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Öz 
Günümüzde, doğuştan veya omurilik yaralanması gibi sinir 
sistemi problemleri sebebiyle tamamen felç olmuş bireylerin 
günlük ihtiyaçlarını karşılayabilmeleri için Beyin-Bilgisayar 
Arayüz (BBA) sistemleri geliştirilmiştir. BBAlar, çeşitli cihazları 
kullanarak topladığı beyin sinyallerini bilgisayarlar aracılığıyla 
işleyerek, çevre cihazları harekete geçirmek için çıktı komutları 
üreten sistemlerdir. Fakat BBA sistemlerinin kullanıcılar 
üzerinde bazı olumsuz etkileri vardır. Bu çalışmada, Görsel 
Uyaran Potansiyel (GUP) ve P300 gibi görsel uyaran tabanlı BBA 
sistemlerinde kullanılan farklı frekans değerlerinde titreşen 
uyaranların sistem kullanıcılarının göz sağlığı üzerinde meydana 
getirdiği olumsuz etkiyi azaltmak amacıyla; hareketli nesneler 
yaklaşımını kullanan bir İnsan-Makine Arayüz (İMA) sistemi 
önerilmiştir. Sistem, kullanıcının hareketli topları odaklanarak 
takip etmesi sonucunda Elektrosefalografi (EEG) sinyallerinde 
meydana gelen Elektrookülografi (EOG) artefaktlarını kullanarak 
hareket yörüngelerini makine öğrenme algoritmaları ile 
sınıflandırmayı amaçlamaktadır. Çalışma, Emotiv EPOC EEG 
cihazı aracılığıyla dört farklı rotada hareket eden toplar içeren 
yaklaşım kullanılarak sağlıklı 8 denek üzerinde 
gerçekleştirilmiştir. Kaydedilen ham verilere ön işleme aşamaları 
uygulanmıştır ve etkin kanal seçimi yapılmıştır. Tespit edilen 
etkin kanallara (AF3, AF4) ait verilere Güç Spektral Yoğunluğu 
(GSY) ve Ayrık Dalgacık Dönüşümü (ADD) yöntemleri 
uygulanmıştır. Her yöntem için öznitelikler çıkartılmış ve k-tane 
En yakın komşu (k-EYK) ve Lineer Diskriminant Analiz (LDA) 
algoritmaları kullanılarak sınıflandırılmıştır. GSY yöntemi için 
LDA ve k-EYK algoritmaları ile sırasıyla 93.86%, 92.62% doğruluk 
oranları ve 31.42 (bit/dk), 30.10 (bit/dk) Bilgi aktarım hızı (BAH) 
değerleri hesaplanmıştır. ADD yöntemi için sırasıyla 92.84%, 
92.17% doğruluk oranları ve 30.36 (bit/dk), 29.62 (bit/dk) BAH 
değerleri elde edilmiştir. Karşılaştırılan iki yöntemden GSY’nin 
ADD’ye göre daha yüksek doğruluk oranları ve BAH değerleri 
verdiği, LDA algoritmasının k-EYK algoritmasından daha başarılı 
olduğu gözlemlenmiştir. 
 
Anahtar Kelimeler Beyin-bilgisayar Arayüz; Elektrosefalografi; 
Elektrookülografi; Makine öğrenme; Sınıflandırma 
 

Abstract 

Today, Brain-Computer Interface (BCI) systems have been 
developed to meet the daily needs of individuals who are 
completely paralyzed due to nervous system problems such as 
congenital or spinal cord injury. However, BCI systems also have 
some negative effects on system users. In this study, a Human-
Machine Interface (HMI) system that uses the moving objects 
approach is proposed in order to reduce the negative effects of 
visual stimuli vibrating at different frequency values used in 
Visual Evoked Potential (VEP) and P300-based BCI systems on 
the eye health of system users. The system aims to classify 
movement trajectories with machine learning algorithms by 
using Electrooculography (EOG) artifacts that occur in 
Electrocephalography (EEG) signals as a result of the user 
focusing on moving balls. The study was conducted on 8 healthy 
subjects using an approach involving balls moving in four 
different routes through the Emotiv EPOC EEG device. Pre-
processing stages were applied to the recorded raw data and 
effective channel selection was made. Power Spectral Density 
(PSD) and Discrete Wavelet Transform (DWT) methods were 
applied to the data of the detected active channels (AF3, AF4). 
Features were extracted for each method and classified using k-
Nearest Neighbor (k-NN) and Linear Discriminant Analysis (LDA) 
algorithms. For the PSD method, 93.86%, 92.62% accuracy rates 
and 31.42, 30.10 (bit/min) ITR values were calculated with the 
LDA and k-NN algorithms, respectively. For the DWT method, 
accuracy rates of 92.84%, 92.17% and ITR values of 30.36, 29.62 
(bit/min) were obtained, respectively. It has been observed that, 
among the two compared methods, PSD gives higher accuracy 
rates and ITR values than DWT, and the LDA is more successful 
than the k-NN algorithm. 
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1. Giriş 

