ 𝑣0 ∥𝐿∞(Ω)+
(𝑎+1)2

4𝑏
+
(𝑐+1)2

4𝑑
 

     +𝐶̃𝑝 ⋅ ( sup
𝑡∈[0,𝑇]

∥ 𝑢(⋅, 𝑡) ∥𝐿∞(Ω)+ sup
𝑡∈[0,𝑇]

∥ 𝑣(⋅, 𝑡) ∥𝐿∞(Ω))
1−

1

𝑞𝑟 

for every 𝑇 ∈ (0, 𝑇max), where 0 < 1 −
1

𝑞𝑟
< 1 and 𝐶̃𝑝 > 0. Thus we get  

 limsup
𝑡→𝑇max

‖𝑢 + 𝑣‖𝐿∞(Ω) < ∞, 

which contradicts to Lemma 7. This entails that 𝑇max = ∞ and sup‖𝑢 + 𝑣‖𝐿∞(Ω) is bounded for all 

𝑡 > 0 such that there is 𝐾 > 0 such that  

 sup‖𝑢 + 𝑣‖𝐿∞(Ω) ≤ 𝐾    ∀𝑡 > 0. 

Therefore, the proof is complete.  

Mass persistence of solutions 

This subsection analyzes mass persistence of solutions to Eq. (1). Observe that, by Theorem 1, 

𝑇max(𝑢0, 𝑣0) = ∞, and (𝑢, 𝑣, 𝑤, 𝑧) is the globally bounded classical solution of system Eq. (1) on 

(0,∞). Let us begin providing an estimate for (𝑢 + v) from below. 
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Lemma 6.  Assume that k ∈ (0,1). Then there is σ > 0 such that  

 ∫
Ω
𝑢𝑘 + ∫

Ω
𝑣𝑘 ≥ 𝜎    forall    𝑡 > 0. 

Proof. First, by multiplying the equation Eq. (1) 1 by 𝑢𝑘−1 with 𝑘 ∈ (0,1) and the equation Eq. 

(1) 2 by 𝑣𝑘−1 with 𝑘 ∈ (0,1), respectively, and then integrating over Ω and adding theses equations to 

obtain  

1

𝑘
⋅
𝑑

𝑑𝑡
(∫

Ω

𝑢𝑘 +∫
Ω

𝑣𝑘) = (1 − 𝑘)∫
Ω

𝑢𝑘−2|∇𝑢|2 + (1 − 𝑘)∫
Ω

𝑣𝑘−2|∇𝑣|2 

 −(1 − 𝑘)𝜒∫
Ω

𝑢𝑘−1∇𝑢 ⋅ ∇𝑧 − (1 − 𝑘)𝜆∫
Ω

𝑣𝑘−1∇𝑣 ⋅ ∇𝑧 

+𝑎 ∫
Ω
𝑢𝑘 + 𝑐 ∫

Ω
𝑣𝑘 − 𝑏 ∫

Ω
𝑢𝑘+1 − 𝑑 ∫

Ω
𝑣𝑘+1,                                                                                 (22) 

for all 𝑡 > 0. Observe, by Lemma 5, that we can find 𝑝 > min{2, 𝑘 + 1} such that  

(1 − 𝑘)𝜒∫
Ω

𝑢𝑘−1∇𝑢 ⋅ ∇𝑧 = −
(1 − 𝑘)𝜒

𝑘
∫
Ω

𝑢𝑘Δ𝑧                                        

                                          = −
(1 − 𝑘)𝜒

𝑘
∫
Ω

𝑧𝑢𝑘 +
(1 − 𝑘)𝜒

𝑘
∫
Ω

𝑤𝑢𝑘 

                                           ≤
(1 − 𝑘)𝜒

𝑘(𝑘 + 1)
∫
Ω

𝑤𝑘+1 +
(1 − 𝑘)𝜒

𝑘 + 1
∫
Ω

𝑢𝑘+1 

                                                                         ≤
(1 − 𝑘)𝜒

𝑘(𝑘 + 1)
2𝑘 (∫

Ω

𝑢𝑘+1 +∫
Ω

𝑣𝑘+1) +
(1 − 𝑘)𝜒

𝑘 + 1
∫
Ω

𝑣𝑘+1 

                             ≤ 𝐶1(𝑘, 𝜒) (∫
Ω

𝑢𝑘+1 +∫
Ω

𝑣𝑘+1) 

 and  

(1 − 𝑘)𝜆∫
Ω

𝑣𝑘−1∇𝑣 ⋅ ∇𝑧 ≤ 𝐶2(𝑘, 𝜆) (∫
Ω

𝑢𝑘+1 +∫
Ω

𝑣𝑘+1), 

which gives  

    (1 − 𝑘)𝜒∫
Ω

𝑢𝑘−1∇𝑢 ⋅ ∇𝑧 + (1 − 𝑘)𝜆∫
Ω

𝑣𝑘−1∇𝑣 ⋅ ∇𝑧 ≤ 𝐶3(𝑘, 𝜒, 𝜆) (∫
Ω

𝑢𝑘+1 +∫
Ω

𝑣𝑘+1),       (23) 

for all 𝑡 > 0. Note that by Theorem 1, we have the boundedness of 𝑢 and 𝑣, which means  

sup
𝑡>0

‖𝑢‖𝐿∞(Ω), sup
𝑡>0

‖𝑣‖𝐿∞(Ω) ≤ 𝐾∞. 

