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Abstract Oz

Reassembling fragmented objects is a crucial problem in
fields like archaeology, often approached through jigsaw
puzzle solutions. This study presents two novel template-
matching-based methods for solving jigsaw puzzles. The
first method employs a two-stage approach: Principal
Component Analysis (PCA) determines the rotation of
scattered pieces, followed by template matching to align
and position them. The second method directly locates
pieces using template matching. Three test puzzles were
used to evaluate the effectiveness of these approaches. The
results demonstrate that both methods accurately identified
piece positions in all cases, proving their robustness and
reliability. However, the proposed methods are currently
limited to cases where the appearance of pieces is not
heavily affected by noise, occlusion, or large-scale rotation.

Keywords: Puzzle reassembly, Template matching, Jigsaw
puzzle, Puzzle solving

1 Introduction

Automatic jigsaw puzzle (JP) solving is an intriguing
research area that attracts interest from various fields such as
pattern recognition, image processing, mathematics, and
robotics [1]. A jigsaw puzzle consists of interlocking pieces
that form a complete image when assembled. The goal is to
disassemble the puzzle, shuffle the pieces, and then
reassemble them to reconstruct the original image. The
difficulty depends on factors such as the number of pieces,
their shape, and the visual composition of the image [1, 2].

Solving the JP generally involves two main steps:
understanding the puzzle visually and reassembling the
pieces [3]. Several approaches exist for assembling puzzle
pieces [4]. Traditionally, boundary knowledge has been
utilized, with features such as contours [5, 6], shapes [7], and
colors [8, 9] being the most commonly applied. More
recently, deep learning-based solutions [1, 2, 10] have gained
popularity in this field, as in many other areas.

This study presents two template matching (TM)-based
approaches for automatically solving randomly placed JPs.
TM is an image processing technique used to find a specific
image part within a larger one [11]. For TM to work
correctly, the searched image and the template must match
in rotation, scale, and color. Applying TM to rotated images
remains a challenging problem [12]. The first method utilizes

Pargalanmis nesneleri yeniden bir araya getirmek, arkeoloji
gibi alanlarda siklikla yapboz bulmacasi ¢6ziimleri yoluyla
ele alman Onemli bir sorundur. Bu c¢alisma, yapboz
bulmacalarin1 ¢dzmek i¢in iki yeni sablon eslestirme
tabanli yontem sunmaktadir. ilk yontem iki asamali bir
yaklasim kullanir: Temel Bilesen Analizi, dagilmis
pargalarin doniistinii belirler, ardindan bunlart hizalamak ve
konumlandirmak icin sablon eslestirme yapilir. Ikinci
yontem, sablon eslestirmeyi kullanarak parcalar1 dogrudan
bulur. Bu yaklasimlarin etkinligini degerlendirmek i¢in {i¢
test bulmacasi kullanildi. Sonuglar, her iki yontemin de tiim
durumlarda par¢ca konumlarint dogru bir sekilde
belirledigini ve saglamliklarim1 ve giivenilirliklerini
kanitladigin1 géstermektedir. Ancak Onerilen yontemler su
anda parcalarin goriiniimiiniin giiriiltli, tikaniklik veya
blylik olgekli rotasyondan c¢ok fazla etkilenmedigi
durumlarla sinirhidir.
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TM for two purposes. Firstly, random JP pieces are detected,
regardless of which one they belong to. These pieces are then
isolated, and their correct positions are calculated using TM.
Since the directions of the JP pieces are also random, TM is
applied after rotating them. In the second method, TM
directly searches for the final positions of the JP segments.

The novel contributions of this study are as follows
Firstly, it performs detection and location finding while
detects and localizes the JP pieces are in random positions
and angles even when they randomly positioned and
oriented. First, it detects and localizes pieces even when they
are randomly positioned and oriented. Second, it uses a
template matching that is robust to rotation. To the best of
the author's knowledge, this is the first application of TM in
jigsaw puzzle-solving.

The remainder of this paper is organized as follows: in
the next section, the related works are summarized. Section
3 describes the proposed method in detail. Experimental
results are examined in Section 4. Finally, Section 5
discusses future research directions and concludes the paper.