Beyin-Bilgisayar Arayüz (BBA), iletişimin kaynağı olan 

insan beyninden sinyalleri doğrudan alarak, insanlarla 

makineler arasında iletişim kurmayı hedefleyen bir 

teknolojidir. BBA teknolojisi, günümüzde genellikle bilinçli 

kontrol gerektiren uygulamalar için kullanılmaktadır. Bu 

uygulamalar; kendi ihtiyaçlarını karşılayamayacak 

durumda olan felçli bireylerin, kaybettikleri fiziksel 

işlevlerin kısmen geri kazandırılması üzerine 

odaklanmaktadır (Kübler vd. 2001). Sinir hücrelerinin 

zarar görmesi sonucu meydana gelen Amiyotrofik Lateral 

Skleroz (ALS) veya beyin sapı olarak bilinen brainstem felci 

gibi durumlarla mücadele eden hastalar için BBA, dış 

dünya ile iletişim kurmanın alternatif bir yolunu 

sağlamaktadır. Dolayısıyla bu sistemler beyin sinyalleri 

aracılığıyla hastanın dış dünyadaki televizyon, yatak, 

tekerlekli sandalye gibi elektronik cihazlarla bağlantı 

kurmasını sağlayarak, bireylerin yaşam kalitesini 

doğrudan arttırmaktadır (Liu vd. 2012). 

BBA sistemleri invaziv ve non-invaziv olmak üzere iki 

gruba ayrılmaktadır. İnvaziv yöntemde, hastaların beyin 

sinyalleri cerrahi müdahale ile beyin yüzeyinden 

doğrudan kaydedilmektedir. Bu yöntem ile elde edilen 

sinyallerin kalitesi çok yüksektir ve gürültü oranı düşüktür. 

Dolayısıyla BBA sistemlerinin performansını doğrudan 

yükselten etkili bir yöntemdir. Fakat cerrahi işlem 

gerektirmesi, komplikasyon riski ve maliyetli olması 

sebebiyle fazla tercih edilmemektedir. Non-invaziv 

yöntemde ise beyin sinyalleri hastaların kafa tası 

yüzeyinden tek kullanımlık elektrotlar aracılığıyla 

kaydedilmektedir. Bu sinyaller invaziv yöntemde 

kaydedilen sinyallere göre, daha yüksek gürültü oranına 

ve daha düşük netliğe sahip olmasına rağmen; herhangi 

bir cerrahi işlem gerektirmemesi, kolay uygulanabilir 

olması ve düşük maliyetli olması nedeniyle sıklıkla tercih 

edilmektedir (Kosmyna ve Lécuyer 2019). Non-invaziv 

yöntemde sinyaller, Elektroensefalografi (EEG), Yakın 

kızılötesi spektroskopi (NIR) ve Pozitron emisyon 

tomografisi (PET) gibi çeşitli tekniklerle kaydedilmektedir. 

EEG, BBA sistemlerinde en sık tercih edilen non-invaziv 

sinyal alma tekniğidir.  

EEG tabanlı bir BBA sistemi temelde altı aşamadan 

oluşmaktadır. Birinci aşamada, kullanıcılara ait veriler 

ölçülerek bilgisayarlar aracılığıyla kaydedilmektedir. İkinci 

aşamada; kaydedilen verilere kırpma, filtreleme gibi ön 

işleme aşamaları uygulanarak işlemeye uygun hale 

getirilmektedir. Üçüncü aşamada, ön işleme uygulanan 

verilerden ayırt edici özellikler elde edebilmek amacıyla 

farklı öznitelikler çıkartılmaktadır. Dördüncü aşamada, 

verilerden çıkartılan öznitelikler farklı makine öğrenme 

algoritmaları kullanılarak sınıflandırılmaktadır. Beşinci 

aşamada, sınıflandırma sonuçları kullanılarak ilgili sinyal 

ile ilişkilendirilmiş çıktı komutları elde edilmektedir. Son 

aşamada ise; elde edilen çıktı komutları kablosuz bağlantı 

ile kontrol kartına aktarılarak çevre cihazların kontrolü 

sağlanmaktadır. EEG tabanlı BBA sisteminin temel şeması 

Şekil 1’de verilmiştir. 