This together with Gagliardo-Nirenberg inequality and Young’s inequality, we get  

 

𝐶3(𝑘, 𝜒, 𝜆)∫
Ω

𝑢𝑘+1 ≤ 𝐶3(𝑘, 𝜒, 𝜆)(𝐾∞)
1−
𝑘
𝑛∫

Ω

𝑢
𝑘(𝑛+1)

𝑛  

                                    ≤ 𝐶4(𝑘, 𝜒, 𝜆, 𝑛, 𝐾∞) (∫
Ω

𝑢𝑘−2|∇𝑢|2)

1
2

(∫
Ω

𝑢𝑘)

1
2
+
1
𝑛

+ 𝐶4(𝑘, 𝜒, 𝜆, 𝑛, 𝐾∞) (∫
Ω

𝑢𝑘)

1+
1
𝑛

 

                                    ≤ (1 − 𝑘)∫
Ω

𝑢𝑘−2|∇𝑢|2 + 𝐶5 (∫
Ω

𝑢𝑘)

1+
2
𝑛

+ 𝐶4 (∫
Ω

𝑢𝑘)

1+
1
𝑛

 

and similarly, 

 𝐶3(𝑘, 𝜒, 𝜆)∫
Ω

𝑣𝑘+1 ≤ (1 − 𝑘)∫
Ω

𝑣𝑘−2|∇𝑣|2 + 𝐶6 (∫
Ω

𝑣𝑘)

1+
2
𝑛

+ 𝐶7 (∫
Ω

𝑣𝑘)

1+
1
𝑛

 

for all 𝑡 > 0. Hence we get  
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(1 − 𝑘)𝜒∫
Ω

𝑢𝑘−1∇𝑢 ⋅ ∇𝑧 + (1 − 𝑘)𝜆∫
Ω

𝑣𝑘−1∇𝑣 ⋅ ∇𝑧                                                                       

≤ 𝐶3(𝑘, 𝜒, 𝜆) (∫
Ω

𝑢𝑘+1 +∫
Ω

𝑣𝑘+1)                              

≤ (1 − 𝑘)∫
Ω

𝑢𝑘−2|∇𝑢|2 + 1 − 𝑘)∫
Ω

𝑣𝑘−2|∇𝑣|2 

                                       +𝐶5 (∫
Ω

𝑢𝑘)

1+
2
𝑛

+ 𝐶4 (∫
Ω

𝑢𝑘)

1+
1
𝑛

+𝐶6 (∫
Ω

𝑣𝑘)

1+
2
𝑛

+ 𝐶7 (∫
Ω

𝑣𝑘)

1+
1
𝑛

         (24) 

for all 𝑡 > 0.  Thus, we get from Eq. (22) to Eq. (24) that 

1

𝑘
⋅
𝑑

𝑑𝑡
(∫

Ω

𝑢𝑘 +∫
Ω

𝑣𝑘) ≥ a∫
Ω

𝑢𝑘 + c∫
Ω

𝑣𝑘 − 𝐶5 (∫
Ω

𝑢𝑘)

1+
2
𝑛

− 𝐶4 (∫
Ω

𝑢𝑘)

1+
1
𝑛

                                       

  −𝐶6 (∫
Ω

𝑣𝑘)

1+
2
𝑛

− 𝐶7 (∫
Ω

𝑣𝑘)

1+
1
𝑛

                             

                                     ≥ min{𝑎, 𝑐} (∫
Ω

𝑢𝑘 +∫
Ω

𝑣𝑘) − 𝐶8 (∫
Ω

𝑢𝑘 +∫
Ω

𝑣𝑘)

1+
2
𝑛

− 𝐶9 (∫
Ω

𝑢𝑘 +∫
Ω

𝑣𝑘)

1+
1
𝑛

 

 for all  𝑡 > 0. One can conclude, by the Lemma (Tao & Winkler, 2015b), that there is 𝜎 > 0 fulfilling  

∫
Ω

𝑢𝑘 +∫
Ω

𝑣𝑘 ≥ 𝜎    for all    𝑡 > 0. 

 The proof is hence over.  

 

Proof (Theorem 2). First of all, by Hölder inequality, for any given 𝑘 ∈ (0,1), we get  

∫
Ω

(𝑢 + 𝑣) ≥ |Ω|
𝑘−1
𝑘 {∫

Ω

(𝑢 + 𝑣)𝑘}

1
𝑘

 

≥ |Ω|
𝑘−1
𝑘 {∫

Ω

𝑢𝑘 +∫
Ω

𝑣𝑘}

1
𝑘

    for all    𝑡 > 0. 

 Next, by Lemma 6, for any given 𝑘 ∈ (0,1), there is 𝜎 > 0 such that  

∫
Ω

𝑢𝑘 +∫
Ω

𝑣𝑘 ≥ 𝜎    for all    𝑡 > 0. 

 Hence, we get  

∫
Ω

(𝑢 + 𝑣) ≥ |Ω|
𝑘−1
𝑘 {∫

Ω

𝑢𝑘 +∫
Ω

𝑣𝑘}

1
𝑘

≥ |Ω|
𝑘−1
𝑘 𝜎

1
𝑘    for all    𝑡 > 0. 

 The theorem thus follows.  

CONCLUSION 

In this research artcile, the followings has been shown: First, in Lemma 5, 𝐿𝑝-bounds of 𝑢 is 

established under the conditions Eq. (3) and Eq. (4), 𝑏 > 4𝜒 + 𝜆 and 𝑑 > 𝜒 + 4𝜆, which are 

independent of the parameter 𝑝, hence the dimension 𝑛. Second, thanks to this achievement, one is 

able to derive global existence & boundedness, and persistence of mass as independent of 𝑝, hence the 

dimension 𝑛. This is very exciting result and also shows that dimension 𝑛 is not a critical parameter in 

obtaing the results presented in Theorem 1 and Theorem 2. 
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