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	 Modern	society	prioritizes	Sustainable	Development	Goals	(SDGs	7	and	13)	to	address	the	fuel	requirements	of	
transportation	 and	 agriculture,	 concentrating	 on	 clean	 energy	 and	 climate	 change	 mitigation.	 This	 study	
examines	the	combination	of	Simmondsia	chinensis	(jojoba)	biodiesel	and	methyl	acetate	(MA)	to	improve	
combustion	efficiency	and	decrease	emissions	in	a	Common	Rail	Direct	Injection	(CRDi)	engine.	The	ternary	test	
fuels	comprised	diesel,	biodiesel	(SCB),	and	MA	additives,	formulated	as	DB50	(50%	diesel	+	50%	biodiesel),	
DBMA10	(50%	diesel	+	40%	biodiesel	+	10%	MA),	and	DBMA20	(50%	diesel	+	30%	biodiesel	+	20%	MA).	Tests	
performed	at	21º	CA	for	fuel	injection	time,	with	varied	fuel	injection	pressures	(FIP:	400,	500,	600	bar)	and	
exhaust	gas	recirculation	(EGR:	0,	10,	20%),	demonstrated	that	DBMA20	enhanced	brake	thermal	efficiency	by	
1.02%	relative	to	DB50.	NOx	emissions	decreased	by	32.3%	and	18.23%	in	DB50	relative	to	diesel	at	400	bar	
fuel	 injection	 pressure	 and	 20%	 exhaust	 gas	 recirculation.	 DBMA20	 elevated	 smoke	 opacity	 and	 CO,	 HC	
emissions	while	decreasing	FIP	and	augmenting	EGR.		Secondly,	nonlinear	test	results	and	repetitive	engine	
testing	make	 improving	 IC	engine	performance	with	alternate	 fuels	difficult.	This	 challenge	 is	 solved	using	
generalisable	machine	learning	models	and	engine	variable	optimisation.	Machine	learning-based	long-short-
term	memory	(LSTM)	models	anticipate	and	optimise	a	CRDi	engine	that	runs	on	ternary	test	fuel	with	various	
injection	 strategies	for	FIP	and	EGR	experimental	data	 as	 an	 input.	This	model	 accurately	predicts	 thermal	
efficiency,	fuel	consumption,	NOₓ,	HC,	CO,	and	smoke	opacity.	LSTM	predicted	R²	values	of	0.91-0.991,	with	an	
MRE	of	1%-5%.	Best	CRDi	engine	configuration:	DBMA20	@	600	bar	FIP,	10%	EGR.	LSTM	improves	R²	and	
reduces	MRE	 to	enhance	engine	performance.	An	R²	value	 close	to	1	 is	 expected.	 It	 can	 conclude	 that	 the	
machine	 learning	based	forecasting	method	 is	 an	effective	 tool	 for	 assessing	 the	 in	depth	engine	operation	
relation	among	input	variables.	

	
Dizel	Motorlarda	Isıl	Verimliliğin	Optimizasyonu:	LSTM	Makine	Öğrenimi	Kullanılarak	
Üçlü	Karışımlar,	Değişken	Enjeksiyon	Basınçları	ve	EGR	ile	Performans	Tahmini	
	

M A K A L E 	 B İ L G İ S İ 	 	 Ö Z E T 	

Anahtar	Kelimeler:	
Üçlü	karışımlar	
Yakıt	enjeksiyon	basıncı	
EGR;	emisyonlar	
Performans	
Makine	öğrenimi	optimizasyonu	
	

	 Modern	toplum,	ulaşım	ve	tarım	sektörlerinin	yakıt	gereksinimlerini	karşılamak	amacıyla	Sürdürülebilir	
Kalkınma	 Amaçları	 (SKA	 7	 ve	 13)	 doğrultusunda	 temiz	 enerji	 ve	 iklim	 değişikliğiyle	 mücadeleye	
odaklanmaktadır.	Bu	çalışma,	Simmondsia	chinensis	(jojoba)	biyodizeli	ve	metil	asetat	(MA)	karışımının	
Common	 Rail	 Doğrudan	 Enjeksiyonlu	 (CRDi)	 motorda	 yanma	 verimi	 ve	 emisyonlara	 etkisini	
incelemektedir.	Üçlü	test	yakıtları	DB50	(50%	dizel	+	50%	biyodizel),	DBMA10	(50%	dizel	+	40%	biyodizel	
+	10%	MA)	ve	DBMA20	(50%	dizel	+	30%	biyodizel	+	20%	MA)	olarak	hazırlanmıştır.	Deneyler	21°	CA	
enjeksiyon	avansında,	değişken	enjeksiyon	basınçları	(FIP:	400,	500,	600	bar)	ve	egzoz	gazı	resirkülasyonu	
oranları	 (EGR:	 0,	 10,	 20%)	 ile	 yürütülmüştür.	 Sonuçlara	 göre	 DBMA20,	 DB50’ye	 kıyasla	 fren	 termal	
verimini	%1,02	artırmış,	400	bar	FIP	ve	%20	EGR	koşullarında	NOₓ	emisyonları	dizel	yakıta	göre	sırasıyla	
%32,3	 ve	%18,23	 azalmıştır.	 Ancak	DBMA20,	 artan	 EGR	 ve	 azalan	 FIP	 ile	 duman	 opaklığı,	 CO	 ve	HC	
emisyonlarını	 yükseltmiştir.	 Alternatif	 yakıtlarla	 içten	 yanmalı	 motor	 performansını	 geliştirmedeki	
doğrusal	olmayan	deneysel	zorluklar,	makine	öğrenmesi	tabanlı	Uzun-Kısa	Süreli	Bellek	(LSTM)	modeliyle	
aşılmıştır.	 LSTM	modeli,	 farklı	 FIP	ve	 EGR	değerleriyle	 elde	 edilen	deneysel	 verileri	 kullanarak	 termal	
verim,	yakıt	tüketimi,	NOₓ,	HC,	CO	ve	duman	opaklığını	yüksek	doğrulukla	tahmin	etmiştir.	Model,	R²	=	
0,91–0,991	ve	MRE	=	%1–5	aralığında	sonuçlar	vermiş;	en	uygun	konfigürasyon	DBMA20	@	600	bar	FIP,	
%10	 EGR	olarak	belirlenmiştir.	 LSTM’nin	yüksek	R²	 değeri,	 yöntemin	motor	parametreleri	 arasındaki	
ilişkileri	doğru	biçimde	modellediğini	göstermektedir.	
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SEMBOLLER	/	NOMENCLATURE	
ASTM		 American	Society	for	Testing	and	Materials	 	 DBMA20			 Diesel-40%,	SCB-50%	+	MA20%	
TDC				 Top	Dead	Centre,	CA			 	 ECU																									Electronic	Control	Unit	
BSFC		 Brake	Specific	Fuel	Consumption	(kg/kW-hr)	 	 HC																												Hydrocarbons,	ppm	
BTE				 Brake	Thermal	Efficiency,	%	 	 HRR																								Heat	Release	Rate,	J/deg	
CA						 Crank	Angle,	deg	 	 PCP																										Peak	Cylinder	Pressure,	bar			
CCI	(CN)			 Calculated	Cetane	Index	 	 NOx																																							Nitrogen	oxides,	ppm	
CO						 Carbon	monoxide,	%	vol.	 	 PPM																									Parts	Per	Million	
CR						 Compression	ratio	 	 CV																																Calorific	Value	(MJ/kg)	
FIP						 Fuel	Injection	Pressure(bar)	 	 LSTM	 Long	Short-Term	Memory	
CRDI		 Common	Rail	Direct	Injection	 	 R2	 Correlation	Coefficient	
SCB				 Simmondsia	Chinensis	Biodiesel	 	 MRE	 Mean	Relative	Error	
MA																								Methyl	Acetate	(99.6%	pure)	 	 RNN	 Recurrent	Neural	Network	
DB50																									Diesel-50%,	SCB-50%	 	 ANN	 Artificial	Neural	Network				
DBMA10	 Diesel-40%,	SCB-50%	+	MA10%	 	 	 	
	