 

Şekil 1. Temel BBA şeması. 

EEG tekniğinde, Motor İmgeleme (Mİ), Görsel Uyaran 

Potansiyel (GUP) ve Hata ile ilgili potansiyel (HİİP) gibi 

beyinde meydana gelen elektriksel aktiviteler kayıt altına 

alınmaktadır (Maciej Serda vd. 2020). HİİP kişinin bir hata 

yapması veya bir yanlışlığı fark etmesi durumlarında 

ortaya çıkan elektriksel aktivitedir. Mİ ise kişinin fiziksel 

bir iş yapmadan, herhangi bir hareketi hayal etmesi 

sonucunda tetiklenerek elektriksel potansiyel meydana 

getirmektedir.  GUP yöntemi ise sistem kullanıcısına farklı 

frekans değerlerinde yanıp sönen ışık, resim gibi 

uyaranların gösterilmesi sonucunda beyinde meydana 

gelen potansiyel değişimlerin kayıt edildiği yöntemdir. 

Yöntem, potansiyel meydana getirmek için kullanılan 

görsel uyaranların frekans değeri 6Hz’in üzerine çıktığında 

Durgun Durum Görsel Potansiyel Uyaran (DDGUP) olarak 

adlandırılmaktadır. DDGUP tabanlı BBA sistemleri, eğitim 

sürelerinin kısa olması, sinyal gürültü oranlarının yüksek 

olması ve kolay uygulanabilir olmaları nedeniyle diğer 

yöntemlere göre daha fazla tercih edilmektedir (Bin vd. 

2009).  

BBA sistemlerinin avantajları olduğu gibi dezavantajları da 

vardır. Bu sistemlerin temelini oluşturan ve beyinde 

meydana gelen elektriksel potansiyel değişimlerin 

kaydedilmesi ile elde edilen EEG sinyalleri, bozucu etkilere 

karşı oldukça hassastır. Bozucu etkiler BBA 

araştırmalarında önemli bir zorluk teşkil etmektedir. Bu 

etkiler sonucunda meydana gelen artefaktlar, istenmeyen 

değişimlere yol açarak nörolojik süreçleri etkilemektedir. 
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Artefaktlar, fizyolojik olmayan veya göz ve vücut 

hareketlerinden kaynaklanan elektriksel potansiyeller gibi 

fizyolojik faktörlerden kaynaklanmaktadır. BBA 

sistemlerinde fizyolojik artefaktların, özellikle göz ve 

vücut hareketlerinden kaynaklanan bileşenlerin, sinyal 

işleme sürecinde ciddi bir sorun teşkil ettiği bilinmektedir 

(Fatourechi vd. 2007). Fakat EEG temeline dayanan BBA 

sistemlerinin düşük bilgi aktarım hızı, kullanıcılar arasında 

yüksek değişkenlikler gibi sorunlarına karşın 

Elektrookülografi (EOG) sinyalleri yüksek doğruluk ve 

dayanıklılık avantajları ile ön plana çıkmaktadır (X. Liu vd. 

2024).  Bu avantajlar göz önünde bulundurulduğunda, göz 

hareketlerinin önem teşkil ettiği durumlarda EEG 

sinyallerinde bulunan EOG artefaktları kaynak sinyal 

olarak kullanılabilmektedir (Zhu vd. 2020). Bir diğer 

problem ise; P300 ve DDGUP gibi görsel uyaran tabanlı 

BBA sistemlerinde, beyinde potansiyel oluşturmak için 

kullanılan titreşen ışıkların veya görsellerin kullanıcılarda 

meydana getirdiği göz problemleridir (Allison 2009). 

Yapılan çalışmalarda titreşen ışıkların kullanıcılarda göz 

yorgunluğuna sebep olduğu ve sistem konforunu ciddi 

oranda düşürdüğü de bilinmektedir (Brennan vd. 2015). 

Bu çalışmada, görsel uyaran tabanlı BBA sistemlerinin 

barındırdığı titreşen ışıkların sistem kullanıcısı üzerinde 

meydana getirdiği olumsuz etkileri azaltmak için; 

• Farklı rotalarda hareket eden cisimler (beyaz toplar) 

temeline dayanan ve herhangi bir titreşen görsel uyaran 

içermeyen yenilikçi yaklaşıma sahip bir İnsan-Makine 

Arayüz (İMA) sistemi önerilmiştir.  
 