2 Related works

In one of the early studies [9], puzzle pieces were
matched based on their shape and color. Similarly, [13]
proposed three methods that leveraged geometric shapes and
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chromatic information. In [14], a Markov random field-
based approach was introduced for solving square puzzles
with unknown positions and orientations. In [5], both curve
and color similarities were used, and rotationally invariant
corner detection was employed to identify characteristic
points like highly curved corners. To address large gaps
between pieces and the lack of pattern or color continuity,
[15] used a neural network to estimate the positions of pieces
and then sought the optimal reconstruction graph based on
these predictions.

Traditionally, puzzle solving has focused on identifying
piece boundaries. However, missing or obscured boundaries
present major challenges. To overcome this, [16] used a
Generative Adversarial Network (GAN) for border
completion and classifying adjacent pieces. Similarly, [17]
applied a CNN-based encoder to represent each piece
relative to its boundary in a hidden embedding space. In [1],
a GAN architecture was proposed that combines geometric
and semantic information for efficient puzzle solving.

In [18], the JP problem was tackled using a standard
Vision Transformer. Alongside the usual classification
process in end-to-end training, a puzzle flow was introduced
to predict the absolute positions of input patches. A new
method for solving larger puzzles using deep learning and
Monte-Carlo Tree Search was proposed in [19]. This
approach extracted visual features without access to rewards.

Doersch et al. [20] introduced a pretext task for
classification and detection by employing a JP solver. Their
network solved 3x3 puzzles by predicting the relative
positions of surrounding patches with respect to a central
patch. However, their experiments did not involve
reassembling the patches.

Although these studies have significantly contributed to
puzzle solving, they generally do not focus on assembling
shuffled and rotated square puzzle pieces. Most of the works
emphasize feature extraction from individual pieces rather
than on full reassembly. Moreover, deep learning-based
approaches often require high computational resources and
are highly dependent on the success of the training process.
In contrast, image-based approaches may offer a more
practical and efficient alternative for solving such puzzles.

3 Methods

This study proposes performing automatic JP solving
based on two simple but effective mathematical and image
processing methods, PCA and TM. The puzzle solution was
carried out with two different approaches based on the
mentioned methods.

3.1 Principal component analysis

In this study, Principal Component Analysis (PCA) was
utilized to estimate the orientation angles of individual
jigsaw puzzle pieces prior to template matching. The method
was directly applied to the set of non-zero pixels in each
binary mask corresponding to a puzzle piece. The spatial
coordinates of these pixels were used as input data for PCA.

For each piece, PCA was used to calculate the first
principal component, which indicates the direction of
maximum variance in the pixel distribution. This dominant
direction was assumed to correspond to the primary

geometric axis of the puzzle piece. The angle between this
axis and the horizontal reference axis was computed to
determine the necessary rotation for alignment.

This angle estimation was used to rotate each piece
before matching it to the reference image. The rotation step
ensured that the pieces were oriented as close as possible to
their correct positions, thereby improving the efficiency and
accuracy of subsequent template matching.

PCA was selected for this task due to its robustness,
computational efficiency, and ability to operate without
training data. It performs reliably even under noisy or
incomplete data conditions and adapts effectively to
variations in puzzle piece shapes. Since puzzle pieces are
generally asymmetric, the principal axis identified by PCA
provides a stable and meaningful basis for rotation
estimation.

In this work, PCA was not employed for feature
dimensionality reduction but solely for orientation
estimation. Therefore, no parameter tuning such as the
number of components or any solver selection was required,
since the eigenvectors of the covariance matrix are uniquely
determined by the piece geometry.

All PCA computations were performed using the
standard eigenvalue decomposition of the covariance matrix
derived from the piece coordinates. The method does not
require any domain-specific assumptions and can be
generalized to various puzzle configurations.

3.2 Template matching

In this study, Template Matching (TM) is employed as
the primary method for determining the correct placement of
each puzzle piece within the complete image. Instead of
providing a general theoretical overview, emphasis is placed
on its practical application. The method involves sliding a
given template—i.e., a puzzle piece—over the full image and
calculating a similarity metric at each location to identify the
best match. Among the available similarity measures in
OpenCV, the TM_CCOEFF_NORMED method is chosen
due to its robustness to lighting variations and its
effectiveness in identifying structural similarity.

