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Modern society prioritizes Sustainable Development Goals (SDGs 7 and 13) to address the fuel requirements of
transportation and agriculture, concentrating on clean energy and climate change mitigation. This study
examines the combination of Simmondsia chinensis (jojoba) biodiesel and methyl acetate (MA) to improve
combustion efficiency and decrease emissions in a Common Rail Direct Injection (CRDi) engine. The ternary test
fuels comprised diesel, biodiesel (SCB), and MA additives, formulated as DB50 (50% diesel + 50% biodiesel),
DBMA10 (50% diesel + 40% biodiesel + 10% MA), and DBMA20 (50% diesel + 30% biodiesel + 20% MA). Tests
performed at 212 CA for fuel injection time, with varied fuel injection pressures (FIP: 400, 500, 600 bar) and
exhaust gas recirculation (EGR: 0, 10, 20%), demonstrated that DBMAZ20 enhanced brake thermal efficiency by
1.02% relative to DB50. NOx emissions decreased by 32.3% and 18.23% in DB50 relative to diesel at 400 bar
fuel injection pressure and 20% exhaust gas recirculation. DBMA20 elevated smoke opacity and CO, HC
emissions while decreasing FIP and augmenting EGR. Secondly, nonlinear test results and repetitive engine
testing make improving IC engine performance with alternate fuels difficult. This challenge is solved using
generalisable machine learning models and engine variable optimisation. Machine learning-based long-short-
term memory (LSTM) models anticipate and optimise a CRDi engine that runs on ternary test fuel with various
injection strategies for FIP and EGR experimental data as an input. This model accurately predicts thermal
efficiency, fuel consumption, NO,, HC, CO, and smoke opacity. LSTM predicted R* values of 0.91-0.991, with an
MRE of 1%-5%. Best CRDi engine configuration: DBMA20 @ 600 bar FIP, 10% EGR. LSTM improves R* and
reduces MRE to enhance engine performance. An R* value close to 1 is expected. It can conclude that the
machine learning based forecasting method is an effective tool for assessing the in depth engine operation
relation among input variables.

Dizel Motorlarda Isil Verimliligin Optimizasyonu: LSTM Makine Ogrenimi Kullamlarak
Uclii Karisimlar, Degisken Enjeksiyon Basinglari ve EGR ile Performans Tahmini

MAKALE BILGISI

OZET

Anahtar Kelimeler:

Uglii karigimlar

Yakit enjeksiyon basinci

EGR; emisyonlar

Performans

Makine 6grenimi optimizasyonu

Modern toplum, ulasim ve tarim sektorlerinin yakit gereksinimlerini karsilamak amaciyla Siirdiirtilebilir
Kalkinma Amaglar1 (SKA 7 ve 13) dogrultusunda temiz enerji ve iklim degisikligiyle miicadeleye
odaklanmaktadir. Bu ¢alisma, Simmondsia chinensis (jojoba) biyodizeli ve metil asetat (MA) karisiminin
Common Rail Dogrudan Enjeksiyonlu (CRDi) motorda yanma verimi ve emisyonlara etkisini
incelemektedir. Uclii test yakitlar: DB50 (50% dizel + 50% biyodizel), DBMA10 (50% dizel + 40% biyodizel
+10% MA) ve DBMA20 (50% dizel + 30% biyodizel + 20% MA) olarak hazirlanmistir. Deneyler 21° CA
enjeksiyon avansinda, degisken enjeksiyon basimglari (FIP: 400, 500, 600 bar) ve egzoz gazi resirkiilasyonu
oranlart (EGR: 0, 10, 20%) ile yiiriitiilmistiir. Sonuclara gére DBMA20, DB50’ye kiyasla fren termal
verimini %1,02 artirmis, 400 bar FIP ve %20 EGR kosullarinda NO, emisyonlar1 dizel yakita gore sirasiyla
%32,3 ve %18,23 azalmistir. Ancak DBMA20, artan EGR ve azalan FIP ile duman opakligi, CO ve HC
emisyonlarini yiikseltmistir. Alternatif yakitlarla icten yanmali motor performansini gelistirmedeki
dogrusal olmayan deneysel zorluklar, makine 6grenmesi tabanh Uzun-Kisa Siireli Bellek (LSTM) modeliyle
asilmistir. LSTM modeli, farkli FIP ve EGR degerleriyle elde edilen deneysel verileri kullanarak termal
verim, yakit tiiketimi, NO,, HC, CO ve duman opakhgm yiiksek dogrulukla tahmin etmistir. Model, R? =
0,91-0,991 ve MRE = %1-5 araliginda sonuglar vermis; en uygun konfiglirasyon DBMA20 @ 600 bar FIP,
%10 EGR olarak belirlenmistir. LSTM'nin yiiksek R* degeri, yontemin motor parametreleri arasindaki
iligkileri dogru bicimde modelledigini gdstermektedir.
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SEMBOLLER / NOMENCLATURE

ASTM American Society for Testing and Materials
TDC Top Dead Centre, CA

BSFC Brake Specific Fuel Consumption (kg/kW-hr)
BTE Brake Thermal Efficiency, %

CA Crank Angle, deg

CCI(CN) Calculated Cetane Index

Co Carbon monoxide, % vol.

CR Compression ratio

FIP Fuel Injection Pressure(bar)

CRDI Common Rail Direct Injection

SCB Simmondsia Chinensis Biodiesel

MA Methyl Acetate (99.6% pure)

DB50 Diesel-50%, SCB-50%

DBMA10 Diesel-40%, SCB-50% + MA10%

DBMA20  Diesel-40%, SCB-50% + MA20%
ECU Electronic Control Unit

HC Hydrocarbons, ppm

HRR Heat Release Rate, ] /deg
PCP Peak Cylinder Pressure, bar
NOx Nitrogen oxides, ppm

PPM Parts Per Million

cv Calorific Value (M]/kg)
LSTM Long Short-Term Memory
R2 Correlation Coefficient
MRE Mean Relative Error