• Önerilen yaklaşım aracılığıyla sistem kullanıcısının 

görsel uyaranlardan izole edilmesi ve hareketli nesneler 

aracılığıyla sistemi kontrol edebilmesi hedeflenmiştir. 
 

 

• Görsel uyaranların gözde meydana getirdiği parlama 

hissini ortadan kaldırmak, sistemin kullanımını 

kolaylaştırmak ve daha uzun süreli kullanımlara olanak 

sağlamak amaçlanmıştır. 
 

• Herhangi bir EOG cihazına gerek kalmadan, tercih 

edilen Emotiv Epoc X EEG cihazı ile kullanıcılar için daha 

ucuz, konforlu ve kullanımı kolay bir İMA sistemi 

geliştirilmiştir. 
3 

 

• DDGUP tabanlı BBA sistemlerinde adaylar tarafından 

en az 4 yanıp sönen ışığa odaklanarak bakılması (Kamińska 

vd. 2021) ve P300 tabanlı sistemlerde ise her komut için 

yanıp sönen ışığa en az iki veya daha fazla kez bakılması 

gerekmektedir (Akram vd. 2015). Önerilen yaklaşım ile 

herhangi bir görsel uyarana maruz kalmaksızın hareketli 

rotaların sayısı daha da çeşitlendirilebilir daha fazla çıktı 

komutu üretilmesine olanak sağlanabilir. Önerilen 

yaklaşım ile görsel uyaran tabanlı sistemlere alternatif, 

daha geliştirilebilir bir yöntem sunulması da 

hedeflenmiştir. 

Önerilen yaklaşımın içerdiği beyaz toplar, kullanıcının 

beyninde potansiyel fark oluşturmak için kullanılmıştır. 

Sistem kullanıcısı, topları odaklanarak izlediğinde Emotiv 

Epoc X EEG cihazı vasıtasıyla beyin yüzeyinde meydana 

gelen elektriksel potansiyel değişimler kaydedilmiştir. 

Önerilen yaklaşım göz hareketi tabanlı bir yaklaşım olması 

dolayısıyla, göz çevresine yakın bölgelere konumlanmış 

kanallarda EOG sinyal artefaktlarının etkin şekilde 

görüleceği bilinen bir gerçektir. Bu nedenle EEG cihazına 

ait 14 kanalda meydana gelen EOG artefaktlarının 

baskınlığını tespit etmek amacıyla tüm kanallardan elde 

edilen veriler ön işleme aşamalarından geçirildikten sonra 

Ayrık Dalgacık Dönüşümü (ADD) ve Güç Spektral 

Yoğunluğu (GSY) yöntemleri uygulanarak makine 

öğrenme algoritmaları ile sınıflandırılmış ve elde edilen 

doğruluk oranı değerleri incelenmiştir. EOG artefakt 

seviyesi en yüksek olan iki kanala ait ham veriler, hareket 

yörüngelerinin sınıflandırılması için kaynak veri olarak 

kullanılmıştır. Ön işleme aşamalarından geçirilen ham 

verilere ADD ve GSY yöntemleri uygulanmıştır. Frekans 

domainine çevrilen verilere öznitelik çıkartma işlemi 

uygulanmıştır. Çıkartılan öznitelik verileri Lineer 

Diskriminant Analiz (LDA) ve k-tane En yakın komşu (k-

EYK) makine öğrenme algoritmaları kullanılarak 

sınıflandırılmıştır. ADD ve GSY yöntemleri, LDA ve k-EYK 

makine öğrenme algoritmaları ile elde edilen doğruluk 

oranları, BAH, Hassasiyet, Özseçicilik, F1 skoru ve AUC 

değerlerine bağlı olarak kıyaslanmıştır. Çalışmanın temel 

katkıları şu şekilde özetlenmiştir:  

• EEG sinyallerinde genellikle istenmeyen gürültü olarak 

kabul edilen EOG artefaktları kullanılarak göz hareketi 

tabanlı, düşük kanal sayısına (AF3, AF4) sahip bir İMA 

sistemi tasarlanmıştır. 
 

• Hareketli nesneler yaklaşımı kullanılarak, görsel uyaran 

tabanlı sistemlerin içeriğinde bulunan titreşen 

görsellerin/ışıkların kullanıcı göz sağlığı üzerinde meydana 

getirdiği olumsuz etkiler minimize edilmiştir. 
 