This approach calculates the normalized cross-
correlation between the mean-adjusted template and the
corresponding region of the image. A high positive score
indicates strong alignment between the template and the
image segment, while low or negative scores reflect poor
matches. This metric is particularly beneficial in scenarios
where pieces may be partially occluded or embedded in
complex backgrounds, as it emphasizes relational structure
rather than absolute pixel intensity.

The choice of TM as a core technique stems from both its
computational simplicity and theoretical grounding in signal
processing. Fundamentally, TM operates on the principle of
spatial correlation, identifying regions where pixel intensity
patterns closely align. This makes it well-suited for tasks
where a known visual component—such as a puzzle piece—
must be precisely located within a larger image, especially
when edge information or distinct textures are present.

While basic TM is inherently sensitive to scale and
rotation variations, this limitation is addressed in the
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proposed framework by integrating it with PCA-based
orientation correction, which aligns the pieces prior to
matching. This preprocessing step significantly improves
TM's accuracy by ensuring that templates are already in a
near-correct orientation before similarity evaluation.

The  theoretical justification for using the
TM_CCOEFF NORMED variant lies in its ability to
normalize matching scores, thereby mitigating the influence
of global brightness and contrast differences between the
template and the image. Moreover, it emphasizes structural
similarity, which is crucial when matching pieces that may
have similar colors but differ in local features or patterns.

Overall, TM provides a deterministic, interpretable, and
training-free solution for puzzle piece localization. Its
implementation within the proposed method yields accurate
placement results across puzzles of varying complexity,
especially when combined with orientation correction
techniques.

3.3 Proposed method

In this study, two different methods based on TM and
PCA are presented.

3.3.1 Method 1: Two stage JP solution

The first method is based on TM and consists of two
primary stages. It uses three images of the JP pieces, as
depicted in Figure 1. In the first stage, it determines which of
the randomly placed pieces in Figure 1(a) match the
individual pieces in Figure 1(b). In the second stage, it
identifies the final positions of these pieces, shown in Figure
1(c).

In the initial setup, JP pieces are randomly placed on a
white background, as depicted in Figure 1(a). To enable the
TM-based method, care was taken to ensure that the pieces
do not overlap and are spaced apart. In this stage, each
individual JP piece in Figure 1(b) is matched with the
randomly placed pieces in Figure 1(a). Additionally, PCA is
used to calculate the rotation angles of the pieces.

The first step identifies the puzzle pieces within the
randomly distributed layout. Color images are first converted
to binary using an adaptive filter. A large kernel size, similar
to the size of a puzzle piece, is used to reduce the effect of
internal color variations. Figure 2 illustrates the differences
between classical thresholding and adaptive filtering
methods. In Figure 2(b), classical global thresholding is
applied, which may not effectively separate puzzle pieces
from the background under varying color conditions. Figure
2(c) demonstrates that adaptive filtering, which calculates
thresholds based on local regions, provides better separation
of puzzle pieces from the background. This improved
separation facilitates more accurate detection of puzzle
pieces in subsequent processing steps. Consequently, as
shown in Figure 2, this helps to separate the pieces from the
background. In the resulting binary image, puzzle pieces are
detected by outlining regions within a specific size range that
corresponds to the actual parts. In other words, regardless of
the content of the puzzle piece, the piece can be segmented
as a whole with the adaptive filter. Thus, when PCA is
applied to the segmented point set, the direction of the piece
is determined.

44 >

Figure 1. Input images (a) Randomly distributed pieces,

(b) individual images of pieces, (¢) completed puzzle

£ &5

(a
(b

Figure 2. Comparison of classical thresholding and
adaptive filtering methods: (a) Original grayscale image,
(b) Left: Binary image obtained using classical global
thresholding; Right: PCA result applied to the binary
image from classical thresholding, (c) Left: Binary image
obtained using adaptive filtering; Right: PCA result

applied to the binary image from adaptive filtering
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The identified regions are treated as 2D point clusters,
and PCA [21] is applied to estimate the orientations of the
puzzle pieces, as shown in Figure 3. However, the computed
orientation lines are typically aligned with the top and right
edges of the pieces, regardless of the actual rotation. As
illustrated in Figure 4, these lines appear identical across
rotations in the [0°, 360°] range. For this reason, the angles
are calculated in the range of [0°, 90°] and the result can be
90°, 180° or 270° different from the real angle. This
limitation arises from the inability of PCA to account for the
specific angle by which a piece should be rotated. In other
words, a piece rotated by an angle of 90xk+/° (where k € [0,
3] and g € [0°, 90°]) is computed by PCA as £°. The
intersection of the PCA lines is taken as the center of the
piece.
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Figure 3. Calculation of the orientation of pieces with
PCA