RNN Recurrent Neural Network
ANN Artificial Neural Network

INTRODUCTION

Energy plays a crucial role in ensuring a nation's sustainable
economic development and is essential for the basic needs of
individuals (Mohanrajhu N et al, 2024). To meet the growing
energy demand, a substantial amount of energy must be
generated and distributed across various sectors, including
transportation, domestic use, agriculture, and heavy industry
(Babu A et al, 2024). The increasing percentage of energy
usage has led researchers to examine ongoing, sustainable, and
renewable resources (Jayabal, Retal, 2024). Diesel engines are
widely used in transportation due to their superior fuel
conversion efficiency (Qiu et al, 2025). However, their higher
emission levels are a concern due to adverse effects on human
health and the environment. Prolonged exposure to particulate
matter increases the risk of respiratory illnesses, including
pulmonary cancer (Damodharan, D., et al. 2018). Compression
ignition (CI) engines can be operated using a variety of fuels
through different methods and modifications (Kannan, Retal,
2024). Reports indicate that the oil obtained from the seeds of
the Jojoba tree, known as Simmondsia Chinensis, may grow to
an altitude of 1-5 meters and boast a long, long-life expectancy
of 150 years (Vellaiyan et al, 2025b). There are several other
names for this widely distributed plantin the United States. The
oil and wax content of its seeds varies between 44 and 56%.
The oil had a beautiful golden hue, was safe for use, and
consisted of 97% monoesters, which are long-chain fatty acids
and alcohols. This component ensures its stability and ability to
withstand extremes of heat, distinguishing it from numerous
non-edible oils (Subramanian et al, 2022). When the oil is
transesterified, it produces biodiesel with improved properties
(Jayabal, et al, 2024). The research study involved a mix of
ternary diesel with JME and n-butanol additives. Jojoba oil has
a notable n-butanol element (DBJ15), allowing it to generate
low-emission varieties in a similar timeframe while
maintaining impressive thermal efficiency (Mohanrajhu et al,
2024). It's revealed one of the main issues regarding biodiesel
is its vulnerability to oxidative reactions driven by radicals (Li
et al, 2025). The high concentration of unsaturated methyl
esters makes biodiesel susceptible to oxidation. It requires
thoughtful actions, which, among a few others, include the
incorporation of protective ingredients (Vellaiyan et al,
2025a). Synthetic antioxidants like butylated hydroxyanisole
and butylated hydroxytoluene performed equally effectively as
the PFS extract (Zhou etal,, 2024).

The current research confirms the effectiveness of plant
extracts abundant in phenolic as powerful ingredients for
biodiesel (Shubham ] et al, 2021). This work revealed that
methyl acetate is largely the agent of choice for glues and

adhesives that use low-viscosity systems. Adding methyl
acetate to petrol enhances its cetane rating, drivability,
concentration, and vapor pressure (Jayabal, R etal, 2024). This
study evaluated two chemicals, anisole and methyl acetate, for
their potential use as fuel ingredients when combined with
gasoline and biofuel. Anisole and methyl acetate, for example,
have been demonstrated in experiments to work well as petrol
and biofuel compounds. However, NOx and soot emissions can
be problematic (Londhe, H, et al,2019). A second study was
carried out with biodiesel from WCO at various FIPs. Compared
to clean diesel under similar operating conditions, better FIP
reduced BTE (Ramesh, A, et al,2019). This study shows to
eliminate slush deposits and colour deterioration in biodiesel
fuels by adding antioxidants. Diesel fuels are notoriously fast
turning. Due to rust, 1-3-year storage is unlikely. Pyrogallol,
diphenylamine, tert-butylhydroquinone, butylated hydroxyl
anisole, and methyl acetate are antioxidants. The survey found
TBHQ, PL, and MA to be the best antioxidants. Biodiesel mixing
mostly uses these additions to stabilise (M. Vijay Kumar et
al,2018). This research discovers the effect of kapok methyl
ester mix diesel engine fuel burns when injected with reactive
agents and with holes in the injector. A single-cylinder diesel
engine was used to analyze a 40% kapok methyl ester mix.
Using a 6-hole nozzle, the tests showed that B40 mixed with
1000 ppm tertiary butyl hydroquinone gave off the most heat
(102 J/°CA). Propyl gallate had a minimum BSFC of 0.269
kg/kWh at the lowest load with the B40 mix (Narayanan S et
al, 2022). Recently, researchers explored the concept of a
three-component blend because of its enhanced stability, cost-
effectiveness, and minimal adjustments needed for engine
hardware settings. This paper investigates the application of
methyl acetate alongside diesel and SCOME. Research on the
application of methyl acetate antioxidants in engines has been
quite limited. Their capacity to reduce smoke has gained
significant attention (Karthikeyan S et al,2023). According to
this study, diesel and Prosopis juliflora oil methyl ester
(PJOME) was mixed at 10%, 20%, and 30%. Three parametric
CRs (16, 17.5, and 19) and FIP (400, 500, and 600) were used.
Recent research has shown that B20 and CR16 with FIP 600
bar increase BTE by 33.21% and lower bsfc by 0.25 kg/kW-hr.
PCP is 69.28 bar, NHRR is 79.14 ] /deg, and exhaust emissions
are 55 ppm UHC, 0.25% CO, 34.33% smoke, and 2401 ppm
NOx. UHC, CO, and smoke were lower than other mixes, while
BTE and NOx were higher(Ramesh, T et al,2022). This work
specifically utilizes an experimental technique to investigate the
influence of adjusting intake pressure (IP) on CI engine factors,
using a 20% biodiesel derived from Ceiba pentandra. In
comparison to diesel (B0O) at 200 bar, the biodiesel mix (B20)
with a higher IP (260 pressure) increased BTE (9%), CP (8.5%),
and HRR (2%) while reducing BSFC (9%), CO (14%), HC (16%),
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and smoke (16%). Lower-rate EGR addresses higher NOx
emissions at higher IP (Damodharan, D, et al.2018).

