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Jigsaw puzzle solving with template matching 

Şablon eşleştirme ile yapboz çözme 
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Abstract  Öz 

Reassembling fragmented objects is a crucial problem in 

fields like archaeology, often approached through jigsaw 

puzzle solutions. This study presents two novel template-

matching-based methods for solving jigsaw puzzles. The 

first method employs a two-stage approach: Principal 

Component Analysis (PCA) determines the rotation of 

scattered pieces, followed by template matching to align 

and position them. The second method directly locates 

pieces using template matching. Three test puzzles were 

used to evaluate the effectiveness of these approaches. The 

results demonstrate that both methods accurately identified 

piece positions in all cases, proving their robustness and 

reliability. However, the proposed methods are currently 

limited to cases where the appearance of pieces is not 

heavily affected by noise, occlusion, or large-scale rotation. 

 Parçalanmış nesneleri yeniden bir araya getirmek, arkeoloji 

gibi alanlarda sıklıkla yapboz bulmacası çözümleri yoluyla 

ele alınan önemli bir sorundur. Bu çalışma, yapboz 

bulmacalarını çözmek için iki yeni şablon eşleştirme 

tabanlı yöntem sunmaktadır. İlk yöntem iki aşamalı bir 

yaklaşım kullanır: Temel Bileşen Analizi, dağılmış 

parçaların dönüşünü belirler, ardından bunları hizalamak ve 

konumlandırmak için şablon eşleştirme yapılır. İkinci 

yöntem, şablon eşleştirmeyi kullanarak parçaları doğrudan 

bulur. Bu yaklaşımların etkinliğini değerlendirmek için üç 

test bulmacası kullanıldı. Sonuçlar, her iki yöntemin de tüm 

durumlarda parça konumlarını doğru bir şekilde 

belirlediğini ve sağlamlıklarını ve güvenilirliklerini 

kanıtladığını göstermektedir. Ancak önerilen yöntemler şu 

anda parçaların görünümünün gürültü, tıkanıklık veya 

büyük ölçekli rotasyondan çok fazla etkilenmediği 

durumlarla sınırlıdır. 

Keywords: Puzzle reassembly, Template matching, Jigsaw 

puzzle, Puzzle solving 

 Anahtar kelimeler: Yapboz yeniden birleştirme, Şablon 

eşleştirme, Yapboz, Yapboz çözme 

1 Introduction 

Automatic jigsaw puzzle (JP) solving is an intriguing 

research area that attracts interest from various fields such as 

pattern recognition, image processing, mathematics, and 

robotics [1]. A jigsaw puzzle consists of interlocking pieces 

that form a complete image when assembled. The goal is to 

disassemble the puzzle, shuffle the pieces, and then 

reassemble them to reconstruct the original image. The 

difficulty depends on factors such as the number of pieces, 

their shape, and the visual composition of the image [1, 2]. 

Solving the JP generally involves two main steps: 

understanding the puzzle visually and reassembling the 

pieces [3]. Several approaches exist for assembling puzzle 

pieces [4]. Traditionally, boundary knowledge has been 

utilized, with features such as contours [5, 6], shapes [7], and 

colors [8, 9] being the most commonly applied. More 

recently, deep learning-based solutions [1, 2, 10] have gained 

popularity in this field, as in many other areas. 

This study presents two template matching (TM)-based 

approaches for automatically solving randomly placed JPs. 

TM is an image processing technique used to find a specific 

image part within a larger one [11]. For TM to work 

correctly, the searched image and the template must match 

in rotation, scale, and color. Applying TM to rotated images 

remains a challenging problem [12]. The first method utilizes 

TM for two purposes. Firstly, random JP pieces are detected, 

regardless of which one they belong to. These pieces are then 

isolated, and their correct positions are calculated using TM. 

Since the directions of the JP pieces are also random, TM is 

applied after rotating them. In the second method, TM 

directly searches for the final positions of the JP segments. 

The novel contributions of this study are as follows 

Firstly, it performs detection and location finding while 

detects and localizes the JP pieces are in random positions 

and angles even when they randomly positioned and 

oriented. First, it detects and localizes pieces even when they 

are randomly positioned and oriented. Second, it uses a 

template matching that is robust to rotation. To the best of 

the author's knowledge, this is the first application of TM in 

jigsaw puzzle-solving. 

The remainder of this paper is organized as follows: in 

the next section, the related works are summarized. Section 

3 describes the proposed method in detail. Experimental 

results are examined in Section 4. Finally, Section 5 

discusses future research directions and concludes the paper. 