INTRODUCTION	
	
Energy	plays	a	crucial	role	in	ensuring	a	nation's	sustainable	
economic	development	and	is	essential	for	the	basic	needs	of	
individuals	(Mohanrajhu	N	et	al.,	2024).	To	meet	the	growing	
energy	 demand,	 a	 substantial	 amount	 of	 energy	 must	 be	
generated	 and	 distributed	 across	 various	 sectors,	 including	
transportation,	domestic	use,	agriculture,	and	heavy	industry	
(Babu	 A	 et	 al.,	 2024).	 The	 increasing	 percentage	 of	 energy	
usage	has	led	researchers	to	examine	ongoing,	sustainable,	and	
renewable	resources	(Jayabal,	R	et	al.,	2024).	Diesel	engines	are	
widely	 used	 in	 transportation	 due	 to	 their	 superior	 fuel	
conversion	efficiency	(Qiu	et	al.,	2025).	However,	their	higher	
emission	levels	are	a	concern	due	to	adverse	effects	on	human	
health	and	the	environment.	Prolonged	exposure	to	particulate	
matter	 increases	 the	 risk	 of	 respiratory	 illnesses,	 including	
pulmonary	cancer	(Damodharan,	D.,	et	al.	2018).	Compression	
ignition	(CI)	engines	can	be	operated	using	a	variety	of	 fuels	
through	different	methods	and	modifications	(Kannan,	R	et	al.,	
2024).	Reports	indicate	that	the	oil	obtained	from	the	seeds	of	
the	Jojoba	tree,	known	as	Simmondsia	Chinensis,	may	grow	to	
an	altitude	of	1–5	meters	and	boast	a	long,	long-life	expectancy	
of	150	years	(Vellaiyan	et	al.,	2025b).		There	are	several	other	
names	for	this	widely	distributed	plant	in	the	United	States.	The	
oil	and	wax	content	of	its	seeds	varies	between	44	and	56%.	
The	 oil	 had	 a	 beautiful	 golden	 hue,	 was	 safe	 for	 use,	 and	
consisted	of	97%	monoesters,	which	are	long-chain	fatty	acids	
and	alcohols.	This	component	ensures	its	stability	and	ability	to	
withstand	extremes	of	heat,	distinguishing	it	from	numerous	
non-edible	 oils	 (Subramanian	 et	 al.,	 2022).	When	 the	 oil	 is	
transesterified,	it	produces	biodiesel	with	improved	properties	
(Jayabal,	 et	 al.,	 2024).	The	 research	 study	 involved	a	mix	 of	
ternary	diesel	with	JME	and	n-butanol	additives.	Jojoba	oil	has	
a	notable	n-butanol	element	(DBJ15),	allowing	it	to	generate	
low-emission	 varieties	 in	 a	 similar	 timeframe	 while	
maintaining	impressive	thermal	efficiency	(Mohanrajhu	et	al.,	
2024).	It's	revealed	one	of	the	main	issues	regarding	biodiesel	
is	its	vulnerability	to	oxidative	reactions	driven	by	radicals	(Li	
et	 al.,	 2025).	 The	 high	 concentration	 of	 unsaturated	methyl	
esters	 makes	 biodiesel	 susceptible	 to	 oxidation.	 It	 requires	
thoughtful	 actions,	 which,	 among	 a	 few	 others,	 include	 the	
incorporation	 of	 protective	 ingredients	 (Vellaiyan	 et	 al.,	
2025a).	Synthetic	antioxidants	 like	butylated	hydroxyanisole	
and	butylated	hydroxytoluene	performed	equally	effectively	as	
the	PFS	extract	(Zhou	et	al.,	2024).		
	
The	 current	 research	 confirms	 the	 effectiveness	 of	 plant	
extracts	 abundant	 in	 phenolic	 as	 powerful	 ingredients	 for	
biodiesel	 (Shubham	 J	 et	 al.,	 2021).	 This	work	 revealed	 that	
methyl	 acetate	 is	 largely	 the	 agent	 of	 choice	 for	 glues	 and	

adhesives	 that	 use	 low-viscosity	 systems.	 Adding	 methyl	
acetate	 to	 petrol	 enhances	 its	 cetane	 rating,	 drivability,	
concentration,	and	vapor	pressure	(Jayabal,	R	et	al.,	2024).	This	
study	evaluated	two	chemicals,	anisole	and	methyl	acetate,	for	
their	 potential	 use	 as	 fuel	 ingredients	when	 combined	with	
gasoline	and	biofuel.	Anisole	and	methyl	acetate,	for	example,	
have	been	demonstrated	in	experiments	to	work	well	as	petrol	
and	biofuel	compounds.	However,	NOx	and	soot	emissions	can	
be	problematic	(Londhe,	H.,	et	al.,2019).	A	second	study	was	
carried	out	with	biodiesel	from	WCO	at	various	FIPs.	Compared	
to	clean	diesel	under	similar	operating	conditions,	better	FIP	
reduced	BTE	 (Ramesh,	 A.,	 et	 al.,2019).	 This	 study	 shows	 to	
eliminate	slush	deposits	and	colour	deterioration	in	biodiesel	
fuels	by	adding	antioxidants.	Diesel	fuels	are	notoriously	fast	
turning.	Due	 to	 rust,	1–3-year	storage	 is	unlikely.	Pyrogallol,	
diphenylamine,	 tert-butylhydroquinone,	 butylated	 hydroxyl	
anisole,	and	methyl	acetate	are	antioxidants.	The	survey	found	
TBHQ,	PL,	and	MA	to	be	the	best	antioxidants.	Biodiesel	mixing	
mostly	 uses	 these	 additions	 to	 stabilise	 (M.	 Vijay	 Kumar	 et	
al.,2018).	This	 research	discovers	 the	effect	of	kapok	methyl	
ester	mix	diesel	engine	fuel	burns	when	injected	with	reactive	
agents	and	with	holes	in	the	injector.	A	single-cylinder	diesel	
engine	was	used	 to	analyze	a	40%	kapok	methyl	ester	mix.	
Using	a	6-hole	nozzle,	the	tests	showed	that	B40	mixed	with	
1000	ppm	tertiary	butyl	hydroquinone	gave	off	the	most	heat	
(102	 J/°CA).	 Propyl	 gallate	 had	 a	 minimum	 BSFC	 of	 0.269	
kg/kW h	at	the	lowest	load	with	the	B40	mix	(Narayanan	S	et	
al.,	 2022).	 Recently,	 researchers	 explored	 the	 concept	 of	 a	
three-component	blend	because	of	its	enhanced	stability,	cost-
effectiveness,	 and	 minimal	 adjustments	 needed	 for	 engine	
hardware	settings.	This	paper	investigates	the	application	of	
methyl	acetate	alongside	diesel	and	SCOME.	Research	on	the	
application	of	methyl	acetate	antioxidants	in	engines	has	been	
quite	 limited.	 Their	 capacity	 to	 reduce	 smoke	 has	 gained	
significant	attention	(Karthikeyan	S	et	al.,2023).	According	to	
this	 study,	 diesel	 and	 Prosopis	 juliflora	 oil	 methyl	 ester	
(PJOME)	was	mixed	at	10%,	20%,	and	30%.	Three	parametric	
CRs	(16,	17.5,	and	19)	and	FIP	(400,	500,	and	600)	were	used.	
Recent	research	has	shown	that	B20	and	CR16	with	FIP	600	
bar	increase	BTE	by	33.21%	and	lower	bsfc	by	0.25	kg/kW-hr.	
PCP	is	69.28	bar,	NHRR	is	79.14	J/deg,	and	exhaust	emissions	
are	55	ppm	UHC,	0.25%	CO,	34.33%	smoke,	and	2401	ppm	
NOx.	UHC,	CO,	and	smoke	were	lower	than	other	mixes,	while	
BTE	and	NOx	were	higher(Ramesh,	T	et	al.,2022).	This	work	
specifically	utilizes	an	experimental	technique	to	investigate	the	
influence	of	adjusting	intake	pressure	(IP)	on	CI	engine	factors,	
using	 a	 20%	 biodiesel	 derived	 from	 Ceiba	 pentandra.	 In	
comparison	to	diesel	(B0)	at	200	bar,	the	biodiesel	mix	(B20)	
with	a	higher	IP	(260	pressure)	increased	BTE	(9%),	CP	(8.5%),	
and	HRR	(2%)	while	reducing	BSFC	(9%),	CO	(14%),	HC	(16%),	
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and	 smoke	 (16%).	 Lower-rate	 EGR	 addresses	 higher	 NOx	
emissions	at	higher	IP	(Damodharan,	D.,	et	al.2018).		
	
Operating	an	engine	in	every	possible	way	and	with	every	fuel	
type	is	difficult	and	expensive	(Liu	et	al.,	2025).	However,	diesel	
engine	production	and	emission	conditions	can	be	predicted	
using	 machine	 learning	 (ML)	 techniques	 such	 as	 ANN	 and	
LSTM	which	require	much	smaller	effort	and	assets	(Anping	et	
al.,	 2025).	 One	 distinguishing	 characteristic	 of	 these	 novel	
methods	is	their	capacity	to	understand	and	anticipate	specific	
results	 autonomously(Yang,	 R	 et	 al.,2022).	 They	 discovered	
that	the	MLA	versions	provided	adequate	reaction	latency	for	
actual	management	 purposes.	 This	made	 them	a	 quick	 and	
accurate	 way	 to	 predict	 when	 combustion	 would	 start	 in	
homogeneously	 charged	 CI	 engines,	 Because	 of	 the	 linear	
hypothesis	addition	(Lee,	J	et	al.,2021).	Despite	the	intriguing	
effects	of	ANN	on	exhaust	temperature,	the	study's	extensive	
usage	 of	 starting	 parameters	 and	 the	 risk	 of	 failure	 due	 to	
gradient	 explosion	 during	 training	 necessitate	 extra	 effort	
spent	tuning	the	hyperparameters.	On	the	other	hand,	irregular	
shifts	 usually	define	 thermal	 stress;	 collecting	and	 obtaining	
this	 information	is	needed	 in	various	situations	for	 research	
and	forecast.	However,	only	a	few	aspects	are	considered,	and	
their	interdependencies	are	not	considered.	Given	the	scarcity	
of	 ANNs,	 the	 LSTM	 model	 is	 being	 evaluated	 for	 use	 in	
predictive	analysis.	The	utilization	of	AI	in	bioenergy	processes	
is	negligible,	and	also,	there	is	a	need	for	additional	research	to	
be	 conducted	 on	 the	 utilization	 of	 machine	 learning	 (ML)	
techniques	 to	 improve	 performance	 and	 forecast	 (Liu,	 J.	 et	
al.,2021).	 Research,	 however,	 shows	 that	 ML	 holds	 much	
promise	 for	 reducing	 obstacles	 to	 the	 expansion	 of	 the	
bioenergy	sector.	The	subject	of	study	two	machine	learning	
methodologies,	 K-nearest	 neighbours	 (KNN)	 and	 support	
vector	machines	(SVM),	to	categorise	combustion	events	in	a	
homogeneous	charge	compression	ignition	(HCCI)	engine.	The	
research	indicated	that	SVM	attained	a	classification	accuracy	
of	93.5%,	whilst	KNN	acquired	an	accuracy	of	89.2%	(Angikath	
S	et	al.,	2020).	This	study	examined	average	effective	pressure	
prediction	using	random	forests	(RF),	ANN,	and	support	vector	
regression.	Machine	learning	models	were	trained,	evaluated,	
and	tested	using	verified	one-dimensional	computation	fluid	
dynamics	data.	Both	SVR	and	ANN	models	accurately	predicted	
mean	effective	pressure,	with	R²	values	of	0.976,	0.961,	and	
0.964.	The	RF	model	has	the	lowest	training	and	testing	error	
rates	of	5.37	and	7.92		(Amad	Hussen	et	al.,2024).	This	research	
predicts	 compression	 ignition	 (CI)	 engine	 pollution	 and	
performance	using	machine	learning	algorithms	(MLAs).	The	
R2	scores	of	linear	regression,	support	vector	regression,	neural	
networks,	 KNN,	 polynomial	 regression,	 Gaussian	 processes,	
relevance	 vector	 machines,	 and	 deep	 learning	 (LSTM)	
algorithms	are	0.928,	0.921,	0.334,	0.951,	0.5,	0.7,	and	0.961,	
respectively,	compared	to	the	proposed	model.	The	LSTM	deep	
learning	model	predicts	engine	reactions	better	for	the	dataset	
used	in	this	study	after	assessing	numerous	metrics.	Following	
the	 algorithm,	 the	 LR,	 SVM,	 and	NN	 algorithms	 trail	 closely	
(Subramanian	K	et	al.,2024).	This	study	uses	LSTM	to	forecast	
exhaust	 gas	 emissions	 using	 just	 engine	 characteristics	 like	
intake	 air	 temperature,	 emission	 gas	 temperature,	 and	
injection	 timing.	 Deep	 learning	 may	 be	 used	 as	 a	 virtual	
emission	 sensor	 since	 it	 correlates	 data	without	automobile	
specs	 or	 data.	 Since	 the	 complicated	 environment	makes	 it	
impossible	to	evaluate	deep	learning	and	road	car	test	data,	this	
study	 employs	 a	 single-cylinder	 diesel	 engine.	 Measure	 the	
nitrogen	 oxide	 by	 adjusting	 injection	 time	 and	 intake	 air	
temperature	 from	 0	 to	 100	 °C.	 Nitrogen	 oxide	 is	 reliably	