Operating an engine in every possible way and with every fuel
type is difficultand expensive (Liu etal,, 2025). However, diesel
engine production and emission conditions can be predicted
using machine learning (ML) techniques such as ANN and
LSTM which require much smaller effort and assets (Anping et
al, 2025). One distinguishing characteristic of these novel
methods is their capacity to understand and anticipate specific
results autonomously(Yang, R et al,2022). They discovered
that the MLA versions provided adequate reaction latency for
actual management purposes. This made them a quick and
accurate way to predict when combustion would start in
homogeneously charged CI engines, Because of the linear
hypothesis addition (Lee, ] et al,2021). Despite the intriguing
effects of ANN on exhaust temperature, the study's extensive
usage of starting parameters and the risk of failure due to
gradient explosion during training necessitate extra effort
spent tuning the hyperparameters. On the other hand, irregular
shifts usually define thermal stress; collecting and obtaining
this information is needed in various situations for research
and forecast. However, only a few aspects are considered, and
their interdependencies are not considered. Given the scarcity
of ANNs, the LSTM model is being evaluated for use in
predictive analysis. The utilization of Al in bioenergy processes
is negligible, and also, there is a need for additional research to
be conducted on the utilization of machine learning (ML)
techniques to improve performance and forecast (Liu, J. et
al,2021). Research, however, shows that ML holds much
promise for reducing obstacles to the expansion of the
bioenergy sector. The subject of study two machine learning
methodologies, K-nearest neighbours (KNN) and support
vector machines (SVM), to categorise combustion events in a
homogeneous charge compression ignition (HCCI) engine. The
research indicated that SVM attained a classification accuracy
of 93.5%, whilst KNN acquired an accuracy of 89.2% (Angikath
S etal, 2020). This study examined average effective pressure
prediction using random forests (RF), ANN, and support vector
regression. Machine learning models were trained, evaluated,
and tested using verified one-dimensional computation fluid
dynamics data. Both SVR and ANN models accurately predicted
mean effective pressure, with R? values of 0.976, 0.961, and
0.964. The RF model has the lowest training and testing error
rates of 5.37 and 7.92 (Amad Hussen etal,2024). This research
predicts compression ignition (CI) engine pollution and
performance using machine learning algorithms (MLAs). The
Rz scores of linear regression, supportvector regression, neural
networks, KNN, polynomial regression, Gaussian processes,
relevance vector machines, and deep learning (LSTM)
algorithms are 0.928, 0.921, 0.334, 0.951, 0.5, 0.7, and 0.961,
respectively, compared to the proposed model. The LSTM deep
learning model predicts engine reactions better for the dataset
used in this study after assessing numerous metrics. Following
the algorithm, the LR, SVM, and NN algorithms trail closely
(Subramanian K et al,,2024). This study uses LSTM to forecast
exhaust gas emissions using just engine characteristics like
intake air temperature, emission gas temperature, and
injection timing. Deep learning may be used as a virtual
emission sensor since it correlates data without automobile
specs or data. Since the complicated environment makes it
impossible to evaluate deep learning and road car test data, this
study employs a single-cylinder diesel engine. Measure the
nitrogen oxide by adjusting injection time and intake air
temperature from 0 to 100 °C. Nitrogen oxide is reliably

predicted with a significant correlation R?* of 0.994 with little
engine data (Shin, D,, et al,2023). This study revealed that it
developed the SVM and LSTM models to estimate unmixed
turbofan engine emissions and exergy indicators during takeoff.
The data show that LSTM has fewer model errors than SVM. The
NO, emission index is predicted by SVM with R? 0.929074 and
LSTM with R* 0.954878 (Hakan Aygun et al,2023).

Furthermore, research has yet to be undertaken into
employing an SCB-MA blend in a CRDI research diesel engine
while altering the FIPs and EGR rates. The initial objectives of
this research were to evaluate the engine characteristics of
SCB-MA mixtures in a CRDI research diesel engine with
different FIPs (400, 500, and 600 bar) and EGR (0, 10, and
20%). The results were subsequently in contrast with those of
traditional diesel operations. In addition, machine learning
based LSTM model was employed to predict the performance
of common rail direct injection (CRDI) diesel engines in terms
of both fuel efficiency and emissions.

TESTING APPARATUS AND METHODOLOGY

Test Fuels

Table 1 presents a comprehensive overview of the salient
attributes of pure diesel fuel and biodiesel fuel obtained from
the residual seeds of Simmondsia Chinensis plant. The
consumption of Simmondsia Chinensis oil in CI engines may
lead to injector complications due to the heightened viscosity
and density of the oil. Using methyl acetate from Millipore and
the transesterification process, SCO was changed to SCB, which
has lower viscosity and density. A diesel-biodiesel-methyl
acetate combination was made. Combining petrol and biofuel
formed the binary mix. DBMA10 included 50% diesel, 40%
biodiesel, and 10% methyl acetate. DBMA20 and DB50 are
binary mixtures.

Table 1: Characteristics of Test fuel

SCB Methyl SCB40+ SCB30+
Properties Standard Diesel SCB 50 Acetate MA MA
(MA) 10%  20%
Kinematic
viscosity, ASTM 2.89 512 4.01 0.4 3.756  3.51
D 445
40°C
Density ASTM
(kg/m?) D 1298 832 876 854 932 864 873
ASTM
CV (M]/kg) D 240 42,5 3825 4038 215 38.29 36.18
ASTM
CCI D 976 47 51 49.3
Flash ASTM
point °C D93 69 152 120 10 104.6  98.7
Test setup

Figure 1 illustrates the experimental setup under
investigation. The Kirloskar TV1 was used for conducting
tests and consisted of a mono cylinder, 4S, VCR-water-
cooled system that was associated with a dynamometer.
NOx pollutants were quantified with an AVL digas 444N
analyser and deplete smoke discharges were evaluated
with an AVL 437C smoke meter. A CRDI arrangement was
necessary to accomplish the infusion conditions required
for assessment. The fuel delivery line was modified to
connect to the common rail direct injection system, and
an elevated-pressure impeller was subsequently
installed in the strainer. This functions as a fuel storage
tank. The Nira i7r engine control unit is equipped with a
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rail pressure sensor for the purpose of maintaining
pressure. Due to the significantly increased injection
pressures utilised by CRDI, the initial injector was
inadequate, and thus, a 6-hole solenoid-regulated
injector was selected as a suitable alternative. The ECU
was utilised to modify the initial detectors and effectors
to ensure their appropriate functionality. Assuming
proper functioning of the engine, it is deemed suitable for
diagnostic evaluation. The experimentation engine
parameters are described in Table 2.

Fuel Supply System
e Rl Preanire /e l
High pressure Sensor = LY

PUMD Common-rail

“——= Regulator
Fuel Tank

Exhaust

—_—
A
l L8
Smoke
meter EXxhaust
gas analyzer

fcrank angle Combustion
fensr Analyser

2]
Data acquisition o~ Dynamometer  Single cylinder
system CRDI Engine

—— Signal line
------ Fuel line
..... Air line

Figure 1. Test engine layout [7]

Table 2. Engine specification

Make and Model Kirloskar, TV1
Number of cylinders Single
Stroke Four
Bore x Stroke length 87.5mmx 110 mm
Capacity 661cc
Power output 3.5kWat 1500 rpm
CR 1:17.5
Cooling method Water-cooled
IT, CAbTDC 23°
FIP 200 to 600 bar
Error Analysis

An instrument's assessment outcomes can be standardized
by several test conditions, such as how the test is set up,
what reports are made, and the environment. To
determine the accuracy of the experiments, it is important
to do an uncertainty analysis (Venu, H et al.,2019). Each
instrument's process and calibrations are calculated
routinely across 5 repeats (n=5). The instrumental
uncertainty for each parameter is related to the
experiment’s uncertainty. In equation (1), the quadratic
summation of every extensive parameter with the result of
every sample is summed.

ox? = /(Bx? + Rx?) @8]

Rx denotes the density function of errors in repetition. To
putitanother way, Bx represents the cumulative ambiguity
density function. Various tests were run on the analysis
results to calculate the null hypothesis. Table 3 lists the
instrument's Accuracy, resolution, and range.