2 Related works 

In one of the early studies [9], puzzle pieces were 

matched based on their shape and color. Similarly, [13] 

proposed three methods that leveraged geometric shapes and 
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chromatic information. In [14], a Markov random field-

based approach was introduced for solving square puzzles 

with unknown positions and orientations. In [5], both curve 

and color similarities were used, and rotationally invariant 

corner detection was employed to identify characteristic 

points like highly curved corners. To address large gaps 

between pieces and the lack of pattern or color continuity, 

[15] used a neural network to estimate the positions of pieces 

and then sought the optimal reconstruction graph based on 

these predictions. 

Traditionally, puzzle solving has focused on identifying 

piece boundaries. However, missing or obscured boundaries 

present major challenges. To overcome this, [16] used a 

Generative Adversarial Network (GAN) for border 

completion and classifying adjacent pieces. Similarly, [17] 

applied a CNN-based encoder to represent each piece 

relative to its boundary in a hidden embedding space. In [1], 

a GAN architecture was proposed that combines geometric 

and semantic information for efficient puzzle solving. 

In [18], the JP problem was tackled using a standard 

Vision Transformer. Alongside the usual classification 

process in end-to-end training, a puzzle flow was introduced 

to predict the absolute positions of input patches. A new 

method for solving larger puzzles using deep learning and 

Monte-Carlo Tree Search was proposed in [19]. This 

approach extracted visual features without access to rewards. 

Doersch et al. [20] introduced a pretext task for 

classification and detection by employing a JP solver. Their 

network solved 3x3 puzzles by predicting the relative 

positions of surrounding patches with respect to a central 

patch. However, their experiments did not involve 

reassembling the patches. 

Although these studies have significantly contributed to 

puzzle solving, they generally do not focus on assembling 

shuffled and rotated square puzzle pieces. Most of the works 

emphasize feature extraction from individual pieces rather 

than on full reassembly. Moreover, deep learning-based 

approaches often require high computational resources and 

are highly dependent on the success of the training process. 

In contrast, image-based approaches may offer a more 

practical and efficient alternative for solving such puzzles. 

3 Methods 

This study proposes performing automatic JP solving 

based on two simple but effective mathematical and image 

processing methods, PCA and TM. The puzzle solution was 

carried out with two different approaches based on the 

mentioned methods. 

3.1 Principal component analysis 

In this study, Principal Component Analysis (PCA) was 

utilized to estimate the orientation angles of individual 

jigsaw puzzle pieces prior to template matching. The method 

was directly applied to the set of non-zero pixels in each 

binary mask corresponding to a puzzle piece. The spatial 

coordinates of these pixels were used as input data for PCA. 

For each piece, PCA was used to calculate the first 

principal component, which indicates the direction of 

maximum variance in the pixel distribution. This dominant 

direction was assumed to correspond to the primary 

geometric axis of the puzzle piece. The angle between this 

axis and the horizontal reference axis was computed to 

determine the necessary rotation for alignment. 

This angle estimation was used to rotate each piece 

before matching it to the reference image. The rotation step 

ensured that the pieces were oriented as close as possible to 

their correct positions, thereby improving the efficiency and 

accuracy of subsequent template matching. 

PCA was selected for this task due to its robustness, 

computational efficiency, and ability to operate without 

training data. It performs reliably even under noisy or 

incomplete data conditions and adapts effectively to 

variations in puzzle piece shapes. Since puzzle pieces are 

generally asymmetric, the principal axis identified by PCA 

provides a stable and meaningful basis for rotation 

estimation. 

In this work, PCA was not employed for feature 

dimensionality reduction but solely for orientation 

estimation. Therefore, no parameter tuning such as the 

number of components or any solver selection was required, 

since the eigenvectors of the covariance matrix are uniquely 

determined by the piece geometry. 

All PCA computations were performed using the 

standard eigenvalue decomposition of the covariance matrix 

derived from the piece coordinates. The method does not 

require any domain-specific assumptions and can be 

generalized to various puzzle configurations. 

3.2 Template matching 

In this study, Template Matching (TM) is employed as 

the primary method for determining the correct placement of 

each puzzle piece within the complete image. Instead of 

providing a general theoretical overview, emphasis is placed 

on its practical application. The method involves sliding a 

given template—i.e., a puzzle piece—over the full image and 

calculating a similarity metric at each location to identify the 

best match. Among the available similarity measures in 

OpenCV, the TM_CCOEFF_NORMED method is chosen 

due to its robustness to lighting variations and its 

effectiveness in identifying structural similarity. 