• Veri kayıt cihazı olarak düşük maliyetli, mobil, kurulumu 

basit ve kullanıcının görüşünü etkilemeyen bir EEG cihazı 

(Emotiv Epoc) seçimi yapılarak kullanıcıya kullanımı kolay 

ve konforlu bir sistem sunulmuştur. 
 

 

• Önerilen sistemin frekans ekseninde sergilediği 

performanslar ADD ve GSY yöntemleri kullanılarak 

karşılaştırılmış ve en iyi performansı sağlayan yöntemin 

tespiti sağlanmıştır. 
 

• GSY yöntemi için LDA ve k-EYK algoritmaları ile sırasıyla 

93.86%, 92.62% doğruluk oranları, 31.42 (bit/dk), 30.10 
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(bit/dk) Bilgi aktarım hızı (BAH), 94.29, 92.83 hassasiyet, 

93.75, 92.44 özseçilik, 93.79, 92.47 F1 skoru, 95.83, 94.79 

AUC değerleri ve ADD yöntemi için ise sırasıyla 92.84%, 

92.17% doğruluk oranları, 30.36 (bit/dk), 29.62 (bit/dk) 

BAH, 92.0, 92.08 hassasiyet, 91.66, 91.40 Özseçicilik, 

91.72, 91.48 F1 skoru, 94.44, 94.14 AUC değerleri elde 

edilmiştir. 

Çalışmada, deneyler sırasında kullanılan yaklaşım veya 

veri kayıt cihazına bağlı olarak herhangi bir problem 

(Brennan vd. 2015) yaşanmaması, yapılan veri kayıt 

sürelerinin problemin çözümüne yönelik yapılan 

çalışmalardan daha kısa olması [Melek vd. 2020], sistem 

performansının yapılan çalışmalara yakın veya kısmen 

yüksek olması (Glavas vd. 2024, Hernández Pérez vd. 

2023, Jiang vd. 2024, Mifsud vd. 2024, Zhao, 2025) ve 

düşük kanal sayısı ile çalışmanın gerçekleştirilmesi 

önerilen İMA modelinin görsel uyaran tabanlı sistemler 

için konfor seviyesi ve kısmen performansı yüksek bir 

alternatif oluşturabileceğini göstermiştir. 

2. Literatür Taraması 

Tekerlekli sandalyenin EOG sinyalleri ile kontrol edilmesi 

üzerine yapılan bir çalışmada (Glavas vd. 2024) 

araştırmacılar 4 serbestlik derecesine sahip sandalyeyi 

Motor imgeleme (Mİ) ve EOG sinyallerini kullanarak 

86.90% doğruluk oranı ve 84.32 F1 skoru ile kontrol 

ettiler.  Bir diğer çalışmada (Mifsud vd. 2024) 

araştırmacılar, kaydırma ve tarama yapmak için EOG 

tabanlı bir sistem geliştirdiler. Tasarlanan sistemin farklı 

mesafelerde dayanıklılığını göstermek için 50 cm 

uzaklıktan 83.73% doğruluk oranı elde ettiler. Bir diğer 

çalışmada araştırmacılar (Mai vd. 2024) DDGUP ile EOG 

sinyallerinin kullanıldığı bir navigasyon sistemi 

geliştirdiler. Geliştirilen sistem ile 81.67% doğruluk oranı 

elde ederek, tekerlekli sandalyelerin kullanımında 

meydana gelen kaza ve engeller için iyi bir alternatif 

oluşturdular.  

Öğrencilerin ruh sağlığı ve dikkat eksikliğini tespit etmek 

için yapılan çalışmada (Zhao 2025) özgün bir BBA modeli 

önerildi. Önerilen model de kafatasının ön bölgesinde 

konumlanan 7 elektrotu kullanarak iki bilişsel ve 

davranışsal görev arasında ayrım yapmak hedeflendi. 12 

denek üzerinde yapılan çalışmada KKA ile 90% doğruluk 

oranı elde eden araştırmacı, K-EYK, DVM ve BA makine 

öğrenme algoritmalarının tanıma doğruluğunu daha da 

arttırdığını belirtti. Bir diğer çalışmada ise araştırmacılar 

(Jiang vd. 2024), ALS hastaları için günlük yardım sistemi 

önerdiler. Kullanıcıların, bir BBA kafa bandı takarak, hafif 

baş döndürme ve göz kırpma ile bir bilgisayarı 

çalıştırabilmesini ve tekerlekli sandalye sürebilmelerini 

hedeflediler. Oluşturulan arayüzler aracılığıyla 15 ALS 

hastası ile görevlerin tamamını başarıyla tamamladılar ve 

iki farklı görev için ortalama 83.9% ve 87.0% doğruluk 

oranları elde ettiler. Ayrıca, NASA-TLX kullanarak 

yaptıkları iş yükü değerlendirmesi sonucunda, 

katılımcıların sistemi kullanırken düşük bir iş yükü 

yaşadığını söylediler.  