Table 3: Instrument’s Accuracy, resolution, and range
Measured

quantity Accuracy Resolution Range

NOx +5 ppm 1 ppm vol. 0-5000 ppm
Smoke +1% 0.1 % 0-100 %

Cco +0.02 % 0.01 % vol 0-15 %

HC +10 ppm 1 ppmvol. 0-30000 ppm
CO2 +0.3 % 0.01 %vol 0-20 %

Oil temperature  +4 °C 1°C 0-125 °C
Speed +1 min! 1 min! ?00"'6000 e

EGR Setup

The exhaust gas recirculation (EGR) method drops the
temperature of the cylinder's charge and the overall
temperature, thereby decreasing nitrogen oxide (NOx)
emissions. This also renders EGR denser, resulting in a
total rise in its volume. The EGR cooler directs a part of the
exhaust gas into the air intake. The exhaust gas
recirculation cooler's Hz0 functions as a heat exchanger,
collecting heat from the retained exit gases. The outlet's
temperature must drop by 36 °C during this process. The
EGR valve controls the amount of air that circulates inside
the engine. The EGR is determined by the orifice
dimension. Directing the recycled exhaust gas to the input
port was the best approach to start the process. The EGR
rate was calculated using equation (2).

EGR% — (COZ)intake XIOO (2)
(COZ )ethm‘

The AVL 444 N gas apparatus was utilised to ascertain the
quantity of CO2 emitted by adjusting the outlet discharge
till the entering carbon dioxide reached a predetermined
level (Kim H Y etal,2019).

Experimental procedure

To explore the potential of replacing 50% of diesel with
biodiesel, emissions, efficiency, and combustion properties
were analysed. A 50:50 diesel-biodiesel binary blend was
prepared and tested, which resulted in higher smoke emissions
compared to conventional diesel, thereby affecting
performance. As a mitigation strategy, the use of antioxidant
additives, a commonly recommended method, was adopted to
reduce tailpipe smoke emissions below those of standard
diesel engines. The present research selected methyl acetate as
an oxidant due to its attributes being comparable to those of
low-viscosity substances. The study established a specific
diesel volume to meet the objective of substituting 50% of the
diesel volume with alternative fuel. Quantity reduced the
biodiesel proportion to 20% and supplemented it with the
methyl acetate additive. The engine was operated under its
standard settings using a ternary blend consisting of 50%
diesel, 40% SCB, and 10% methyl acetate, as well as a second
blend of 50% diesel, 30% SCB, and 20% methyl acetate. The
ternary mix operation reduced smoke emissions below the
diesel operation while improving combustion characteristics
when combined with the binary mix. The ternary blend,
however, resulted in higher NOx emissions. Because of this, we
did more tests with the ternary blend at full power, changing
the FIP to 400, 500, and 600 bar and the EGR to 0%, 10%, and
20% to find the best operating condition for lowering the
smoke and nitrogen oxide. The research upheld a consistent CR
19 and an INT 212 bTDC. To ensure uniform findings, three
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different tests were conducted on the same day and under
similar climate circumstances. The initial evaluations were
done by averaging the results and using neat diesel. Samples
were examined for four weeks to validate the variant's
uniformity. A UV-visible spectrometer was used to validate the
variants' uniformity. The gravitational method examined the
Simmondsia Chinensis biodiesel supply in diesel. The variants
were balanced in the absence of phase estrangement. The
evaluation of combustion characteristics was conducted by
analysing the cylinder pressure data. To mitigate the effects of
frequent variability, it is necessary to utilize a 100-cycle average
when calculating the heat release rate (HRR) based on pressure
inferences. The temperature of the lubricating oil was maintained
within the range of 85 2C to 90 °C. Prior to recording the
parameters, the procedure was executed in a continuous manner
for duration of 10 to 15 minutes.

Machine Learning Algorithm-based LSTM Network

Long-short-term memory (LSTM) is a neural network
developed by Hochreiterand Schmidhuberin 1997. The steady
evolution of this model has resulted in a comprehensive and
well-organised structure (Zhou, R. etal,2023). In this research,
the LSTM is employed to address the expansion and difficulty
in updating partial derivatives W during training, as well as the
dependence problem at long distances, which are both
challenges for the recurrent neural network (RNN). Figure 2
depicts the neural unit's LSTM internal structure. The LSTM
extends the RNN structure with three thresholds: logical
control units responsible for managing the network's inputand
output data at a time ti gets one single piece of information as
its input, whereas the Long Short Term Memory (LSTM)
network receives an entry consisting of three components. The
current value of the network’s input (X:) the output value
stored in long short term memory from the previous time step
(ht1) and the cell state, from the previous moment (Ct-1) The
LSTM neural network performs computations based on the cell
state (C¢) and the current time steps output (ht). It utilizes a
gating system composed of input gates to bring in information,
to the cell state at each time step; forgetting gates to decide
what information is no longer needed; and output gates to
update the current cell state, for prediction purposes in each
time step using equations 6 through 10.

ft= o0 (Wt [he-1, Xi] + br), (3)
it=0 (Wi - [he-1, Xi] + bi), (4)
ot =0 (Wo - [ht-1, X¢] + bo), (5)
Ct = ft he-1+ ictanh (Wc - [he-1, X¢] + be), (6)
he = or tanh(Cy), (7)

Here, "x:" stands for the input, while "f;," "i;," and "o¢" refer to the
hidden gate, input gate, and output gate, respectively. The
statistic "ct" represents the cellular state at time "t," after the
input and hidden gates has been activated. Simultaneously, "ht"
represents all potential states of the LSTM unit's output. To
activate the LSTM unit, the double tangent function is utilised,
while the sigmoid function is represented by the symbol "5."

Equations show the input weight coefficients as Wxi, Whi, W,
Wi, Whe Wer, Wie, Whe, Wxo, Who, and Weo. We refer to the offset
vectors as b;, bs, bg, and bo. LSTM models can deliberately retain
important information by considering the state of the cell unit
and the configuration of three gates: input, hidden, and output.
The input gate plays a crucial role in identifying the incoming

data and Managing the input at the present position in the
sequence. On the other hand, the concealed gate employs
the activation function to decide when to discard previous
information. The output gate oversees the retention of data
as well as the final output.

Qutput
ht
Output Gate ™ A

Input Gate Hidden Gate

‘ 5, Next Cell State
>
G

Cell State [
Cu ‘ X

+
. Next Iidden State
‘ ‘ > be

1lidden State
bu C

Taput
Xi

Nonllncarities Vector Operations

Inputs Quiputs
Xi « Curvent Input Cu= New updated Memory @ - Sigmoid layer @ - Adding Information

Ct1 = Memoty from = Current Output
- tanh layer

last LSTM unit
he.: - output from
last LSTM unit

® » Scaling of information

Figure 2. LSTM Architecture
Model Architecture

An LSTM neural network captures temporal relationships
in sequential data, which is the heart of our modelling
technique. Double-stacked LSTM layers form the model.
The first LSTM layer has 100 units and returns sequences
for stacking. A second LSTM layer, consisting of 50 units,
outputs a fully linked dense layer. LSTM layers are
followed by 0.2-dropout layers to prevent overfitting.
Signature activation is used in the last dense output layer.