This approach calculates the normalized cross-

correlation between the mean-adjusted template and the 

corresponding region of the image. A high positive score 

indicates strong alignment between the template and the 

image segment, while low or negative scores reflect poor 

matches. This metric is particularly beneficial in scenarios 

where pieces may be partially occluded or embedded in 

complex backgrounds, as it emphasizes relational structure 

rather than absolute pixel intensity. 

The choice of TM as a core technique stems from both its 

computational simplicity and theoretical grounding in signal 

processing. Fundamentally, TM operates on the principle of 

spatial correlation, identifying regions where pixel intensity 

patterns closely align. This makes it well-suited for tasks 

where a known visual component—such as a puzzle piece—

must be precisely located within a larger image, especially 

when edge information or distinct textures are present. 

While basic TM is inherently sensitive to scale and 

rotation variations, this limitation is addressed in the 
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proposed framework by integrating it with PCA-based 

orientation correction, which aligns the pieces prior to 

matching. This preprocessing step significantly improves 

TM's accuracy by ensuring that templates are already in a 

near-correct orientation before similarity evaluation. 

The theoretical justification for using the 

TM_CCOEFF_NORMED variant lies in its ability to 

normalize matching scores, thereby mitigating the influence 

of global brightness and contrast differences between the 

template and the image. Moreover, it emphasizes structural 

similarity, which is crucial when matching pieces that may 

have similar colors but differ in local features or patterns. 

Overall, TM provides a deterministic, interpretable, and 

training-free solution for puzzle piece localization. Its 

implementation within the proposed method yields accurate 

placement results across puzzles of varying complexity, 

especially when combined with orientation correction 

techniques. 

3.3 Proposed method 

In this study, two different methods based on TM and 

PCA are presented. 

3.3.1 Method 1: Two stage JP solution 

The first method is based on TM and consists of two 

primary stages. It uses three images of the JP pieces, as 

depicted in Figure 1. In the first stage, it determines which of 

the randomly placed pieces in Figure 1(a) match the 

individual pieces in Figure 1(b). In the second stage, it 

identifies the final positions of these pieces, shown in Figure 

1(c). 

In the initial setup, JP pieces are randomly placed on a 

white background, as depicted in Figure 1(a). To enable the 

TM-based method, care was taken to ensure that the pieces 

do not overlap and are spaced apart. In this stage, each 

individual JP piece in Figure 1(b) is matched with the 

randomly placed pieces in Figure 1(a). Additionally, PCA is 

used to calculate the rotation angles of the pieces. 

The first step identifies the puzzle pieces within the 

randomly distributed layout. Color images are first converted 

to binary using an adaptive filter. A large kernel size, similar 

to the size of a puzzle piece, is used to reduce the effect of 

internal color variations. Figure 2 illustrates the differences 

between classical thresholding and adaptive filtering 

methods. In Figure 2(b), classical global thresholding is 

applied, which may not effectively separate puzzle pieces 

from the background under varying color conditions. Figure 

2(c) demonstrates that adaptive filtering, which calculates 

thresholds based on local regions, provides better separation 

of puzzle pieces from the background. This improved 

separation facilitates more accurate detection of puzzle 

pieces in subsequent processing steps. Consequently, as 

shown in Figure 2, this helps to separate the pieces from the 

background. In the resulting binary image, puzzle pieces are 

detected by outlining regions within a specific size range that 

corresponds to the actual parts. In other words, regardless of 

the content of the puzzle piece, the piece can be segmented 

as a whole with the adaptive filter. Thus, when PCA is 

applied to the segmented point set, the direction of the piece 

is determined. 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Input images (a) Randomly distributed pieces, 

(b) individual images of pieces, (c) completed puzzle 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Comparison of classical thresholding and 

adaptive filtering methods: (a) Original grayscale image, 

(b) Left: Binary image obtained using classical global 

thresholding; Right: PCA result applied to the binary 

image from classical thresholding, (c) Left: Binary image 

obtained using adaptive filtering; Right: PCA result 

applied to the binary image from adaptive filtering 
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The identified regions are treated as 2D point clusters, 

and PCA [21] is applied to estimate the orientations of the 

puzzle pieces, as shown in Figure 3. However, the computed 

orientation lines are typically aligned with the top and right 

edges of the pieces, regardless of the actual rotation. As 

illustrated in Figure 4, these lines appear identical across 

rotations in the [0°, 360°] range. For this reason, the angles 

are calculated in the range of [0°, 90°] and the result can be 

90°, 180° or 270° different from the real angle. This 

limitation arises from the inability of PCA to account for the 

specific angle by which a piece should be rotated. In other 

words, a piece rotated by an angle of 90xk+βº (where k ∈ [0, 

3] and β ∈ [0°, 90º]) is computed by PCA as β°. The 

intersection of the PCA lines is taken as the center of the 

piece. 