EOG tabanlı İMA sistemlerinde kullanılan makine 

öğrenme algoritmalarını kıyaslandığı bir çalışmada (López 

vd. 2023) araştırmacılar Statik Eşikleme (SE) 

algoritmasının 88.21% doğruluk oranı ile en iyi sonucu 

verdiğini gözlemlediler. Göz hareketlerinin dikey (yukarı, 

aşağı) ve yatay (sağa, sola) eksenlerde kullanıldığı bir diğer 

çalışmada ise (Hernández Pérez vd. 2023) araştırmacılar 

göz kırpmalarını da dahil ederek beş sınıflı EOG tabanlı bir 

sistem önerdiler. EOG sinyallerini, 0.5–50Hz bant 

aralığında Dalgacık dönüşümü ile frekans düzeyinde analiz 

ettiler. Elde edilen öznitelikler ile k-EYK, DVM ve Karar 

Ağacı (KA) algoritmaları ile eğittiler. Sınıflandırma 

başarıları Jaccard indeksi, karışıklık matrisi ve ROC eğrisi 

üzerinden değerlendiren araştırmacılar, en yüksek sonucu 

76.9% doğruluk oranı ile DVM algoritması ile elde ettiler.  

Araştırmacılar, DVM tabanlı modellerin EOG sinyallerinin 

sınıflandırılmasında etkili olabileceğini belirttiler. 

Farklı bir çalışmada araştırmacılar (Goktas ve Aras 2022) 

Arduino kullanılarak göz hareketleri ile menüler 

içerisinden seçim yapılabilen EOG tabanlı bir sistem 

tasarladılar. Sistemde kullanıcıların seçim yapabilmesi için 

menü arayüzü oluşturdular. Araştırmacılar beş denek 

kullandıkları çalışmada, bir deneğin ortalama 3.87 

saniyede verilen görevi yerine getirebildiğini tespit ettiler. 

Bir çalışmada araştırmacılar, EOG sinyallerini kullanarak 

hibrit bir BBA sistemi önerdiler (J. Zhang vd. 2023). 

Araştırmacılar tasarladıkları arayüzde 20 karaktere karşılık 

gelen 20 buton kullandılar. Çalışmada 10 sağlıklı denek 

kullandılar ve denekten deney sırasında her biri aynı anda 

yanıp sönen ışıklara bakmasını istediler. Düğmeler farklı 

yönlerde hareket ettiğinde EOG sinyallerini kaydettiler. 

KKA yöntemini kullanan araştırmacılar 94.75% doğruluk 

oranına ulaştılar. Bir diğer çalışmada ise araştırmacılar 

(Mouli ve Palaniappan 2020) DDGUP ve P300 yöntemleri 

ile tetiklenen hibrit bir sistem üzerine çalıştılar. Her iki 

yöntem içinde farklı frekans ve renklerde görsel uyaran 

kullanılan çalışmada araştırmacılar EEG sinyallerinde P300 

bileşenlerini başarı şekilde tespit ettiler. Bir diğer robot 

kontrol çalışmasında ise araştırmacılar (Mwata-Velu vd. 

2021) Mİ yöntemi ile hayali el hareketlerini kullanarak veri 

kaydı yaptılar. Verileri Evrişimsel Sinir Ağları (ESA) ile 

sınıflandıran araştırmacılar 87.6% maksimum 

sınıflandırma doğruluğu elde ettiler.  
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Yapılan bir çalışmada araştırmacılar (Deng vd. 2025), EOG 