Training and Dataset

This analysis used 298 multivariate time series samples. Each
sample has 50 time steps and 10 characteristics that track
dynamic system activity. A publicly available benchmark
repository utilised in time series modelling studies provided
the data. The dataset was extensively preprocessed before
training. Linear interpolation was used to fill missing values,
and min-max scaling normalized all features to [-1, 1] to ensure
consistency and expedite model convergence. With a random
seed to assure repeatability, the cleaned data was split into
training (80%), validation (10%), and test (10%) groups in
fixed proportions.

This error reduction is visible in the high scores earned on
both the exercise and training datasets, which are 99.99%
and 100%, respectively. These high scores imply that the
LSTM model is generalised, with minimal bias and
variation. In other words, it performs well on both training
and testing data, indicating its capacity to predict
accurately on previously unknown data.

Model Hyperparameter Tuning

Hyperparameters affect model behaviour and performance.
These settings are tuned to improve model performance.
Layers (1, 2, 3, 4), hidden units and epochs (10, 20, 30, 40, 50,
60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160), and batch
size (1, 3, 5, 7, 9, 11, 13, 15) are predefined LSTM
hyperparameters. Latin hypercube sampling generates 300
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LSTM hyperparameter possibilities. To evaluate LSTM
performance with 300 hyperparameter combinations, the
calibration set uses a 20% holdout method. Grid Search
systematically evaluates these hyperparameters to find the
ideal set that improves regression model prediction accuracy.
This method avoids the drawbacks of attempting all
possibilities and saves time.

Model Evaluation

Regression issues aim to transfer the dependent variable's
actual values to the models' anticipated values. Regression
model performance may be assessed using measures like
R? score and MRE. While the R? score evaluates model
performance, it does not imply inaccuracy. Common
regression model goodness-of-fitindicators include the R2-
score, which spans from 0 to 1. A value of 0 shows the
model doesn't explain response data variability. However,
a score of 1 indicates that the model matches the data
flawlessly. The R-squared equation follows.

)

Mean Relative Error (MRE) is a statistic used to assess
model predictions, especially for regression tasks with
continuous variables. This is similar to Mean Absolute
Error (MAE), but the MRE normalizes the difference
between anticipated and actual values by the actual values,
making it more relative.

Zin=1(ti_°i)2

2 -1 _
R? =1 ( Lty (8)

n
i=1

MRE == 3L, 100 x 5222 9)

RESULTS AND DISCUSSION
COMBUSTION ANALYSIS
Peak pressure analysis

The variations of peak pressure at maximum load are
depicted in Figure 3. The DBMAZ20 fuel blend produced a
higher peak cylinder pressure (PCP) compared to the
other tested fuels. The difference is primarily due to its
longer ignition delay, which allows for a more uniform
air-fuel mixture, leading to a more intense premixed
combustion phase and an increase in PCP (Jayabal, Reta.,,
2025). From the plot, an increase from 400 to 600 bar
increases the PCP for the methyl acetate blends. The PCP
increased from 80.02 bar to 85.45 bar, 73.52 bar to 76.21
bar, and 73.15 bar to 77.15 bar. However, while EGR
levelsincreased from 0% to 20%, PCP decreased at all FIP
levels, from 8.71% at 400 bar, 7.48% at 500 bar, and
10.81% at 600 bar, respectively. Specifically, this occurs
because the ignition delay increases as the injection
pressure decreases. Lower injection pressures also result
in larger fuel droplet sizes, which lead to poorer air-fuel
mixing and a subsequent reduction in in-cylinder
pressure(Kumar, P. et al,2018). The PCP of methyl
acetate mixtures decreases as EGR rates escalate. This
occurs because the inert gases in the redirected exhaust
gases serve as heat sinks by absorbing the energy
released during combustion. Consequently, the cylinder's
maximum pressure is reduced (Ashok, B, et al.,2019).
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Figure 3. In-cylinder pressure at different FIP and EGR level

Heat release rate

Figure 4 illustrates the variations in heat release rate
(HRR) among different test fuels under maximum load
conditions. At an injection pressure of 600 bar, the
DBMAZ20 blend showed a higher heat release rate because
it took longer to ignite and had more oxygen available.
These factors enhance the combustion rate during the
process, resulting in elevated HRR levels (Ashok, B., et al.
2019). When the fuel injector pressure is decreased, the
HRR slope changes from left to right, and with increasing
EGR rates, the arc changes even more. Concerning the 0%,
10%, and 20% values at 400 bar, the heat release rate
values are 49.23 ] /° to 45.80 ] /°, respectively. Similarly, at
FIP values of 500 bar and 600 bar, the HRRs are 55.66]/°,
to 47.79]/°, and 60.984]/°, to 53.81]/° respectively at EGR
rates 0%, 10%, and 20%. Sprayer nozzles have a higher
equivalency ratio and impair the air-depletion process,
significantly affecting burning and lowering the HRR at
reduced rail injector levels(Sharma, et al.,2019). It states
that low injection pressure causes minimized HRR peaks.
Moreover, a reduced mass fraction at retard injection
pressures produces a lower gas temperature and, hence, a
minimum HRR. As the EGR rate rises, peak HRR noticeably
falls. The presence of polyatomic molecules like CO, and
H,0 in the exhaust gases dilutes the intake air and
increases the specific heat capacity. As a result, the injected
fuel undergoes incomplete combustion, leading to a
reduction in the HRR(Jaichandar, S et al,,2013).