 

 

Figure 3. Calculation of the orientation of pieces with 

PCA 

 

 

Figure 4. Displaying the orientations of the piece rotated 

at 90 intervals 

 

TM is performed by sliding the template over the target 

image, but as the target image grows, so does the 

computation time. To improve efficiency, the search is 

limited to areas where JP pieces are located. For each piece, 

two images are prepared: its ideal form (Figure 1(b)) and its 

scattered version (Figure 1(a)). PCA is run to determine the 

midpoint in both images, and they are cropped to the same 

size with the midpoint at the center. TM is then applied to 

these images in various orientations. Since rotation 

introduces black padding that can lower the match score, 

both images are rotated together in 1° steps up to 90°, 

ensuring that similar black padding appears in both, as 

shown in Figure 5. This avoids score degradation due to 

mismatched borders. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Same black structure is formed around both the 

target and the template image (a) The black padding in the 

rotated image, (b) The original state of the piece by one 

degree rotation, (c) The image at the random position of 

the piece rotated by one degree 

 

For each fragment in Figure 1(a), the TM score is 

calculated against each fragment in Figure 1(b). For an n-

piece puzzle, a total of n2 matches are conducted. 

Rotating images across the full 360º range for TM is 

time-consuming. To speed up the process, matching is 

limited to a ±2º range around the angle θ estimated by PCA. 

However, since PCA may yield incorrect results for rotations 
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involving multiples of 90º, TM is applied at angles of 90×k 

+ θ ± 2º for different values of k. Each original piece is 

matched with its scattered version based on the highest score, 

and the correct rotation is determined from the angle that 

gives the best match. 

In the second stage of the first method, the completed JP 

image (Figure 1(c) is matched with its individual pieces 

(Figure 1(b)). However, regions like protrusions, recesses, 

and white borders can lower the TM score. To address this, 

these regions are removed by cutting them out, as shown in 

Figure 6. Instead, a smaller template centered around the 

piece's midpoint is used for TM, allowing for more accurate 

location matching of the puzzle pieces. 

 

 

Figure 6. The template created for the second stage left 

image shows the indented and protruding state of the part 

and right image is the template created by cutting the 

edges of the part 

3.3.2 Method 2: One stage JP solution 

Unlike Method 1, the proposed second method searches 

for puzzle pieces directly on the completed puzzle image, 

reducing the number of operations and speeding up the 

solution. As in the first method, the directions and midpoints 

of the randomly placed puzzle pieces are calculated by PCA. 

Based on these midpoints, the puzzle pieces are separated in 

their current orientations. Then, each piece is rotated by 90 –

 90×k + β° (k = 0, 1, 2, 3), where β is the angle calculated by 

PCA. A template is generated from the midpoint to the edges 

of the rotated piece, and TM is used to search for its 

corresponding position in the completed puzzle image. 

Since TM may occasionally produce mismatches, the 

accuracy of the matches is verified by calculating the 

distances between the matched positions. 

 

𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)2+(𝑦𝑖 − 𝑦𝑗)2   (1) 

 

Here, i=1,..n-1 and j=i+1,…n are the piece numbers, and 

x and y are the upper-left corner coordinates of the 

quadrilateral where the TM result is maximum. The distance 

between the matching positions of each piece is then 

calculated to detect possible mismatches. 

 

𝑀𝑠𝑐 = {
𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑑𝑖𝑗 < 𝑤

𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑑𝑖𝑗 ≥ 𝑤
   (2) 

 

This allows detection of multiple matches occurring for 

the same region. In such cases, the matching scores of the 

pieces assigned to the same region are compared, and the 

piece with the highest score is accepted as the correct match. 

TM is then reapplied to find new positions for the incorrectly 

matched pieces. To prevent them from being matched to the 

same region again, the previously assigned area is masked 

by turning it white on the completed puzzle image, as 

formulated below. 