ve IOG sinyalleri arasında dört yönlü hareketler için yönsel 

ortogonal özellik gösteren bir elektrot konfigürasyonu 

önerdiler. Yönsel ortogonal özellikten yararlanarak zaman 

alanı ve zaman-frekans özelliklerini birleştiren YOLOv3 

adında zaman–frekans modelini önerdiler. Çalışmalarında 

6 denek kullanan araştırmacılar 97.60% doğruluk oranı ve 

62.65 (bit/dk) BAH elde ettiler. Farklı bir çalışmada 

araştırmacılar (Efe ve Ozsen 2023) eğitim verisi 

dengesizliği sorununu çözmek için odak kaybı ve ayrık 

kosinüs dönüşümü yöntemlerini kullanan yeni bir hibrit 

sinir ağı mimarisi önerdiler. Önerilen modeli, k katlı 

doğrulama stratejileri kullanarak dört farklı veri tabanında 

eğiten araştırmacılar, 87.11% doğruluk oranı ve 81.81% 

Kappa puanı elde ettiler.  Çalışmayı mevcut yöntemler ile 

karşılaştıran araştırmacılar sonuçların ümit verici 

olduğunu belirttiler. Motor imgeleme yönteminin 

kullanıldığı bir çalışmada ise (Kaya ve Saritas 2024) 

araştırmacılar her denekten yirmi gün boyunca veri kaydı 

yaptılar. Topluluk Altuzay Diskriminant (TAD) algoritması 

ile yapılan 4 sınıflı sınıflandırma sonucunda günlük 

ortalama doğruluk değeri 61.44% olarak elde edilirken, 2 

sınıflı sınıflandırma için ortalama doğruluk oranını 71.84% 

olarak elde ettiler.  

Görsel uyaran tabanlı BBA sistemlerinin içerdiği görsel 

uyaranların kullanıcı üzerinde meydana getirdiği yanıp 

sönen görüntü hissini azaltmak için yapılan bir çalışmada 

(Kondo ve Tanaka 2023) araştırmacılar yüksek frekans 

(56-70Hz) aralığında çalışan bir sistem önerdiler. 

Tasarladıkları sistemi düşük frekanslı uyaranlarla test 

eden araştırmacılar düşük frekanslı görsel uyaranlar ile 

oluşturdukları sistem için sınıflandırma sonucunda 98.0% 

doğruluk oranı elde ederken yüksek frekanslı uyaranlar ile 

oluşturdukları sistemde ise 87.19% doğruluk oranı elde 

ettiler. Çalışmada doğruluk oranlarının daha yüksek 

frekanslar değerlerinde düştüğünü gözlemlediler. 

EOG sinyalleri kullanılarak yapılan bir çalışmada 

(Martínez-Cerveró vd. 2020) araştırmacılar, dört yönlü 

göz hareketlerinin sınıflandırılması için bir sistem 

tasarladılar. Sistemi; açık kaynaklı yazılım ekosistemleri, 

Raspberry Pi tek kartlı bilgisayar, OpenBCI biyosinyal 

toplama cihazı ve açık kaynaklı bir Python kütüphanesini 

temel alarak geliştirdiler. Çalışmalarında 7 denek kullanan 

araştırmacılar, maksimum, minimum ve medyan 

özniteliklerini kullanarak DVM algoritması ile 90.0% 

doğruluk oranı elde ettiler. Tasarladıkları sistemin; ucuz, 

kompakt ve taşınabilir olup, kolayca çoğaltılabilir ve 

özelleştirilebilir nitelikte olduğunu söyleyen 

araştırmacılar, sınıflandırma sisteminin felçli bireylerde 

yardımcı iletişim amacıyla bir İMA girişi olarak 

kullanılabileceğini belirttiler.  

Yapılan bir çalışmada araştırmacılar (Hu vd. 2024), mevcut 

sistemlerin kullanım zorluğu, maliyet ve performans 

yetersizliği problemlerine çözüm amacıyla; EOG ve EEG 

sinyallerini birleştiren kompakt, giyilebilir hibrit bir sistem 

geliştirdiler. 10 denek kullanarak kaydettikleri sinyalleri 

sınıflandırmak için DVM algoritmasını kullanan 

araştırmacılar 94.03% doğruluk oranı ve 31.42 bit/dakika 

BAH elde ettiler. Araştırmacılar önerdikleri sistemin 

gerçek dünya kullanımı için uygulanabilir olduğunu 

belirttiler. Bir diğer çalışmada ise araştırmacılar (Aydın vd. 