100
Diesel
- — DBSO
DBMA 20 (EGR 0% & FIP 400 bar
80 N DBMA 20 (EGR 10% & FIP 400 bar)
n DBMA 20 (EGR 20% & FIP 400 bar)
1 l DBMA 20 (EGR 0% & FIP 500 bar)
A
o & DBMA 20 (EGR 10% & FIP 500 bar
2 60 - £ =~ DBMA 20 (EGR 20% & FIP 500 bar)
= i DBMA 20 (EGR 0% & FIP 600 bar)
-’ 14 20 (EGR 10% & FIP 600 bar)
Q X DBMA 20 (EGR 20% & FIP 600 bar)
= OOVA SO CCRIOR S T 000 ar
=4
D
7]
<
5]
o)
ez
=
3
X
5}
Z
-40 T T

T T
-20 -10 0 20

Crank Angle (deg)
Figure 4. HRR at various FIP and EGR levels



PERFORMANCE ANALYSIS
Brake thermal efficiency

Figure 5 shows FIP and EGR-related brake thermal efficiency
(BTE) variations. At rated power and standard engine
specifications, diesel, DB50, DBMA10, and DBMA20 had BTE
values of 35.87%, 33.91%, 34.7%, and 35.2%. The DBMA20
blend's lower calorific value, improved atomisation, and
inherent oxygen content extended the combustion process
and increased efficiency, improving BTE by 1.29% over the
DB50 blend at 600 bars of injection pressure. The greater
cetane index and shorter ignition delay of DBMA20 boosted
the BTE marginally, improving engine productivity (Ashok, B.,
et al,,2019). Using EGR values of 0%, 10%, and 20% at 400
bar, the engine's BTE is 32.1%, 30.5, and 29.14%,
respectively. Similarly, at 500 bar and 600 bar FIP, the brake
thermal efficiency is 33.8%, 32.33%, 30.71%, 35.2%, 33.63%,
and 31.65%, respectively, at EGR rates of 0%, 10%, and 20%.
The graph shows that the best BTE for the ternary mix FIP at
600 bars was 1.5% higher than that for a similar EGR level.
This improvement is supported by HRR analysis. At 600
pressures, the ternary mix FIP has a more concentrated heat
release rate and takes more beneficial work, yielding a
greater BTE. As the EGR rises, the ternary blend's BTE
diminishes and lack of Exhaust particles burning is led to
reducing the BTE (Kim, H.Y, etal. 2019).
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Figure 5. BTE at different FIP and EGR rate

Brake specific fuel consumption

Brake-specific fuel consumption is a quantity that is directly
proportional to the volume of injected fuel and the calorific
rating. Diesel has a lower BSFC than biodiesel mixtures as a
result of its high calorific value and low mass (Sharma et
al,2019). Figure 6 depicts the BSFC of the test variants at
various FIP and exhaust gas recirculation values. At the fixed
power and engine operating circumstance, the BSFC for Diesel,
DB50, DBMA 10 mix, and DBMA 20 blend were determined to
be 0.217, 0.26, 0.24, and 0.23 kg/kW-hr, respectively.
The correlation between BTE and BSFC is that fuels with a
lower BTE will have a higher BSFC. Therefore, the rationale for
the variations in BTE across biodiesel, biodiesel-MA blends,
and diesel fuel also applies to BSFC (Jayabal, R et al., 2024). The
BSFC for the DBMA20 variant was reduced to 600 bar when
compared to the DBMA10 blend and was equal to the DB50
blend. This is due to the combined influence of the ternary
variant's lower LHV, which necessitates a slightly higher
quantity of fuel to produce equivalent energy to split the

ternary variant's existing aromatic compounds. It eventually
increases the fuel supply, and BSFC decreases (Rangabashiam,
D, etal.2020). The drop in BSFC can be seen in the graph when
the FIP is increased from 400 to 600 bars. As an illustration,
the values decreased from 0.26 to 0.238 kg/kW-hr, 0.289 to
0.267 kg/kW-hr, and 0.31 to 0.286 kg/kW-hr for 0%, 10%, and
20% EGR, respectively. At lower injection pressures, air
penetration can be hindered due to larger fuel droplet sizes and
a reduced excess air ratio. As a result, BSFC increases and
combustion efficiency decreases (Ramachander et al, 2021).
In the meantime, increasing the EGR rates will result in a higher
BSFC. The BSFC increased from 0.238 to 0.286 kg/kW-hr at a
FIP of 600 bars when the EGR level increased from 0% to 20%.
Specific heat capacity rises when exhaust gas is induced. The
charge slows the flames spread and raises the chance of a
malfunction by lowering the cylinder's temperature. As a
result, more fuel is required to sustain the ignition, elevating
the BSFC (Prasada Rao, G etal,2021).
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Figure 6. BSFC at various FIP and EGR rate

EXHAUSTS ANALYSIS
Oxides of nitrogen emissions

The combustion temperature, the local air-fuel ratio, and the
duration of the combustion process primarily influence NO,
emission levels. The three key parameters that govern NOy
formation are the in-cylinder temperature, the oxygen
concentration, and the reaction time (K, S et al,2020). The
disparity of Nox at various FIP and EGR rates for the binary
and a ternary blend is revealed in Figure 7. At stated output
conditions and engine stock operating, the Nox level for
Diesel, DB50, DBMA10 blend, and DBMA20 blend at FIP 600
bar were 2683 ppm, 2162 ppm, 2231 ppm, and 2353 ppm,
correspondingly. While contrasted to the binary blend, the
tripartite combine emitted more Nox due to the inclusion of
elevated methyl acetate, which encourages burning,
crowning in higher gas temperature and greater Nox. The
DB50 blend is 19.41% less expensive than the reference
diesel. Biodiesel exhibits reduced volatility in comparison to
diesel fuel, resulting in a slower rate of evaporation. The
absence of chemical aromas in biodiesel may be attributed to
the observed decrease in Nox emissions (Ahamad Shaik, A., et
al,2020). The methyl acetate additive blend is 5.18% higher
Nox than the DB50 blend and 12.14% lower than the
reference diesel. The higher temperatures from burning the
primary infused charge resulted in the creation of
monoatomic N, leading to higher NO, emissions (Mani, M et
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al,2010). Increasing the EGR percentage at a fixed FIP
significantly lowered Nox emissions. For instance, at 400 bar
FIP, a rise from 0% to 20% EGR resulted in a 32.34 % drop in
Nox. This drop was 18.23% at 600 bar FIP with an EGR rate
ranging from 0% to 20%. Greater EGR values are responsible
for lower Nox pollution. This is because high-heat-capacity
inactive entities in the emissions, such as carbon dioxide
(CO2), water vapour (H20), and others, consume the heat
produced during burning, culminating in a reduced PCP and
maximal HRR(Sharbuddin Alj, S. et al.,2020). The plot shows
that Increased EGR rates significantly reduced Nox
production. At all EGR rates, lower FIP resulted in minimum
Nox emissions. For example, DBMA 20 blend was reduced
from 2353 to 2068 ppm as the FIP was reduced from 600 to
400 bar at 0% exhaust gas recirculation level. Likewise, it
reduced from 2127 to 1749 ppm and 1924 to 1400 ppm at
10% and 20% EGR levels, respectively. The combustion
process experiences insufficient fuel atomization at lower
injection pressures, which leads to reduced HRR.
Furthermore, as the injection pressure decreases, a smaller
mass fraction of fuel is burnt, resulting in reduced NOy
emissions due to the corresponding decrease in gas
temperature(Fayad, M.A et al,,2019).
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Figure 7. Nox emissions at different FIT and EGR levels