Figure 4. Displaying the orientations of the piece rotated
at 90 intervals

TM is performed by sliding the template over the target
image, but as the target image grows, so does the
computation time. To improve efficiency, the search is
limited to areas where JP pieces are located. For each piece,
two images are prepared: its ideal form (Figure 1(b)) and its
scattered version (Figure 1(a)). PCA is run to determine the

midpoint in both images, and they are cropped to the same
size with the midpoint at the center. TM is then applied to
these images in various orientations. Since rotation
introduces black padding that can lower the match score,
both images are rotated together in 1° steps up to 90°,
ensuring that similar black padding appears in both, as
shown in Figure 5. This avoids score degradation due to
mismatched borders.

100 150

(a)

0 S0 100 150 200 250
(b)

0
50
100
150
200
250

0 S0 100 150 200

(c)
Figure 5. Same black structure is formed around both the
target and the template image (a) The black padding in the
rotated image, (b) The original state of the piece by one
degree rotation, (c) The image at the random position of
the piece rotated by one degree

For each fragment in Figure 1(a), the TM score is
calculated against each fragment in Figure 1(b). For an n-
piece puzzle, a total of n” matches are conducted.

Rotating images across the full 360° range for TM is
time-consuming. To speed up the process, matching is
limited to a +2° range around the angle 6 estimated by PCA.
However, since PCA may yield incorrect results for rotations
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involving multiples of 90°, TM is applied at angles of 90xk
+ 6 + 2° for different values of k. Each original piece is
matched with its scattered version based on the highest score,
and the correct rotation is determined from the angle that
gives the best match.

In the second stage of the first method, the completed JP
image (Figure 1(c) is matched with its individual pieces
(Figure 1(b)). However, regions like protrusions, recesses,
and white borders can lower the TM score. To address this,
these regions are removed by cutting them out, as shown in
Figure 6. Instead, a smaller template centered around the
piece's midpoint is used for TM, allowing for more accurate
location matching of the puzzle pieces.

Figure 6. The template created for the second stage left
image shows the indented and protruding state of the part
and right image is the template created by cutting the
edges of the part

3.3.2 Method 2: One stage JP solution

Unlike Method 1, the proposed second method searches
for puzzle pieces directly on the completed puzzle image,
reducing the number of operations and speeding up the
solution. As in the first method, the directions and midpoints
of the randomly placed puzzle pieces are calculated by PCA.
Based on these midpoints, the puzzle pieces are separated in
their current orientations. Then, each piece is rotated by 90 —
90xk+p° (k=0, 1, 2, 3), where f is the angle calculated by
PCA. A template is generated from the midpoint to the edges
of the rotated piece, and TM is used to search for its
corresponding position in the completed puzzle image.

Since TM may occasionally produce mismatches, the
accuracy of the matches is verified by calculating the
distances between the matched positions.

dij = \/(xi — %)%+ (i — ¥))? (1)

Here, i=1,..n-1 and j=i+1,...n are the piece numbers, and
x and y are the upper-left corner coordinates of the
quadrilateral where the TM result is maximum. The distance
between the matching positions of each piece is then
calculated to detect possible mismatches.

incorrect, dij <w
correct, dij =z w

Msc = { 2)

This allows detection of multiple matches occurring for
the same region. In such cases, the matching scores of the
pieces assigned to the same region are compared, and the

piece with the highest score is accepted as the correct match.
TM is then reapplied to find new positions for the incorrectly
matched pieces. To prevent them from being matched to the
same region again, the previously assigned area is masked
by turning it white on the completed puzzle image, as
formulated below.

Inew(x,y) = 255,x € [x,x + w],y € [y,y + h] 3)

This process is repeated until all matches are sufficiently
spaced apart, so that subsequent TM operations will target
different, correct regions.