 

𝐼𝑛𝑒𝑤(𝑥, 𝑦) = 255, 𝑥 ∈ [𝑥, 𝑥 + 𝑤], 𝑦 ∈ [𝑦, 𝑦 + ℎ]   (3) 

 

This process is repeated until all matches are sufficiently 

spaced apart, so that subsequent TM operations will target 

different, correct regions. 

4 Experiments and results 

In this study, Python 3 was utilized to solve three 

different puzzles. The "TM_CCOEFF_NORMED" method 

from the OpenCV library [22] was employed for template 

matching. 

4.1 Results of method 1 

In the first experiment, a relatively large 4-piece JP, 

shown in Figure 7 was solved. Because the pieces were quite 

large, it was sufficient to create templates from only a portion 

of the pieces. Additionally, due to the simplicity of this 

example, the matching scores showed clear differences. 

 

 

Figure 7. The puzzle solved the first experiment 

 

The second JP, shown in Figure 8(a), consisted of 16 

pieces and measured 500 x 375 pixels. The positions and 

rotation angles of the pieces were determined using the TM 

method. In this case, JP pieces shared similar colors, and 

some displayed visual resemblance when rotated (Figure 

8(b)). Despite these challenges, the proposed method 

successfully matched all 16 pieces, achieving a maximum 

angular error of only 1.95º and an average angular error of 

0.836º. Matching scores for selected parts are provided in 

Figure 9. Notably, the scores were often similar for rotations 

of 180º, with comparable results observed for k = 0 and k = 

2, as well as for k = 1 and k = 3. This symmetry was generally 

consistent, except in cases of correct matching. 

The third experiment involved a JP composed of 20 

smaller pieces, with dimensions of 663 x 412 pixels, and 

limited pattern-matching information on the pieces. Despite 

these challenges, the proposed method successfully solved 

the puzzle, accurately matching all the pieces. The maximum 

angular error for this JP was 6.55º, with an average angular 

error of 1.65º. The matching result of the puzzle is shown in 

Figure 10. The only noticeable discrepancy occurred in the 

placement of the piece in the lower-right corner, likely due 

to the similarity in color characteristics in that region. 
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(a) 

 
(b) 

 
(c) 

Figure 8. Experiment 2 JP (a) completed puzzle, (b) similar pieces, (c) reassembly of the puzzle 

The matching results for this JP are presented in Figure 11, 

where some parts displayed very close match scores for each 

k value. This behavior was attributed to the similar properties 

of these parts when rotated, leading to minimal variation in 

the rotation angles. Despite this, the matching and angle 

determination were successfully performed. 

To further evaluate the effectiveness of the proposed 

method, the incorrect placement rate in the initial matching 

step was calculated. This metric represents the proportion of 

puzzle pieces that were not correctly positioned in the first 

iteration of template matching. The incorrect placement rates 

for the second and third puzzles were found to be 0% (0 out 
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Figure 9. Matching scores of pieces in experiment 2 (piece no. is the random order in Figure 1(b), distributed piece 

numbers are the complex order in Figure 1(a)) 

 

  
(a) (b) 

Figure 10. Third puzzle (a) completed puzzle, (b) reassembly of the puzzle 

of 16 pieces) and 10% (2 out of 20 pieces), respectively. 

These misplacements were successfully corrected in the 

subsequent iterations using the refinement steps described 

earlier. The low initial error rates demonstrate the high 

reliability of the proposed matching approach, even before 

refinement. 

As a result, all three puzzles were successfully 

reconstructed using the proposed method, and the 

corresponding rotation angles of the JP pieces were 

accurately calculated. 

The results of this study demonstrate the effectiveness of 

TM as a viable approach for solving JPs. The proposed 

method successfully reassembled puzzles of varying 

complexity and accurately estimated the rotation angles of 

the individual pieces. 
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Figure 11. Matching scores of pieces in experiment 3 (piece no. is the random order in Figure 1(b), distributed piece 

numbers are the complex order in Figure 1(a)) 

4.2 Results of method 2 

The second method was tested on the second and third 

puzzles. It is faster than the first method because it reduces 

the number of TM runs and does not require creating a black 

circle around the pieces. On the other hand, there are two 

drawbacks. First, the disadvantage is that since the method 

rotates the pieces by 90° based on the PCA-calculated angle, 

it cannot achieve accuracy within ±2° due to the impact of 

added black padding from small rotations. Second, the 

template size around the midpoint of each piece is fixed, 

which can lead to information loss from small angular errors. 