Smoke opacity

Smoke opacity indicates incomplete combustion and
excessive tailpipe particulates. Oxygen deficit, in-cylinder
temperature, fuel characteristics, and combustion efficiency
affect it. Poor atomisation or delayed ignition can increase
smoke opacity (Venu, H et al,2019). The tested fuels SO at
different FIP and exhaust gas recirculation at maximum
power is illustrated in Figure 8. 58.6% and 48.7% for DB50
and diesel blends exhibit the highest smoke opacity among
the methyl acetate blends. Compared with the binary
variant, the smoke opacity declined considerably under the
ternary blend. It is primarily due to improved fuel
atomisation and combustion efficiency, leading to more
complete burning of the fuel while also reducing smoke
emissions (Rangabashiam, D., et al,,2020). It can be revealed
that the smoke opacity15.2% dropped at FIP and rose from
400 to 600 bar at all exhaust gas recirculation levels. It was
because of the high surplus air correlation that the
evaporation procedure was successful. As a result, there
were fewer fuel drops. A limited volume of smoke
constituted the central area(Shrivastava, P et al,,2020). The
smoke opacity increases when the EGR level is raised at
similar fuel injection pressure. DBMA20 at 600 bar smoke
opacity rose from 28.3% to 41.6 % when the EGR level was

elevated from 0% to 20%. At a fuel injection pressure of 500
bar, it rose from 30% to 43.5%, and at a FIP of 400 bar, it
rose from 32.6% to 45.7. EGR reduces the cylinder
temperature by absorbing heat, which slows fuel
vaporization and promotes smoke formation in rich zones.
[talso hinders ignition delay by diluting oxygen levels(Zhou,
X, et al,2020). Therefore, low smoke emissions were
produced at a higher FIP.
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Figure 8. Smoke opacity at different FIT and EGR levels

Carbon monoxide emissions

The disparities at different FIP and EGR levels for the test
blends are portrayed in Figure 9. At the rated power output
and engine stock Settings, the carbon monoxide level for
Diesel, DB50, DBMA10, and the DBMA20 at 600 bar was
found to be 1.052%, 0.341%, 0.238%, and 0.183% by
volume, respectively. In contrast to the DB 50 blend, Methyl
acetate in the diesel/SCB blend substantially reduced CO
emission. This is because the oxygen content in the ternary
blend can enhance combustion efficiency, thereby
promoting the conversion of CO to CO: (Londhe, H., et
al,,2019). The carbon monoxide reduced as the FIP dropped
from 600 to 400 bar at all exhaust gas recirculation levels,
for example, DBMA20 blend 0.23 to 0.18% vol. at 0% EGR,
similarly 0.48 to 0.31% vol. at 10% and 0.66 to 0.42 % vol.
at 20% EGR levels. Diminished FIPs minimise the potential
of CO levels due to less exterior wettability and fuel buildup
in crevices (Jayabal, R et al,2024). CO emissions increase as
exhaust gas recirculation levels increase across all fuel
injection pressures. Results showed that CO exhaust was
0.23% vol,, 0.48% vol, and 0.66% vol. when EGR rates of
0%, 10%, and 20% were considered at FIP 600 bar,
accordingly. Similarly, at a FIP of 500 bar and 400 bar, the
CO discharge was 0.22% vol., 0.39% vol, 0.59 % vol. and
0.18% vol., 0.314% vol,, 0.42% vol.,, respectively at EGR
rates of 0%, 10%, and 20%. The EGR diminishes the oxygen
supply for combustion. which can lead to incomplete
burning of the fuel and increased CO formation.
Additionally, the reduced combustion temperature
resulting by EGR inhibits the oxidation of CO to COz, hence
increasing CO emissions (Ahamad Shaik, A, et al,,2020).

Hydrocarbon emissions

Hydrocarbon (HC) emissions were elevated due to
incomplete combustion and flame quench. The A/F
proportions and cetane index are the primary factors that
impact HC levels (Ramachander et al, 2021). All the FIP
and EGR combination test results for hydrocarbon levels
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are shown in Figure 10. Under normal engine conditions
and rated power output, we found 80.6 ppm of hazardous
emissions for diesel at 600 bars, 53 ppm for DB50, 50.4
ppm for DBMA 10 mix, and 48 ppm for DBMA 20 blend.
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Figure 9. CO emissions at different FIT and EGR levels
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This clearly shows a reduction in the use of HC under the
ternary variant. Biodiesel exhibits lower HC emissions
compared to diesel due to higher combustion temperature
resulting from the increased oxygen content in the fuel
(Ramesh, T etal,2022). From the plot, a noticeable HC emission
diminishes across the FIP reduced from 600 to 400 bar at all
the exhaust gas recirculation levels. For instance, DBMA20
blends 48 ppm to 39 ppm at 0% EGR, 59.4 ppm to 49.5 ppm at
10% EGR, and 70.2 ppm to 58 ppm at 20% EGR levels,
respectively. In other terms, a greater FIP is associated with a
rise in HC emissions. The droplet size diminishes and the
velocity increases. This results in elevated UBHC emissions due
to the incomplete combustion of fuel droplets (Chen, Y., et
al,2020). At FIP 600 bar, the HC emits were 48, 59.4, and 70.2
ppm, respectively, with EGR ratios of 0%, 10%, and 20%.
Likewise, with a FIP of 500 bar and 400 bar, the HC emits were
41 ppm, 52.2 ppm, and 60.3 ppm; 39.5 ppm, 49.5 ppm, and 58
ppm, correspondingly, when the EGR rates were 0%, 10%, and
20%. Reducing the fuel injector pressure from 600 to 400 bar
while maintaining an EGR rate of 10% results in a 16.6%
reduction in HC emissions. The phenomenon was attributed to
delayed fuel injection, which increased the likelihood of fuel
impingement and accumulation in confined regions with
limited combustion efficiency, thereby resulting in the
presence of unburned or partially oxidized compounds (Fayad,
M.A, etal, 2019).
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Figure 10. HC emissions at various FIT and EGR rate

The experimentation reveals that the DBMAZ20 at 600 bar
with EGR 10% shows the best results in functionality and
CRDI outputs. So, the LSTM-based machine learning
approach is used to predict and validate physical
experimentation accuracy.

LONG - SHORT TERM MEMORY (LSTM) MODEL

In the second phase of this research, a Long Short-Term
Memory (LSTM) model was developed to predict diesel
engine performance characteristics based on experimental
results. The input factors were FIP, biodiesel proportion, and
EGR, while the results measured were BTE, BSFC, NO,, HC,
and CO. Microsoft Excel was used to record the experimental
data. CO, HC, smoking, NO, and BTE were considered
predictor variables. Approximately 298 individual
experiments were conducted using various combinations of
input parameters. After data processing and LSTM model
training, the optimal input feature values were identified.