predicted	with	a	 significant	correlation	R²	 of	0.994	with	 little	
engine	data	(Shin,	D.,	et	al.,2023).		 	This	study	revealed	that	it	
developed	 the	 SVM	 and	 LSTM	models	 to	 estimate	 unmixed	
turbofan	engine	emissions	and	exergy	indicators	during	takeoff.	
The	data	show	that	LSTM	has	fewer	model	errors	than	SVM.	The	
NO 	xemission	index	is	predicted	by	SVM	with	R²	0.929074	and	
LSTM	with	R²	0.954878	(Hakan	Aygun	et	al.,2023).	
	
Furthermore,	 research	 has	 yet	 to	 be	 undertaken	 into	
employing	an	SCB-MA	blend	in	a	CRDI	research	diesel	engine	
while	altering	the	FIPs	and	EGR	rates.	The	initial	objectives	of	
this	 research	were	 to	 evaluate	 the	 engine	 characteristics	 of	
SCB-MA	 mixtures	 in	 a	 CRDI	 research	 diesel	 engine	 with	
different	FIPs	 (400,	 500,	 and	600	bar)	and	EGR	(0,	 10,	 and	
20%).	The	results	were	subsequently	in	contrast	with	those	of	
traditional	 diesel	 operations.	 In	 addition,	 machine	 learning	
based	LSTM	model	was	employed	to	predict	the	performance	
of	common	rail	direct	injection	(CRDI)	diesel	engines	in	terms	
of	both	fuel	efficiency	and	emissions.	
	
TESTING	APPARATUS	AND	METHODOLOGY	
	
Test	Fuels	
	
	Table	 1	 presents	 a	 comprehensive	 overview	 of	 the	 salient	
attributes	of	pure	diesel	fuel	and	biodiesel	fuel	obtained	from	
the	 residual	 seeds	 of	 Simmondsia	 Chinensis	 plant.	 The	
consumption	of	Simmondsia	Chinensis	oil	in	CI	engines	may	
lead	to	injector	complications	due	to	the	heightened	viscosity	
and	density	of	the	oil.	Using	methyl	acetate	from	Millipore	and	
the	transesterification	process,	SCO	was	changed	to	SCB,	which	
has	 lower	 viscosity	 and	 density.	 A	 diesel-biodiesel-methyl	
acetate	combination	was	made.	Combining	petrol	and	biofuel	
formed	 the	 binary	mix.	DBMA10	 included	50%	diesel,	 40%	
biodiesel,	 and	 10%	methyl	 acetate.	DBMA20	 and	DB50	 are	
binary	mixtures.	
	
Table	1:	Characteristics	of	Test	fuel	

	
Test	setup	
	
Figure	 1	 illustrates	 the	 experimental	 setup	 under	
investigation.	The	Kirloskar	TV1	was	used	for	conducting	
tests	 and	 consisted	 of	 a	mono	 cylinder,	 4S,	 VCR-water-
cooled	system	that	was	associated	with	a	dynamometer.	
NOx	pollutants	were	quantified	with	an	AVL	digas	444N	
analyser	 and	deplete	 smoke	discharges	were	 evaluated	
with	an	AVL	437C	smoke	meter.	A	CRDI	arrangement	was	
necessary	to	accomplish	the	infusion	conditions	required	
for	 assessment.	 The	 fuel	 delivery	 line	was	modified	 to	
connect	to	the	common	rail	direct	injection	system,	and	
an	 elevated-pressure	 impeller	 was	 subsequently	
installed	in	the	strainer.	This	functions	as	a	fuel	storage	
tank.	The	Nira	i7r	engine	control	unit	is	equipped	with	a	

Properties	 Standard	 Diesel	 SCB	 SCB	
50	

Methyl	
Acetate	
(MA)	

SCB40+	
MA	
10%	

SCB30+	
MA	
20%	

Kinematic	
viscosity,	
40	°C	

ASTM	
D	445	 2.89	 5.12	 4.01	 0.4	 3.756	 3.51	

Density	
(kg/m3)	

ASTM	
D	1298	 832	 876	 854	 932	 864	 873	

CV	(MJ/kg)	 ASTM	
D	240	 42.5	 38.25	 40.38	 21.5	 38.29	 36.18	

CCI	 ASTM	
D	976	 47	 51	 49.3	 -	 -	 -	

Flash	
point	°C	

ASTM	
D	93	 69	 152	 120	 10	 104.6	 98.7	
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rail	 pressure	 sensor	 for	 the	 purpose	 of	 maintaining	
pressure.	 Due	 to	 the	 significantly	 increased	 injection	
pressures	 utilised	 by	 CRDI,	 the	 initial	 injector	 was	
inadequate,	 and	 thus,	 a	 6-hole	 solenoid-regulated	
injector	was	selected	as	a	 suitable	alternative.	The	ECU	
was	utilised	to	modify	the	initial	detectors	and	effectors	
to	 ensure	 their	 appropriate	 functionality.	 Assuming	
proper	functioning	of	the	engine,	it	is	deemed	suitable	for	
diagnostic	 evaluation.	 The	 experimentation	 engine	
parameters	are	described	in	Table	2.		
	

	
Figure	1.	Test	engine	layout	[7]	
	
Table	2.	Engine	specification	
Make	and	Model	 Kirloskar,	TV1	
	Number	of	cylinders	
	Stroke	

Single	
Four	

	Bore	x	Stroke	length	 87.5	mm	x	110	mm	
Capacity	 661cc	
Power	output	 3.5	kW	at	1500	rpm	
	CR	 1:17.5	
	Cooling	method	 Water-cooled	
	IT,	CA	bTDC	 23°	
	FIP	 200	to	600	bar		

	
Error	Analysis	
	
An	instrument's	assessment	outcomes	can	be	standardized	
by	several	test	conditions,	such	as	how	the	test	 is	set	up,	
what	 reports	 are	 made,	 and	 the	 environment.	 To	
determine	the	accuracy	of	the	experiments,	it	is	important	
to	do	an	uncertainty	analysis	 (Venu,	H	et	al.,2019).	Each	
instrument's	 process	 and	 calibrations	 are	 calculated	
routinely	 across	 5	 repeats	 (n=5).	 The	 instrumental	
uncertainty	 for	 each	 parameter	 is	 related	 to	 the	
experiment’s	 uncertainty.	 In	 equation	 (1),	 the	 quadratic	
summation	of	every	extensive	parameter	with	the	result	of	
every	sample	is	summed.	
	
𝜎𝑥# = 	&(𝐵𝑥# + 𝑅𝑥#)																									 				 								(1)	
	
RX	denotes	the	density	function	of	errors	in	repetition.	To	
put	it	another	way,	BX	represents	the	cumulative	ambiguity	
density	 function.	 Various	 tests	were	 run	 on	 the	 analysis	
results	 to	 calculate	 the	 null	 hypothesis.	 Table	 3	 lists	 the	
instrument's	Accuracy,	resolution,	and	range.	
	