The TM results for the second puzzle are shown in Figure 

12. The numbers indicate the order of operations, and the 

yellow circles indicate the position of the maximum 

matching score. 

The solution steps of the other puzzle are shown in Figure 

13. Mismatched pieces are highlighted in the yellow box. In 

the first step, three pieces matched in the same region, but 

the piece with the highest matching score was considered 

correct. To find the correct placement for the remaining 

pieces, the matched region was closed off, and TM was 

rerun. The correct positions of the pieces were then identified 

(see the bottom of Figure 13). 

Although the proposed method has successfully 

reconstructed all test puzzles, certain limitations remain. 

First, the accuracy of the matching process can be affected 

when puzzle pieces have similar colors or patterns, 

particularly under rotation. Additionally, in the second 

method, using a fixed-size template around the midpoint may 

lead to information loss, especially in cases with minor 

angular errors. The rotation-induced padding during TM also 

restricts fine-tuning of the rotation angle beyond certain 

limits. For future work, integrating learning-based methods 

such as deep feature matching or orientation-invariant 

descriptors could improve robustness. Moreover, dynamic 

adjustment of the template region based on part geometry 

may help reduce matching errors. These enhancements could 

lead to faster and more accurate JP reconstruction. 

The proposed method has several advantages. First, it 

does not require any prior training or large datasets, unlike 

deep learning-based approaches. This makes it lightweight 

and suitable for real-time or low-resource environments. 

Second, by combining PCA-based orientation estimation 

with template matching (TM), the method achieves accurate 

localization and angle estimation of puzzle pieces without 

using edge compatibility or color gradient information. 
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Figure 12. Matching the results of pieces in puzzle 2 step by step 
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Figure 13. Matching the results of pieces in puzzle 3 step by step 
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However, there are also limitations. TM may yield false 

positives when puzzle pieces have similar patterns, 

especially in symmetric regions. Additionally, due to the ±2° 

error margin in PCA-based rotation estimation, small 

angular inaccuracies may occur. To overcome these, a 

repeated matching process with white-masked regions was 

proposed. 

Compared to state-of-the-art methods that rely on 

learning-based or complex feature extraction pipelines, our 

method is simpler and more interpretable. While it may not 

outperform deep models on large-scale datasets, it is highly 

effective for moderate-sized puzzles and cases where pre-

trained models are not available. The results from all three 

experiments demonstrated high accuracy, low average 

angular error, and successful placement of all pieces, even 

under challenging visual conditions. 

Future improvements may include hybridizing the 

method with machine learning for better handling of 

ambiguous patterns and exploring alternative similarity 

measures instead of basic TM. 

5 Conclusion 

This study introduced two novel, template matching 

(TM)-based methods for solving jigsaw puzzles, both of 

which demonstrated high accuracy in aligning pieces of 

varying sizes and complexities. The first method employs a 

two-stage framework that integrates Principal Component 

Analysis (PCA) for orientation correction, followed by TM 

for positional alignment. In contrast, the second method 

combines orientation and position estimation in a single step, 

offering a faster yet still effective alternative. 

In comparison to deep learning-based approaches that 

typically require extensive annotated datasets and significant 

training times, the proposed methods offer a lightweight, 

unsupervised, and computationally efficient solution. 

Furthermore, unlike traditional greedy or graph-based 

algorithms—which are often susceptible to local minima and 

combinatorial explosion—the PCA-based orientation 

correction significantly reduces placement ambiguity by 

aligning pieces according to their dominant structural 

direction. 

Despite these strengths, the proposed methods have 

certain limitations. They assume that puzzle pieces are 

relatively intact and not heavily occluded or distorted. 

Consequently, their performance may degrade under 

conditions involving severe illumination changes, texture 

variations, or physical deformation of the puzzle 

components. 

Nonetheless, the presented approach highlights the 

potential of combining simple yet effective preprocessing 

techniques with classical matching algorithms to achieve 

robust and interpretable puzzle reconstruction. This 

methodology holds promise for broader applications in 

computer vision, image analysis, and digital content 

reconstruction. 

Future work may focus on improving robustness against 

real-world challenges by incorporating adaptive 

preprocessing techniques, exploring alternative similarity 

measures, or hybridizing the method with machine learning-

based techniques. Such enhancements could further increase 

the scalability, accuracy, and applicability of the proposed 

approach in diverse visual domains. 
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