The procedure followed to determine the best value is shown
in Figure 11. The flowchart begins with experimental data
collecting on diesel engine combustion, performance, and
emission characteristics. After data collection, a machine
learning method is chosen based on the issue and dataset. The
next stage is to utilise cross-validation to split the dataset into
training and testing sets, using 80% for model training and
20% for testing. The training data is used to create a
prediction model using the chosen machine learning method.
The model is validated using testing data and rated based on
a squared correlation coefficient (RZ) better than 0.9. We
iteratively retrain the model if it misses certain validation
levels to improve accuracy. Predictions are made using new
input data after model validation. The trained machine
learning model properly predicts engine performance and
emissions in the final stage.
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Figure 11. LSTM-based Machine Learning Algorithm model
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Each experimental value is recorded by hand, which introduces
the possibility of human error. The entire dataset is
preprocessed before any simulation is done to normalize the
numbers for the following ML computations. A correlation
analysis can be employed to ascertain the degree of linearity in
the association between the predictor and respondent
variables. The correlation coefficient is used to ascertain the
degree of association between each independent variable and
its corresponding dependent variable. The correlation values
range from -1 to 1, which shows that the correlation can be
either negative or positive. The degree of association between
the input and output features is characterized by a low
correlation coefficient, which ranges from -1 to +1. This means
that methods that work well with nonlinear models should be
used. The data set is split into 80 percent for use in training and
20 percent for testing. The division is conducted randomly to
avoid favoritism in the selection of instances. Figure 12 (a) shows
the 3D models’ disparities of LSTM-oriented functionality and
exhaust productions, and Figure 12 (b) shows the 2D Linear Fit
Variation of LSTM-based performance and exhaust outputs.
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The predicted and discussed outcomes for BTE and BSFC
are shown in Figures 13 (a) and (b). It was found that the
Rz values were 0.9619 and 0.9509. The output of the
replicated LSTM demonstrates its capacity to forecast
significant aspects. The MRE values for the strategies
above are 1.82 and 1.57 percent. The values of Rz for NOx,
CO, smoke, and HC in comparison of predicted and actual
findings were 0.9965, 0.9125, 0.9835, and 0.9879,
respectively. As per the outcomes of the LSTM-based
model, MLA is adequate for estimating output pollutants

such as NOx, CO, smoke, and HC. The maximum allowable
concentrations (MRE) of NOx, CO, smoke, and HC are
3.04%, 5.87%, 2.44%, and 1.68%, respectively. Table 4
shows an overview of the estimated values.
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LSTM Verifications

The viability of the applied approach must be verified before it
can be used. The LSTM was used to develop enhanced engine
operating parameters, which were then used in experiments.
The algorithm produced the expected significances from the
replications with the failure periods (10) and displayed them in
Table 5 for the corroboration evaluation.

Real Value—Forecast Value

x 100

Error (%) = (10)

Real Value

Table 4. Estimate the evaluation engine's LSTM-oriented functionality

Evolution factors MRE (%) R2

BTE (%) 1.82 0.9619
BSFC (kg/kW-h) 1.57 0.9509
NOx (ppm) 3.04 0.9965
Smoke (%) 2.44 0.9125
HC (ppm) 1.68 0.9835
CO (%) 5.87 0.9879

Verification is needed to get the best outcomes. Due to the
preservation of two tests, the mean value was calculated at
the maximum input variable, considering the LSTM's EGR,
DBMA%, and variable fuel injection pressure (FIP)
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requirements. The equation has an error rate ranging from
5.88% at its highest to 0.13% at its lowest. It was
demonstrated that the overall errors in efficiency and
emission forecasts were less than 6%.

Table 5. Verification of the anticipated and actual values

Ternary Fuel
Fuel Load Injection EGR
Proportion (%) Pr]essure (%) Value - BTE (%) BSFC (kg/low-h)
(%) (bar)
Predicated 34.83 0261
Observed 33.63 0.267
Error (%) 344 2.24

Smoke

DBMA20 100 600 10 NOx (ppm) [p};cm) COCk) "1y

Predicated 21243 613 051 352
Observed 2127 594 048 358
Error (%) 013 309 588 167

The LSTM is an excellent way to determine how the
different parameters affect each other. Therefore, LSTM
was an effective instrument for forecasting the
characteristics of diesel engines. MLAs can forecast
operational factors and pollution pollutants, but the
complexity and diversity of the problem may cause other
quantitative and computational techniques to fail.

CONCLUSION

This study aims to investigate the interaction between the FIP
and EGR values and how they affect the variation of engine
parameters in several SCB-MA blend combinations. The most
important findings are outlined in the following summary.

e The cylinder pressure and HRR decreased for all variants
when the EGR rate was raised, and the IP was lowered.

e The DBMA20% blend, at FIP 600 bar with EGR10%
rates, achieved 1.02% and 0.53% improved BTE
compared to the DB50 and DBMA10 blends. However,
compared to the DBMA20 blend, the BTE was
marginally less than the reference diesel.

e Because of decreased FIP and increased EGR rates,
reduced NOx emissions were observed. The study
reveals that the utilization of DB50 resulted in a
significant reduction of NOx emissions by 32.3%
compared to neat diesel. Additionally, the reduction in
NOx emissions was observed to be 18.23% higher at
FIP 400 bar with EGR by 20%.

e The DBMAZ20 blend increased smoke opacity by 28.3%
and 41.6% at 600 bar FIP with EGR 10 and 20%
compared to DB50 and DMA10%

e Thelevels of HC and CO emissions exhibited anincrease
across all Fuel Injection Pressure (FIP) settings and
elevated Exhaust Gas Recirculation (EGR) rates.

e Machine learning was enough to predict the CRDi
engine outcome variants for different test blends. The
BTE, BSFC, NOx emissions, HC emissions, and CO
emissions R? values were close to 1. When the MLA
analyzed the experimental data, a close correlation was
found between expected and actual outcomes.

The DBMAZ20 blend operated at FIP 600 bar, and 10% EGR
enhanced performance and reduced emissions when
correlated with the other injection pressures and EGR rate
operations. The results indicate that the utilization of
Simmondsia Chinensis seed biodiesel blend, containing 20%
by volume of DBMA, can be effectively employed in CRDI diesel
engine applications, resulting in decreased emissions, as
supported by both experimental and predictive data.
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FUTURE SCOPE

Future research can produce adaptive, self-learning LSTM
models that dynamically adjust to engine conditions to
improve performance and operating flexibility. This
strategy might also improve fuel economy and pollution
compliance in large-scale engine operations, addressing
environmental issues.
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