Table	3:	Instrument’s	Accuracy,	resolution,	and	range	
Measured	
quantity	 Accuracy	 Resolution	 Range		

NOx		 ±5	ppm	 1	ppm	vol.	 0-5000	ppm	
Smoke		 ±1	%	 0.1	%	 0-100	%	
CO		 ±0.02	%	 0.01	%	vol	 0-15	%		
HC		 ±10	ppm	 1	ppm	vol.	 0-30000	ppm	
CO2	 ±0.3	%	 0.01	%vol	 0-20	%	
Oil	temperature	 ±4	°C	 1	°C	 0-125 °C	

Speed	 ±1	min-1	 1	min-1	 400…6000	min-
1	

	
EGR	Setup	
	
The	 exhaust	 gas	 recirculation	 (EGR)	 method	 drops	 the	
temperature	 of	 the	 cylinder's	 charge	 and	 the	 overall	
temperature,	 thereby	 decreasing	 nitrogen	 oxide	 (NOX)	
emissions.	 This	 also	 renders	 EGR	 denser,	 resulting	 in	 a	
total	rise	in	its	volume.	The	EGR	cooler	directs	a	part	of	the	
exhaust	 gas	 into	 the	 air	 intake.	 The	 exhaust	 gas	
recirculation	cooler's	H2O	 functions	as	a	heat	exchanger,	
collecting	 heat	 from	 the	 retained	exit	gases.	 The	 outlet's	
temperature	must	drop	by	36	°C	during	this	process.	The	
EGR	valve	controls	the	amount	of	air	that	circulates	inside	
the	 engine.	 The	 EGR	 is	 determined	 by	 the	 orifice	
dimension.	Directing	the	recycled	exhaust	gas	to	the	input	
port	was	the	best	approach	to	start	the	process.	The	EGR	
rate	was	calculated	using	equation	(2).	
	

												 	 								(2)	

	
The	AVL	444	N	gas	apparatus	was	utilised	to	ascertain	the	
quantity	of	CO2	emitted	by	adjusting	the	outlet	discharge	
till	 the	entering	carbon	dioxide	reached	a	predetermined	
level	(Kim	H	Y	et	al.,2019).		
	
Experimental	procedure	
	
To	 explore	 the	 potential	 of	 replacing	 50%	 of	 diesel	 with	
biodiesel,	 emissions,	 efficiency,	 and	 combustion	 properties	
were	 analysed.	 A	 50:50	 diesel–biodiesel	 binary	 blend	 was	
prepared	and	tested,	which	resulted	in	higher	smoke	emissions	
compared	 to	 conventional	 diesel,	 thereby	 affecting	
performance.	As	a	mitigation	strategy,	the	use	of	antioxidant	
additives,	a	commonly	recommended	method,	was	adopted	to	
reduce	 tailpipe	 smoke	 emissions	 below	 those	 of	 standard	
diesel	engines.	The	present	research	selected	methyl	acetate	as	
an	oxidant	due	to	its	attributes	being	comparable	to	those	of	
low-viscosity	 substances.	 The	 study	 established	 a	 specific	
diesel	volume	to	meet	the	objective	of	substituting	50%	of	the	
diesel	 volume	 with	 alternative	 fuel.	 Quantity	 reduced	 the	
biodiesel	 proportion	 to	 20%	 and	 supplemented	 it	 with	 the	
methyl	acetate	additive.	The	engine	was	 operated	under	 its	
standard	 settings	 using	 a	 ternary	 blend	 consisting	 of	 50%	
diesel,	40%	SCB,	and	10%	methyl	acetate,	as	well	as	a	second	
blend	of	50%	diesel,	30%	SCB,	and	20%	methyl	acetate.	The	
ternary	mix	 operation	 reduced	 smoke	 emissions	 below	 the	
diesel	operation	while	 improving	combustion	characteristics	
when	 combined	 with	 the	 binary	 mix.	 The	 ternary	 blend,	
however,	resulted	in	higher	NOx	emissions.	Because	of	this,	we	
did	more	tests	with	the	ternary	blend	at	full	power,	changing	
the	FIP	to	400,	500,	and	600	bar	and	the	EGR	to	0%,	10%,	and	
20%	 to	 find	 the	 best	 operating	 condition	 for	 lowering	 the	
smoke	and	nitrogen	oxide.	The	research	upheld	a	consistent	CR	
19	and	an	INT	21º	bTDC.	To	ensure	uniform	findings,	 three	
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different	 tests	were	 conducted	 on	 the	 same	 day	 and	under	
similar	 climate	circumstances.	 The	 initial	 evaluations	 were	
done	by	averaging	the	results	and	using	neat	diesel.	Samples	
were	 examined	 for	 four	 weeks	 to	 validate	 the	 variant's	
uniformity.	A	UV-visible	spectrometer	was	used	to	validate	the	
variants'	uniformity.	The	gravitational	method	examined	the	
Simmondsia	Chinensis	biodiesel	supply	in	diesel.	The	variants	
were	 balanced	 in	 the	 absence	 of	 phase	 estrangement.	 The	
evaluation	 of	 combustion	 characteristics	 was	 conducted	 by	
analysing	 the	cylinder	pressure	data.	To	mitigate	 the	effects	of	
frequent	variability,	it	is	necessary	to	utilize	a	100-cycle	average	
when	calculating	the	heat	release	rate	(HRR)	based	on	pressure	
inferences.	The	temperature	of	the	lubricating	oil	was	maintained	
within	 the	 range	 of	 85	 ºC	 to	 90	 ºC.	 Prior	 to	 recording	 the	
parameters,	the	procedure	was	executed	in	a	continuous	manner	
for	duration	of	10	to	15	minutes.	
	
Machine	Learning	Algorithm-based	LSTM	Network	
	
Long-short-term	 memory	 (LSTM)	 is	 a	 neural	 network	
developed	by	Hochreiter	and	Schmidhuber	in	1997.	The	steady	
evolution	of	this	model	has	resulted	in	a	comprehensive	and	
well-organised	structure	(Zhou,	R.	et	al.,2023).	In	this	research,	
the	LSTM	is	employed	to	address	the	expansion	and	difficulty	
in	updating	partial	derivatives	W	during	training,	as	well	as	the	
dependence	 problem	 at	 long	 distances,	 which	 are	 both	
challenges	for	the	recurrent	neural	network	(RNN).	Figure	2	
depicts	 the	neural	unit's	LSTM	internal	structure.	The	LSTM	
extends	 the	 RNN	 structure	 with	 three	 thresholds:	 logical	
control	units	responsible	for	managing	the	network's	input	and	
output	data	at	a	time	ti	gets	one	single	piece	of	information	as	
its	 input,	 whereas	 the	 Long	 Short	 Term	 Memory	 (LSTM)	
network	receives	an	entry	consisting	of	three	components.	The	
current	 value	 of	 the	 network’s	 input	 (Xt)	 the	 output	 value	
stored	in	long	short	term	memory	from	the	previous	time	step	
(ht-1)	and	the	cell	state,	from	the	previous	moment	(Ct−1)	The	
LSTM	neural	network	performs	computations	based	on	the	cell	
state	(Ct)	and	the	current	time	steps	output	(ht).	 It	utilizes	a	
gating	system	composed	of	input	gates	to	bring	in	information,	
to	 the	cell	state	at	each	 time	step;	 forgetting	gates	 to	decide	
what	 information	 is	 no	 longer	 needed;	 and	 output	 gates	 to	
update	the	current	cell	state,	for	prediction	purposes	in	each	
time	step	using	equations	6	through	10.	
	
ft	=	σ	(Wf	·	[ht−1,	Xt]	+	bf	),				 	 	 								(3)	
it	=	σ	(Wi	·	[ht−1,	Xt]	+	bi),						 	 	 								(4)	
ot	=	σ	(Wo	·	[ht−1,	Xt]	+	bo),					 	 	 								(5)	
Ct	=	ft	ht−1	+	it	tanh	(WC	·	[ht−1,	Xt]	+	bc),		 	 								(6)	
ht	=	ot	tanh(Ct),	 	 				 	 	 								(7)	
	
Here,	"xt"	stands	for	the	input,	while	"ft,"	"it,"	and	"ot"	refer	to	the	
hidden	 gate,	 input	 gate,	 and	 output	 gate,	 respectively.	 The	
statistic	 "ct"	 represents	 the	cellular	 state	at	 time	"t,"	after	 the	
input	and	hidden	gates	has	been	activated.	Simultaneously,	"ht"	
represents	 all	 potential	 states	 of	 the	 LSTM	 unit's	 output.	 To	
activate	the	LSTM	unit,	the	double	tangent	function	is	utilised,	
while	the	sigmoid	function	is	represented	by	the	symbol	"δ."	
	
Equations	show	the	input	weight	coefficients	as	Wxi,	Whi,	Wci,	
Wf,	Whf,	Wcf,	Wxc,	Whc,	Wxo,	Who,	and	Wco.	We	refer	to	the	offset	
vectors	as	bi,	bf,	bc,	and	bo.	LSTM	models	can	deliberately	retain	
important	information	by	considering	the	state	of	the	cell	unit	
and	the	configuration	of	three	gates:	input,	hidden,	and	output.	
The	input	gate	plays	a	crucial	role	in	identifying	the	incoming	

data	and	Managing	the	input	at	the	present	position	in	the	
sequence.	On	the	other	hand,	the	concealed	gate	employs	
the	activation	function	to	decide	when	to	discard	previous	
information.	The	output	gate	oversees	the	retention	of	data	
as	well	as	the	final	output.	
	

	
Figure	2.	LSTM	Architecture	
	
Model	Architecture	
	
An	LSTM	neural	network	captures	temporal	relationships	
in	 sequential	 data,	 which	 is	 the	 heart	 of	 our	 modelling	
technique.	 Double-stacked	 LSTM	 layers	 form	 the	model.	
The	first	LSTM	layer	has	100	units	and	returns	sequences	
for	stacking.	A	second	LSTM	layer,	consisting	of	50	units,	
outputs	 a	 fully	 linked	 dense	 layer.	 LSTM	 layers	 are	
followed	 by	 0.2-dropout	 layers	 to	 prevent	 overfitting.	
Signature	activation	is	used	in	the	last	dense	output	layer.	
	