4 Experiments and results

In this study, Python 3 was utilized to solve three
different puzzles. The "TM_CCOEFF_NORMED" method
from the OpenCV library [22] was employed for template
matching.

4.1 Results of method 1

In the first experiment, a relatively large 4-piece JP,
shown in Figure 7 was solved. Because the pieces were quite
large, it was sufficient to create templates from only a portion
of the pieces. Additionally, due to the simplicity of this
example, the matching scores showed clear differences.

Figure 7. The puzzle solved the first experiment

The second JP, shown in Figure 8(a), consisted of 16
pieces and measured 500 x 375 pixels. The positions and
rotation angles of the pieces were determined using the TM
method. In this case, JP pieces shared similar colors, and
some displayed visual resemblance when rotated (Figure
8(b)). Despite these challenges, the proposed method
successfully matched all 16 pieces, achieving a maximum
angular error of only 1.95° and an average angular error of
0.836°. Matching scores for selected parts are provided in
Figure 9. Notably, the scores were often similar for rotations
of 180°, with comparable results observed for £ =0 and k =
2,as well as for k=1 and k= 3. This symmetry was generally
consistent, except in cases of correct matching.

The third experiment involved a JP composed of 20
smaller pieces, with dimensions of 663 x 412 pixels, and
limited pattern-matching information on the pieces. Despite
these challenges, the proposed method successfully solved
the puzzle, accurately matching all the pieces. The maximum
angular error for this JP was 6.55°, with an average angular
error of 1.65°. The matching result of the puzzle is shown in
Figure 10. The only noticeable discrepancy occurred in the
placement of the piece in the lower-right corner, likely due
to the similarity in color characteristics in that region.
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Figure 8. Experiment 2 JP (a) completed puzzle, (b) similar pieces, (c) reassembly of the puzzle

The matching results for this JP are presented in Figure 11, To further evaluate the effectiveness of the proposed
where some parts displayed very close match scores for each method, the incorrect placement rate in the initial matching
k value. This behavior was attributed to the similar properties step was calculated. This metric represents the proportion of
of these parts when rotated, leading to minimal variation in puzzle pieces that were not correctly positioned in the first
the rotation angles. Despite this, the matching and angle iteration of template matching. The incorrect placement rates
determination were successfully performed. for the second and third puzzles were found to be 0% (0 out

1564



NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2025, 14(4), 1559-1570

K. Ugar

Piece no.1

075
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Distributed piece numbers
Piece no.4
0,98
0,96
£ 094
0,92
g 09

€ oss

20386

0,84

0,82

1 2 5 4 5 6 7 8 9 10 11 12 13 141516
Distributed piece numbers

Piece no.12

0,98
£ 096
§ 0ss
go092

€ o9

& 038

0,86
084 —

-2 8 :4 3 6 7 8 9 120 11 12 13:.1§:15(°16
Distributed piece numbers

—==0 === =tz =——|=3

Figure 9. Matching scores of pieces in experiment 2 (piece no. is the random order in Figure 1(b), distributed piece

numbers are the complex order in Figure 1(a))

Figure 10. Third puzzle (a) completed puzzle, (b) reassembly of the puzzle

of 16 pieces) and 10% (2 out of 20 pieces), respectively.
These misplacements were successfully corrected in the
subsequent iterations using the refinement steps described
earlier. The low initial error rates demonstrate the high
reliability of the proposed matching approach, even before
refinement.

As a result, all three puzzles were successfully
reconstructed using the proposed method, and the

corresponding rotation angles of the JP pieces were
accurately calculated.

The results of this study demonstrate the effectiveness of
TM as a viable approach for solving JPs. The proposed
method successfully reassembled puzzles of varying
complexity and accurately estimated the rotation angles of
the individual pieces.
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Figure 11. Matching scores of pieces in experiment 3 (piece no. is the random order in Figure 1(b), distributed piece

numbers are the complex order in Figure 1(a))

4.2 Results of method 2

The second method was tested on the second and third
puzzles. It is faster than the first method because it reduces
the number of TM runs and does not require creating a black
circle around the pieces. On the other hand, there are two
drawbacks. First, the disadvantage is that since the method
rotates the pieces by 90° based on the PCA-calculated angle,
it cannot achieve accuracy within +2° due to the impact of
added black padding from small rotations. Second, the
template size around the midpoint of each piece is fixed,
which can lead to information loss from small angular errors.
The TM results for the second puzzle are shown in Figure
12. The numbers indicate the order of operations, and the
yellow circles indicate the position of the maximum
matching score.