Training	and	Dataset	
	
This	analysis	used	298	multivariate	time	series	samples.	Each	
sample	 has	 50	 time	 steps	 and	 10	 characteristics	 that	 track	
dynamic	 system	 activity.	 A	 publicly	 available	 benchmark	
repository	utilised	in	time	series	modelling	studies	provided	
the	 data.	 The	 dataset	 was	 extensively	 preprocessed	 before	
training.	Linear	interpolation	was	used	to	fill	missing	values,	
and	min-max	scaling	normalized	all	features	to	[-1,	1]	to	ensure	
consistency	and	expedite	model	convergence.	With	a	random	
seed	 to	assure	 repeatability,	 the	cleaned	data	was	split	 into	
training	 (80%),	 validation	 (10%),	and	 test	 (10%)	 groups	 in	
fixed	proportions.	
	
This	error	reduction	is	visible	in	the	high	scores	earned	on	
both	the	exercise	and	training	datasets,	which	are	99.99%	
and	100%,	respectively.	These	high	scores	imply	that	the	
LSTM	 model	 is	 generalised,	 with	 minimal	 bias	 and	
variation.	In	other	words,	it	performs	well	on	both	training	
and	 testing	 data,	 indicating	 its	 capacity	 to	 predict	
accurately	on	previously	unknown	data.		
	
Model	Hyperparameter	Tuning	
	
Hyperparameters	affect	model	behaviour	and	performance.	
These	 settings	 are	 tuned	 to	 improve	 model	 performance.	
Layers	(1,	2,	3,	4),	hidden	units	and	epochs	(10,	20,	30,	40,	50,	
60,	70,	80,	90,	100,	110,	120,	130,	140,	150,	160),	and	batch	
size	 (1,	 3,	 5,	 7,	 9,	 11,	 13,	 15)	 are	 predefined	 LSTM	
hyperparameters.	Latin	hypercube	sampling	generates	300	
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LSTM	 hyperparameter	 possibilities.	 To	 evaluate	 LSTM	
performance	 with	 300	 hyperparameter	 combinations,	 the	
calibration	 set	 uses	 a	 20%	 holdout	 method.	 Grid	 Search	
systematically	evaluates	 these	hyperparameters	 to	 find	 the	
ideal	set	that	improves	regression	model	prediction	accuracy.	
This	 method	 avoids	 the	 drawbacks	 of	 attempting	 all	
possibilities	and	saves	time.		
	
Model	Evaluation	
	
Regression	issues	aim	to	transfer	the	dependent	variable's	
actual	values	to	the	models'	anticipated	values.	Regression	
model	performance	may	be	assessed	using	measures	like	
R²	 score	 and	 MRE.	 While	 the	 R²	 score	 evaluates	 model	
performance,	 it	 does	 not	 imply	 inaccuracy.	 Common	
regression	model	goodness-of-fit	indicators	include	the	R2-
score,	which	spans	 from	0	 to	1.	 	A	value	of	 0	 shows	 the	
model	doesn't	explain	response	data	variability.	However,	
a	 score	 of	 1	 indicates	 that	 the	 model	 matches	 the	 data	
flawlessly.	The	R-squared	equation	follows.	
	
R# = 1 − /∑ (12342)5

6
278
∑ (42)56
278

9																		 	 	 							(8)
		

Mean	 Relative	 Error	 (MRE)	 is	 a	 statistic	 used	 to	 assess	
model	 predictions,	 especially	 for	 regression	 tasks	 with	
continuous	 variables.	 This	 is	 similar	 to	 Mean	 Absolute	
Error	 (MAE),	 but	 the	 MRE	 normalizes	 the	 difference	
between	anticipated	and	actual	values	by	the	actual	values,	
making	it	more	relative.	
	
	MRE = <

=
	∑ |100 × (12342)
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=
AB< |													 	 							(9)

		
RESULTS	AND	DISCUSSION	
	
COMBUSTİON	ANALYSİS	
	
Peak	pressure	analysis	
	
The	 variations	 of	 peak	 pressure	 at	 maximum	 load	 are	
depicted	in	Figure	3.	The	DBMA20	fuel	blend	produced	a	
higher	 peak	 cylinder	 pressure	 (PCP)	 compared	 to	 the	
other	 tested	fuels.	The	difference	is	primarily	due	 to	its	
longer	 ignition	 delay,	which	 allows	 for	 a	more	 uniform	
air-fuel	 mixture,	 leading	 to	 a	 more	 intense	 premixed	
combustion	phase	and	an	increase	in	PCP	(Jayabal,	R	et	a.,	
2025).	 From	 the	 plot,	 an	 increase	 from	400	 to	 600	bar	
increases	the	PCP	for	the	methyl	acetate	blends.	The	PCP	
increased	from	80.02	bar	to	85.45	bar,	73.52	bar	to	76.21	
bar,	 and	 73.15	 bar	 to	 77.15	 bar.	 However,	 while	 EGR	
levels	increased	from	0%	to	20%,	PCP	decreased	at	all	FIP	
levels,	 from	 8.71%	 at	 400	 bar,	 7.48%	 at	 500	 bar,	 and	
10.81%	at	600	bar,	respectively.	Specifically,	this	occurs	
because	 the	 ignition	 delay	 increases	 as	 the	 injection	
pressure	decreases.	Lower	injection	pressures	also	result	
in	larger	fuel	droplet	sizes,	which	lead	to	poorer	air-fuel	
mixing	 and	 a	 subsequent	 reduction	 in	 in-cylinder	
pressure(Kumar,	 P.	 et	 al.,2018).	 The	 PCP	 of	 methyl	
acetate	mixtures	 decreases	 as	 EGR	 rates	 escalate.	 This	
occurs	because	the	inert	gases	in	the	redirected	exhaust	
gases	 serve	 as	 heat	 sinks	 by	 absorbing	 the	 energy	
released	during	combustion.	Consequently,	the	cylinder's	
maximum	pressure	is	reduced		(Ashok,	B.,	et	al.,2019).	
		

	
Figure	3.	In-cylinder	pressure	at	different	FIP	and	EGR	level	
	
Heat	release	rate	
	
Figure	 4	 illustrates	 the	 variations	 in	 heat	 release	 rate	
(HRR)	 among	 different	 test	 fuels	 under	 maximum	 load	
conditions.	 At	 an	 injection	 pressure	 of	 600	 bar,	 the	
DBMA20	blend	showed	a	higher	heat	release	rate	because	
it	 took	 longer	 to	 ignite	 and	 had	 more	 oxygen	 available.	
These	 factors	 enhance	 the	 combustion	 rate	 during	 the	
process,	resulting	in	elevated	HRR	levels	(Ashok,	B.,	et	al.	
2019).	When	 the	 fuel	 injector	pressure	 is	decreased,	 the	
HRR	slope	changes	from	left	to	right,	and	with	increasing	
EGR	rates,	the	arc	changes	even	more.	Concerning	the	0%,	
10%,	 and	 20%	 values	 at	 400	 bar,	 the	 heat	 release	 rate	
values	are	49.23	J/°	to	45.80	J/°,	respectively.	Similarly,	at	
FIP	values	of	500	bar	and	600	bar,	the	HRRs	are	55.66J/°,	
to	47.79J/°,	and	60.984J/°,	to	53.81J/°	respectively	at	EGR	
rates	0%,	10%,	and	20%.	Sprayer	nozzles	have	a	higher	
equivalency	 ratio	 and	 impair	 the	 air-depletion	 process,	
significantly	 affecting	 burning	 and	 lowering	 the	 HRR	 at	
reduced	rail	 injector	levels(Sharma,	et	al.,2019).	It	states	
that	low	injection	pressure	causes	minimized	HRR	peaks.	
Moreover,	 a	 reduced	 mass	 fraction	 at	 retard	 injection	
pressures	produces	a	lower	gas	temperature	and,	hence,	a	
minimum	HRR.	As	the	EGR	rate	rises,	peak	HRR	noticeably	
falls.	The	presence	of	polyatomic	molecules	 like	CO₂	and	
H₂O	 in	 the	 exhaust	 gases	 dilutes	 the	 intake	 air	 and	
increases	the	specific	heat	capacity.	As	a	result,	the	injected	
fuel	 undergoes	 incomplete	 combustion,	 leading	 to	 a	
reduction	in	the	HRR(Jaichandar,	S	et	al.,2013).	
	

	
Figure	4.	HRR	at	various	FIP	and	EGR	levels	
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PERFORMANCE	ANALYSİS	
	
Brake	thermal	efficiency	
	
Figure	5	shows	FIP	and	EGR-related	brake	thermal	efficiency	
(BTE)	 variations.	 At	 rated	 power	 and	 standard	 engine	
specifications,	diesel,	DB50,	DBMA10,	and	DBMA20	had	BTE	
values	of	35.87%,	33.91%,	34.7%,	and	35.2%.	The	DBMA20	
blend's	 lower	 calorific	 value,	 improved	 atomisation,	 and	
inherent	 oxygen	 content	 extended	 the	 combustion	 process	
and	increased	efficiency,	improving	BTE	by	1.29%	over	the	
DB50	blend	 at	 600	bars	 of	 injection	pressure.	 The	 greater	
cetane	index	and	shorter	ignition	delay	of	DBMA20	boosted	
the	BTE	marginally,	improving	engine	productivity	(Ashok,	B.,	
et	al.,2019).	Using	EGR	values	of	0%,	10%,	and	20%	at	400	
bar,	 the	 engine's	 BTE	 is	 32.1%,	 30.5,	 and	 29.14%,	
respectively.	Similarly,	at	500	bar	and	600	bar	FIP,	the	brake	
thermal	efficiency	is	33.8%,	32.33%,	30.71%,	35.2%,	33.63%,	
and	31.65%,	respectively,	at	EGR	rates	of	0%,	10%,	and	20%.	
The	graph	shows	that	the	best	BTE	for	the	ternary	mix	FIP	at	
600	bars	was	1.5%	higher	than	that	for	a	similar	EGR	level.	
This	 improvement	 is	 supported	 by	 HRR	 analysis.	 At	 600	
pressures,	the	ternary	mix	FIP	has	a	more	concentrated	heat	
release	 rate	 and	 takes	 more	 beneficial	 work,	 yielding	 a	
greater	 BTE.	 As	 the	 EGR	 rises,	 the	 ternary	 blend's	 BTE	
diminishes	and	 lack	of	 	Exhaust	 particles	burning	 is	 led	 to	
reducing	the	BTE		(Kim,	H.	Y,	et	al.	2019).	
	