The solution steps of the other puzzle are shown in Figure
13. Mismatched pieces are highlighted in the yellow box. In
the first step, three pieces matched in the same region, but
the piece with the highest matching score was considered
correct. To find the correct placement for the remaining
pieces, the matched region was closed off, and TM was
rerun. The correct positions of the pieces were then identified
(see the bottom of Figure 13).

Although the proposed method has successfully
reconstructed all test puzzles, certain limitations remain.
First, the accuracy of the matching process can be affected
when puzzle pieces have similar colors or patterns,
particularly under rotation. Additionally, in the second
method, using a fixed-size template around the midpoint may
lead to information loss, especially in cases with minor
angular errors. The rotation-induced padding during TM also
restricts fine-tuning of the rotation angle beyond certain
limits. For future work, integrating learning-based methods
such as deep feature matching or orientation-invariant
descriptors could improve robustness. Moreover, dynamic
adjustment of the template region based on part geometry
may help reduce matching errors. These enhancements could
lead to faster and more accurate JP reconstruction.

The proposed method has several advantages. First, it
does not require any prior training or large datasets, unlike
deep learning-based approaches. This makes it lightweight
and suitable for real-time or low-resource environments.
Second, by combining PCA-based orientation estimation
with template matching (TM), the method achieves accurate
localization and angle estimation of puzzle pieces without
using edge compatibility or color gradient information.
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Figure 12. Matching the results of pieces in puzzle 2 step by step
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Figure 13. Matching the results of pieces in puzzle 3 step by step
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However, there are also limitations. TM may yield false
positives when puzzle pieces have similar patterns,
especially in symmetric regions. Additionally, due to the £2°
error margin in PCA-based rotation estimation, small
angular inaccuracies may occur. To overcome these, a
repeated matching process with white-masked regions was
proposed.

Compared to state-of-the-art methods that rely on
learning-based or complex feature extraction pipelines, our
method is simpler and more interpretable. While it may not
outperform deep models on large-scale datasets, it is highly
effective for moderate-sized puzzles and cases where pre-
trained models are not available. The results from all three
experiments demonstrated high accuracy, low average
angular error, and successful placement of all pieces, even
under challenging visual conditions.

Future improvements may include hybridizing the
method with machine learning for better handling of
ambiguous patterns and exploring alternative similarity
measures instead of basic TM.

5 Conclusion

This study introduced two novel, template matching
(TM)-based methods for solving jigsaw puzzles, both of
which demonstrated high accuracy in aligning pieces of
varying sizes and complexities. The first method employs a
two-stage framework that integrates Principal Component
Analysis (PCA) for orientation correction, followed by TM
for positional alignment. In contrast, the second method
combines orientation and position estimation in a single step,
offering a faster yet still effective alternative.

In comparison to deep learning-based approaches that
typically require extensive annotated datasets and significant
training times, the proposed methods offer a lightweight,
unsupervised, and computationally efficient solution.
Furthermore, unlike traditional greedy or graph-based
algorithms—which are often susceptible to local minima and
combinatorial explosion—the PCA-based orientation
correction significantly reduces placement ambiguity by
aligning pieces according to their dominant structural
direction.

Despite these strengths, the proposed methods have
certain limitations. They assume that puzzle pieces are
relatively intact and not heavily occluded or distorted.
Consequently, their performance may degrade under
conditions involving severe illumination changes, texture
variations, or physical deformation of the puzzle
components.

Nonetheless, the presented approach highlights the
potential of combining simple yet effective preprocessing
techniques with classical matching algorithms to achieve
robust and interpretable puzzle reconstruction. This
methodology holds promise for broader applications in
computer vision, image analysis, and digital content
reconstruction.

Future work may focus on improving robustness against
real-world  challenges by incorporating adaptive
preprocessing techniques, exploring alternative similarity

measures, or hybridizing the method with machine learning-
based techniques. Such enhancements could further increase
the scalability, accuracy, and applicability of the proposed
approach in diverse visual domains.
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