	
Figure	5.	BTE	at	different	FIP	and	EGR	rate	
	
Brake	specific	fuel	consumption	
	
Brake-specific	fuel	consumption	 is	a	quantity	that	 is	directly	
proportional	 to	 the	 volume	of	 injected	 fuel	and	 the	calorific	
rating.	Diesel	has	a	 lower	BSFC	 than	biodiesel	mixtures	as	a	
result	 of	 its	 high	 calorific	 value	 and	 low	 mass	 (Sharma	 et	
al.,2019).	 Figure	 6	 depicts	 the	 BSFC	 of	 the	 test	 variants	 at	
various	FIP	and	exhaust	gas	recirculation	values.	At	the	fixed	
power	and	engine	operating	circumstance,	the	BSFC	for	Diesel,	
DB50,	DBMA	10	mix,	and	DBMA	20	blend	were	determined	to	
be	 0.217,	 0.26,	 0.24,	 and	 0.23	 kg/kW-hr,	 respectively.	
The	correlation	 between	BTE	 and	BSFC	 is	 that	 fuels	with	 a	
lower	BTE	will	have	a	higher	BSFC.	Therefore,	the	rationale	for	
the	 variations	 in	 BTE	 across	 biodiesel,	 biodiesel-MA	blends,	
and	diesel	fuel	also	applies	to	BSFC	(Jayabal,	R	et	al.,2024).	The	
BSFC	for	the	DBMA20	variant	was	reduced	to	600	bar	when	
compared	to	the	DBMA10	blend	and	was	equal	to	the	DB50	
blend.	 This	 is	 due	 to	 the	 combined	 influence	 of	 the	 ternary	
variant's	 lower	 LHV,	 which	 necessitates	 a	 slightly	 higher	
quantity	 of	 fuel	 to	 produce	 equivalent	 energy	 to	 split	 the	

ternary	variant's	existing	aromatic	compounds.	It	eventually	
increases	the	fuel	supply,	and	BSFC	decreases	(Rangabashiam,	
D.,	et	al.2020).	The	drop	in	BSFC	can	be	seen	in	the	graph	when	
the	FIP	is	increased	from	400	to	600	bars.			As	an	illustration,	
the	values	decreased	from	0.26	to	0.238	kg/kW-hr,	0.289	to	
0.267	kg/kW-hr,	and	0.31	to	0.286	kg/kW-hr	for	0%,	10%,	and	
20%	 EGR,	 respectively.	 	 At	 lower	 injection	 pressures,	 air	
penetration	can	be	hindered	due	to	larger	fuel	droplet	sizes	and	
a	 reduced	 excess	 air	 ratio.	 As	 a	 result,	 BSFC	 increases	 and	
combustion	efficiency	decreases	(Ramachander		et		al.,	2021).	
In	the	meantime,	increasing	the	EGR	rates	will	result	in	a	higher	
BSFC.	The	BSFC	increased	from	0.238	to	0.286	kg/kW-hr	at	a	
FIP	of	600	bars	when	the	EGR	level	increased	from	0%	to	20%.	
Specific	heat	capacity	rises	when	exhaust	gas	is	induced.	The	
charge	 slows	 the	 flames	 spread	 and	 raises	 the	 chance	 of	 a	
malfunction	 by	 lowering	 the	 cylinder's	 temperature.	 As	 a	
result,	more	fuel	is	required	to	sustain	the	ignition,	elevating	
the	BSFC	(Prasada	Rao,	G	et	al.,2021).			
	

	
Figure	6.	BSFC	at	various	FIP	and	EGR	rate	
	
EXHAUSTS	ANALYSİS	
	
Oxides	of	nitrogen	emissions	
	
The	combustion	temperature,	the	local	air-fuel	ratio,	and	the	
duration	of	the	combustion	process	primarily	influence	NOₓ	
emission	levels.	The	three	key	parameters	that	govern	NOₓ	
formation	 are	 the	 in-cylinder	 temperature,	 the	 oxygen	
concentration,	and	the	reaction	time	(K,	S		et	al.,2020).	The	
disparity	of	Nox	at	various	FIP	and	EGR	rates	for	the	binary	
and	a	ternary	blend	is	revealed	in	Figure	7.	At	stated	output	
conditions	 and	 engine	 stock	 operating,	 the	 Nox	 level	 for	
Diesel,	DB50,	DBMA10	blend,	and	DBMA20	blend	at	FIP	600	
bar	were	2683	ppm,	2162	ppm,	2231	ppm,	and	2353	ppm,	
correspondingly.	While	contrasted	 to	 the	binary	blend,	 the	
tripartite	combine	emitted	more	Nox	due	to	the	inclusion	of	
elevated	 methyl	 acetate,	 which	 encourages	 burning,	
crowning	 in	 higher	 gas	 temperature	 and	 greater	Nox.	 The	
DB50	 blend	 is	 19.41%	 less	 expensive	 than	 the	 reference	
diesel.	Biodiesel	exhibits	reduced	volatility	in	comparison	to	
diesel	 fuel,	 resulting	 in	 a	 slower	 rate	 of	 evaporation.	 The	
absence	of	chemical	aromas	in	biodiesel	may	be	attributed	to	
the	observed	decrease	in	Nox	emissions	(Ahamad	Shaik,	A.,	et	
al.,2020).	The	methyl	acetate	additive	blend	is	5.18%	higher	
Nox	 than	 the	 DB50	 blend	 and	 12.14%	 lower	 than	 the	
reference	diesel.	The	higher	temperatures	from	burning	the	
primary	 infused	 charge	 resulted	 in	 the	 creation	 of	
monoatomic	N₂,	leading	to	higher	NOₓ	emissions	(Mani,	M		et	
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al.,2010).	 Increasing	 the	 EGR	 percentage	 at	 a	 fixed	 FIP	
significantly	lowered	Nox	emissions.	For	instance,	at	400	bar	
FIP,	a	rise	from	0%	to	20%	EGR	resulted	in	a	32.34	%	drop	in	
Nox.	This	drop	was	18.23%	at	600	bar	FIP	with	an	EGR	rate	
ranging	from	0%	to	20%.	Greater	EGR	values	are	responsible	
for	 lower	Nox	pollution.	This	 is	because	high-heat-capacity	
inactive	 entities	 in	 the	 emissions,	 such	 as	 carbon	 dioxide	
(CO2),	 water	 vapour	 (H2O),	 and	 others,	 consume	 the	 heat	
produced	during	burning,	culminating	in	a	reduced	PCP	and	
maximal	HRR(Sharbuddin	Ali,	S.	et	al.,2020).	The	plot	shows	
that	 Increased	 EGR	 rates	 significantly	 reduced	 Nox	
production.	At	all	EGR	rates,	lower	FIP	resulted	in	minimum	
Nox	emissions.	For	example,	DBMA	20	blend	was	reduced	
from	2353	to	2068	ppm	as	the	FIP	was	reduced	from	600	to	
400	bar	 at	 0%	exhaust	 gas	 recirculation	 level.	 Likewise,	 it	
reduced	from	2127	to	1749	ppm	and	1924	to	1400	ppm	at	
10%	 and	 20%	 EGR	 levels,	 respectively.	 The	 combustion	
process	 experiences	 insufficient	 fuel	 atomization	 at	 lower	
injection	 pressures,	 which	 leads	 to	 reduced	 HRR.	
Furthermore,	as	the	injection	pressure	decreases,	a	smaller	
mass	 fraction	 of	 fuel	 is	 burnt,	 resulting	 in	 reduced	 NOₓ	
emissions	 due	 to	 the	 corresponding	 decrease	 in	 gas	
temperature(Fayad,	M.A	et	al.,2019).		
	

Figure	7.	Nox	emissions	at	different	FIT	and	EGR	levels	
	
Smoke	opacity	
	
Smoke	 opacity	 indicates	 incomplete	 combustion	 and	
excessive	 tailpipe	 particulates.	 Oxygen	 deficit,	 in-cylinder	
temperature,	fuel	characteristics,	and	combustion	efficiency	
affect	it.	Poor	atomisation	or	delayed	ignition	can	increase	
smoke	opacity	(Venu,	H	et	al.,2019).	The	tested	fuels	SO	at	
different	 FIP	 and	 exhaust	 gas	 recirculation	 at	 maximum	
power	is	illustrated	in	Figure	8.	58.6%	and	48.7%	for	DB50	
and	diesel	blends	exhibit	the	highest	smoke	opacity	among	
the	 methyl	 acetate	 blends.	 Compared	 with	 the	 binary	
variant,	the	smoke	opacity	declined	considerably	under	the	
ternary	 blend.	 It	 is	 primarily	 due	 to	 improved	 fuel	
atomisation	 and	 combustion	 efficiency,	 leading	 to	 more	
complete	 burning	 of	 the	 fuel	 while	 also	 reducing	 smoke	
emissions	(Rangabashiam,	D.,	et	al.,2020).	It	can	be	revealed	
that	the	smoke	opacity15.2%	dropped	at	FIP	and	rose	from	
400	to	600	bar	at	all	exhaust	gas	recirculation	levels.	It	was	
because	 of	 the	 high	 surplus	 air	 correlation	 that	 the	
evaporation	 procedure	 was	 successful.	 As	 a	 result,	 there	
were	fewer	fuel	drops.	 A	 limited	 volume	 of	 smoke	
constituted	the	central	area(Shrivastava,	P	et	al.,2020).	The	
smoke	 opacity	 increases	when	 the	 EGR	 level	 is	 raised	 at	
similar	fuel	injection	pressure.	DBMA20	at	600	bar	smoke	
opacity	rose	from	28.3%	to	41.6	%	when	the	EGR	level	was	

elevated	from	0%	to	20%.	At	a	fuel	injection	pressure	of	500	
bar,	it	rose	from	30%	to	43.5%,	and	at	a	FIP	of	400	bar,	it	
rose	 from	 32.6%	 to	 45.7.	 EGR	 reduces	 the	 cylinder	
temperature	 by	 absorbing	 heat,	 which	 slows	 fuel	
vaporization	and	promotes	smoke	formation	in	rich	zones.	
It	also	hinders	ignition	delay	by	diluting	oxygen	levels(Zhou,	
X.,	 et	 al.,2020).	 Therefore,	 low	 smoke	 emissions	 were	
produced	at	a	higher	FIP.	
	

	
Figure	8.	Smoke	opacity	at	different	FIT	and	EGR	levels	
	
Carbon	monoxide	emissions	
	
The	disparities	at	different	FIP	and	EGR	levels	for	the	test	
blends	are	portrayed	in	Figure	9.	At	the	rated	power	output	
and	 engine	 stock	 Settings,	 the	 carbon	monoxide	 level	 for	
Diesel,	DB50,	 DBMA10,	 and	 the	DBMA20	 at	 600	 bar	was	
found	 to	 be	 1.052%,	 0.341%,	 0.238%,	 and	 0.183%	 by	
volume,	respectively.	In	contrast	to	the	DB	50	blend,	Methyl	
acetate	 in	 the	 diesel/SCB	 blend	 substantially	 reduced	 CO	
emission.	This	is	because	the	oxygen	content	in	the	ternary	
blend	 can	 enhance	 combustion	 efficiency,	 thereby	
promoting	 the	 conversion	 of	 CO	 to	 CO2	 (Londhe,	 H.,	 et	
al.,2019).	The	carbon	monoxide	reduced	as	the	FIP	dropped	
from	600	to	400	bar	at	all	exhaust	gas	recirculation	levels,	
for	example,	DBMA20	blend	0.23	to	0.18%	vol.	at	0%	EGR,	
similarly	0.48	to	0.31%	vol.	at	10%	and	0.66	to	0.42	%	vol.	
at	20%	EGR	levels.	Diminished	FIPs	minimise	the	potential	
of	CO	levels	due	to	less	exterior	wettability	and	fuel	buildup	
in	crevices	(Jayabal,	R	et	al.,2024).	CO	emissions	increase	as	
exhaust	 gas	 recirculation	 levels	 increase	 across	 all	 fuel	
injection	 pressures.	 Results	 showed	 that	 CO	 exhaust	was	
0.23%	vol.,	0.48%	vol.,	and	0.66%	vol.	when	EGR	rates	of	
0%,	 10%,	 and	 20%	 were	 considered	 at	 FIP	 600	 bar,	
accordingly.	Similarly,	at	a	FIP	of	500	bar	and	400	bar,	the	
CO	discharge	was	0.22%	vol.,	0.39%	vol.,	0.59	%	vol.	and	
0.18%	 vol.,	 0.314%	 vol.,	 0.42%	 vol.,	 respectively	 at	 EGR	
rates	of	0%,	10%,	and	20%.		The	EGR	diminishes	the	oxygen	
supply	 for	 combustion.	 which	 can	 lead	 to	 incomplete	
burning	 of	 the	 fuel	 and	 increased	 CO	 formation.	
Additionally,	 the	 reduced	 combustion	 temperature	
resulting	by	EGR	inhibits	the	oxidation	of	CO	to	CO2,	hence	
increasing	CO	emissions	(Ahamad	Shaik,	A.,	et	al.,2020).		
	
Hydrocarbon	emissions	
	
Hydrocarbon	 (HC)	 emissions	 were	 elevated	 due	 to	
incomplete	 combustion	 and	 flame	 quench.	 The	 A/F	
proportions		and	cetane	index	are	the	primary	factors	that	
impact	HC	levels	(Ramachander		et		al.,	2021).	All	the	FIP	
and	EGR	combination	 test	 results	 for	hydrocarbon	 levels	
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are	shown	in	Figure	10.	Under	normal	engine	conditions	
and	rated	power	output,	we	found	80.6	ppm	of	hazardous	
emissions	 for	diesel	at	600	bars,	53	ppm	 for	DB50,	50.4	
ppm	for	DBMA	10	mix,	and	48	ppm	for	DBMA	20	blend.	
	

	
Figure	9.	CO	emissions	at	different	FIT	and	EGR	levels	
	
This	 clearly	 shows	 a	 reduction	 in	 the	 use	 of	 HC	 under	 the	
ternary	 variant.	 Biodiesel	 exhibits	 lower	 HC	 emissions	
compared	 to	 diesel	 due	 to	 higher	 combustion	 temperature	
resulting	 from	 the	 increased	 oxygen	 content	 in	 the	 fuel	
(Ramesh,	T	et	al.,2022).	From	the	plot,	a	noticeable	HC	emission	
diminishes	across	the	FIP	reduced	from	600	to	400	bar	at	all	
the	 exhaust	 gas	 recirculation	 levels.	 For	 instance,	 DBMA20	
blends	48	ppm	to	39	ppm	at	0%	EGR,	59.4	ppm	to	49.5	ppm	at	
10%	 EGR,	 and	 70.2	 ppm	 to	 58	 ppm	 at	 20%	 EGR	 levels,	
respectively.	In	other	terms,	a	greater	FIP	is	associated	with	a	
rise	 in	 HC	 emissions.	 	 The	 droplet	 size	 diminishes	 and	 the	
velocity	increases.	This	results	in	elevated	UBHC	emissions	due	
to	 the	 incomplete	 combustion	 of	 fuel	 droplets	 (Chen,	 Y.,	 et	
al.,2020).	At	FIP	600	bar,	the	HC	emits	were	48,	59.4,	and	70.2	
ppm,	 respectively,	 with	 EGR	 ratios	 of	 0%,	 10%,	 and	 20%.	
Likewise,	with	a	FIP	of	500	bar	and	400	bar,	the	HC	emits	were	
41	ppm,	52.2	ppm,	and	60.3	ppm;	39.5	ppm,	49.5	ppm,	and	58	
ppm,	correspondingly,	when	the	EGR	rates	were	0%,	10%,	and	
20%.	Reducing	the	fuel	injector	pressure	from	600	to	400	bar	
while	 maintaining	 an	 EGR	 rate	 of	 10%	 results	 in	 a	 16.6%	
reduction	in	HC	emissions.	The	phenomenon	was	attributed	to	
delayed	fuel	 injection,	which	 increased	the	 likelihood	of	fuel	
impingement	 and	 accumulation	 in	 confined	 regions	 with	
limited	 combustion	 efficiency,	 thereby	 resulting	 in	 the	
presence	of	unburned	or	partially	oxidized	compounds	(Fayad,	
M.A.,	et	al.,	2019).	
	

	
Figure	10.	HC	emissions	at	various	FIT	and	EGR	rate	

The	experimentation	reveals	that	the	DBMA20	at	600	bar	
with	EGR	10%	shows	the	best	results	in	functionality	and	
CRDI	 outputs.	 So,	 the	 LSTM-based	 machine	 learning	
approach	 is	 used	 to	 predict	 and	 validate	 physical	
experimentation	accuracy.	
	
LONG	–	SHORT	TERM	MEMORY	(LSTM)	MODEL	
	
In	 the	 second	 phase	 of	 this	 research,	 a	 Long	 Short-Term	
Memory	 (LSTM)	 model	 was	 developed	 to	 predict	 diesel	
engine	 performance	 characteristics	 based	 on	 experimental	
results.	The	input	factors	were	FIP,	biodiesel	proportion,	and	
EGR,	while	the	results	measured	were	BTE,	BSFC,	NOₓ,	HC,	
and	CO.	Microsoft	Excel	was	used	to	record	the	experimental	
data.	 CO,	 HC,	 smoking,	 NO,	 and	 BTE	 were	 considered	
predictor	 variables.	 Approximately	 298	 individual	
experiments	were	conducted	using	various	combinations	of	
input	 parameters.	 After	 data	 processing	 and	 LSTM	model	
training,	the	optimal	input	feature	values	were	identified.			
	
The	procedure	followed	to	determine	the	best	value	is	shown	
in	Figure	11.	The	 flowchart	begins	with	experimental	data	
collecting	 on	 diesel	 engine	 combustion,	 performance,	 and	
emission	 characteristics.	 After	 data	 collection,	 a	 machine	
learning	method	is	chosen	based	on	the	issue	and	dataset.	The	
next	stage	is	to	utilise	cross-validation	to	split	the	dataset	into	
training	and	testing	sets,	using	80%	for	model	training	and	
20%	 for	 testing.	 The	 training	 data	 is	 used	 to	 create	 a	
prediction	model	using	the	chosen	machine	learning	method.	
The	model	is	validated	using	testing	data	and	rated	based	on	
a	 squared	 correlation	 coefficient	 (R2)	better	 than	 0.9.	 We	
iteratively	 retrain	 the	model	 if	 it	misses	 certain	 validation	
levels	to	improve	accuracy.	Predictions	are	made	using	new	
input	 data	 after	 model	 validation.	 The	 trained	 machine	
learning	model	 properly	 predicts	 engine	 performance	 and	
emissions	in	the	final	stage.	
	

	
	
Figure	11.	LSTM-based	Machine	Learning	Algorithm	model	
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Each	experimental	value	is	recorded	by	hand,	which	introduces	
the	 possibility	 of	 human	 error.	 The	 entire	 dataset	 is	
preprocessed	before	any	simulation	is	done	to	normalize	the	
numbers	 for	 the	 following	 ML	 computations.	 A	 correlation	
analysis	can	be	employed	to	ascertain	the	degree	of	linearity	in	
the	 association	 between	 the	 predictor	 and	 respondent	
variables.	The	correlation	coefficient	 is	used	to	ascertain	 the	
degree	of	association	between	each	independent	variable	and	
its	corresponding	dependent	variable.	The	correlation	values	
range	from	-1	to	1,	which	shows	that	the	correlation	can	be	
either	negative	or	positive.	The	degree	of	association	between	
the	 input	 and	 output	 features	 is	 characterized	 by	 a	 low	
correlation	coefficient,	which	ranges	from	-1	to	+1.	This	means	
that	methods	that	work	well	with	nonlinear	models	should	be	
used.	The	data	set	is	split	into	80	percent	for	use	in	training	and	
20	percent	for	testing.	The	division	is	conducted	randomly	to	
avoid	favoritism	in	the	selection	of	instances.	Figure	12	(a)	shows	
the	3D	models’	disparities	of	LSTM-oriented	functionality	and	
exhaust	productions,	and	Figure	12	(b)	shows	the	2D	Linear	Fit	
Variation	of	LSTM-based	performance	and	exhaust	outputs.	
	

	
Figure	12.	(a)	3D	models	disparities	of	LSTM-oriented	
functionality	and	Exhaust	productions	
	
The	predicted	and	discussed	outcomes	for	BTE	and	BSFC	
are	shown	in	Figures	13	(a)	and	(b).	It	was	found	that	the	
R2	 values	 were	 0.9619	 and	 0.9509.	 The	 output	 of	 the	
replicated	 LSTM	 demonstrates	 its	 capacity	 to	 forecast	
significant	 aspects.	 The	 MRE	 values	 for	 the	 strategies	
above	are	1.82	and	1.57	percent.	The	values	of	R2	for	NOx,	
CO,	smoke,	and	HC	in	comparison	of	predicted	and	actual	
findings	 were	 0.9965,	 0.9125,	 0.9835,	 and	 0.9879,	
respectively.	 As	 per	 the	 outcomes	 of	 the	 LSTM-based	
model,	MLA	 is	adequate	 for	estimating	output	pollutants	

such	as	NOx,	CO,	smoke,	and	HC.	The	maximum	allowable	
concentrations	 (MRE)	 of	 NOx,	 CO,	 smoke,	 and	 HC	 are	
3.04%,	 5.87%,	 2.44%,	 and	 1.68%,	 respectively.	 Table	 4	
shows	an	overview	of	the	estimated	values.	
	

	
Figure	12.	(b)	2D	Linear	Fit	Variation	of	LSTM-based				Performance	
and	Exhaust	outputs	
	
LSTM	Verifications	
	
The	viability	of	the	applied	approach	must	be	verified	before	it	
can	be	used.	The	LSTM	was	used	to	develop	enhanced	engine	
operating	parameters,	which	were	then	used	in	experiments.	
The	algorithm	produced	 the	expected	significances	from	the	
replications	with	the	failure	periods	(10)	and	displayed	them	in	
Table	5	for	the	corroboration	evaluation.		
	
Error	(%) 	= FGHI	JHIKG3L4MGNHO1	JHIKG

FGHI	JHIKG
	𝑥	100																								(10)	

						
Table	4.	Estimate	the	evaluation	engine's	LSTM-oriented	functionality	
Evolution	factors																													MRE	(%)	 R2	
BTE	(%)	 1.82	 0.9619	
BSFC	(kg/kW-h)	 1.57	 0.9509	
NOx	(ppm)	 3.04		 0.9965	
Smoke	(%)	 2.44	 0.9125	
HC	(ppm)	 1.68		 0.9835	
CO	(%)	 5.87		 0.9879	
	
Verification	is	needed	to	get	the	best	outcomes.	Due	to	the	
preservation	of	two	tests,	the	mean	value	was	calculated	at	
the	maximum	input	variable,	considering	the	LSTM's	EGR,	
DBMA%,	 and	 variable	 fuel	 injection	 pressure	 (FIP)	
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requirements.	The	equation	has	an	error	rate	ranging	from	
5.88%	 at	 its	 highest	 to	 0.13%	 at	 its	 lowest.	 It	 was	
demonstrated	 that	 the	 overall	 errors	 in	 efficiency	 and	
emission	forecasts	were	less	than	6%.	
	
Table	5.	Verification	of	the	anticipated	and	actual	values	
Ternary	
Fuel	
Proportion	
(%)	

Load	
(%)	

Fuel	
Injection	
Pressure	
(bar)	

EGR	
(%)	 Value		 BTE	(%)	 										BSFC	(kg/kw-h)	

DBMA20	 100	 600	 10	

Predicated	 34.83	 0.261	
Observed	 33.63	 0.267	
Error	(%)	 3.44	 2.24	

		 NOx	(ppm)	 HC	
(ppm)	 CO	(%)	

Smoke	
(%)	

Predicated	 2124.3	 61.3	 0.51	 35.2	
Observed	 2127	 59.4	 0.48	 35.8	
Error	(%)	 0.13	 3.09	 5.88	 1.67	

	
The	 LSTM	 is	 an	 excellent	 way	 to	 determine	 how	 the	
different	 parameters	 affect	 each	 other.	 Therefore,	 LSTM	
was	 an	 effective	 instrument	 for	 forecasting	 the	
characteristics	 of	 diesel	 engines.	 MLAs	 can	 forecast	
operational	 factors	 and	 pollution	 pollutants,	 but	 the	
complexity	and	diversity	of	the	problem	may	cause	other	
quantitative	and	computational	techniques	to	fail.	
	
CONCLUSION		
	
This	study	aims	to	investigate	the	interaction	between	the	FIP	
and	EGR	values	and	how	they	affect	 the	variation	of	engine	
parameters	in	several	SCB-MA	blend	combinations.	The	most	
important	findings	are	outlined	in	the	following	summary.	
	
• The	cylinder	pressure	and	HRR	decreased	for	all	variants	

when	the	EGR	rate	was	raised,	and	the	IP	was	lowered.	
• The	 DBMA20%	 blend,	 at	 FIP	 600	 bar	 with	 EGR10%	

rates,	 achieved	 1.02%	 and	 0.53%	 improved	 BTE	
compared	to	the	DB50	and	DBMA10	blends.	However,	
compared	 to	 the	 DBMA20	 blend,	 the	 BTE	 was	
marginally	less	than	the	reference	diesel.	

• Because	 of	 decreased	 FIP	 and	 increased	 EGR	 rates,	
reduced	 NOx	 emissions	 were	 observed.	 The	 study	
reveals	 that	 the	 utilization	 of	 DB50	 resulted	 in	 a	
significant	 reduction	 of	 NOx	 emissions	 by	 32.3%	
compared	to	neat	diesel.	Additionally,	the	reduction	in	
NOx	 emissions	was	 observed	 to	be	 18.23%	higher	at	
FIP	400	bar	with	EGR	by	20%.	

• The	DBMA20	blend	increased	smoke	opacity	by	28.3%	
and	 41.6%	 at	 600	 bar	 FIP	 with	 EGR	 10	 and	 20%	
compared	to	DB50	and	DMA10%		

• The	levels	of	HC	and	CO	emissions	exhibited	an	increase	
across	 all	 Fuel	 Injection	 Pressure	 (FIP)	 settings	 and	
elevated	Exhaust	Gas	Recirculation	(EGR)	rates.	

• Machine	 learning	 was	 enough	 to	 predict	 the	 CRDi	
engine	outcome	variants	for	different	test	blends.	The	
BTE,	 BSFC,	 NOx	 emissions,	 HC	 emissions,	 and	 CO	
emissions	 R2	 values	were	 close	 to	 1.	When	 the	MLA	
analyzed	the	experimental	data,	a	close	correlation	was	
found	between	expected	and	actual	outcomes.	

	
The	DBMA20	blend	operated	at	FIP	600	bar,	and	10%	EGR	
enhanced	 performance	 and	 reduced	 emissions	 when	
correlated	with	 the	 other	 injection	 pressures	 and	 EGR	 rate	
operations.	 The	 results	 indicate	 that	 the	 utilization	 of	
Simmondsia	Chinensis	 seed	biodiesel	blend,	 containing	20%	
by	volume	of	DBMA,	can	be	effectively	employed	in	CRDI	diesel	
engine	 applications,	 resulting	 in	 decreased	 emissions,	 as	
supported	by	both	experimental	and	predictive	data.	

FUTURE	SCOPE	
	
Future	research	can	produce	adaptive,	self-learning	LSTM	
models	 that	 dynamically	 adjust	 to	 engine	 conditions	 to	
improve	 performance	 and	 operating	 flexibility.	 This	
strategy	might	 also	 improve	 fuel	economy	and	pollution	
compliance	 in	 large-scale	 engine	 operations,	 addressing	
environmental	issues.	
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