2025) DDGUP tabanlı sistemlere çözüm amacıyla hareketli 

nesneler yaklaşımını kullandılar. Sağlıklı 10 denek 

kullandıkları çalışmada araştırmacılar, sağ-sol, aşağı-

yukarı, sağ-çapraz ve sol-çapraz hareket yörüngelerini 

kullanarak 97.89% doğruluk oranı ve 36.75 (bit/dk) 

doğruluk oranı elde ettiler. Fakat sistemin güvenliğini 

sağlamak amacıyla kullandıkları bir adet 7Hz görsel uyaran 

nedeniyle sistem kullanıcılarının az da olsa görsel uyaran 

kaynaklı rahatsızlık yaşadığını bildirdiler. Farklı bir 

çalışmada (Raj ve Kumar 2024) ise araştırmacılar, EOG 

sinyallerini kullanarak bireylerin iletişimini 

kolaylaştırmaya yönelik metin ve ses tabanlı bir sistem 

geliştirdiler. BioAmp EXG Pill sensörleri ile sağ-sol ve 

yukarı-aşağı yönlü göz hareketlerini algılayarak; verileri 

ESP32 mikrodenetleyicisi üzerinden işleyen 

araştırmacılar, LCD ekran ve sesli çıktı yoluyla kullanıcıya 

geri bildirim sağladılar. 10 sağlıklı bireyle yaptıkları 

testlerde sistemin genel doğruluğunu 81.04% olarak 

hesapladılar. 

3. Materyal ve Metot 

Bu bölümde çalışmada kullanılan materyaller ve metotlar 

açıklanmıştır. Tasarlanan sisteme ait Flowchart 

algoritması Şekil 2’de verilmiştir. 

3.1. EEG cihazı 

Emotiv EPOC X, 14 ölçüm elektrodu ve 2 referans 

elektrodu (CMS ve DRL) içeren, giyilebilir bir EEG cihazıdır. 

Elektrotlar, uluslararası 10-20 sistemine uygun olarak 

yerleştirilmektedir. Cihaz, kaydedilen EEG sinyallerini 

kablosuz bağlantı ile bilgisayara iletebilme özelliğine 

sahiptir. Lityum polimer bataryası sayesinde yaklaşık 12 

saat kesintisiz çalışabilen cihaz, uzun süreli deneyler için 

idealdir (Holewa ve Nawrocka 2014). Emotiv EPOC X 

kablosuz ve hafif tasarımı sayesinde, taşınabilirlik ve 

kullanım kolaylığı açısından oldukça pratiktir. Elektrotların 

temizlenmesi ve kafa derisi ile elektrotlar arasındaki 

empedansın azaltılması için yaygın olarak bulunan bir 

salin çözeltisi kullanılmaktadır. Cihaz, 128Hz ve 256Hz 

örnekleme frekanslarında çalışabilme özelliği ile farklı 

araştırma ihtiyaçlarına uyum sağlamaktadır. Cihaz Emotiv 

firmasının sağlayıcısı olduğu lisansı ücretli EmotivBCI 
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uygulaması ile kullanılabilmektedir. Akademik çalışmalar 

için uygun maliyetli bir çözüm sunması sebebiyle 

araştırmacılar tarafından sıklıkla tercih edilmektedir. 

 
Şekil 2. Tasarlanan İMA sisteminin Flowchart algoritması. 

3.2. Katılımcılar 

İnsanların denek olarak kullanıldığı bu çalışma, Trabzon 

Kanuni Eğitim ve Araştırma Hastanesi Tıp Fakültesinin 

23618724 sayı ve 11507 numaralı etik kurul izni ile 

gerçekleştirilmiştir. Çalışmada, herhangi bir bağımlılığı 

bulunmayan, 18-45 yaş aralığında (ort. 23.7) sağlıklı 8 

denek (5 erkek, 3 kadın) kullanılmıştır. Deneklere 

çalışmaya katılmaları teklif edildiğinde, çalışmanın 

ayrıntıları kapsamlı şekilde anlatılmıştır. Çalışmaya 

katılmayı kabul eden bireyler, Bilgilendirilmiş gönüllü 

onam formu doldurtulmak suretiyle çalışmaya dahil 

edilmiştir.  

3.3. Sınıflandırma algoritmaları 

3.3.1. Lineer Diskriminant Analiz (LDA) 

Sınıflandırma algoritmaları, benzerlik fonksiyonlarına ve 

ağırlıklı değerlere denk gelen çıktılarla, özellik vektörlerini 

kategorize etmek için sıklıkla kullanılmaktadır (Altan ve 

inat 2021). Bu algoritmalardan birisi olan LDA, 

sınıflandırma ve boyut indirgeme için kullanılan etkili bir 

istatistiksel tekniktir. Genellikle iki veya daha fazla sınıfın 

verilerini sınıflandırma amacı taşıyan bir ikili 

sınıflandırıcıdır (Lotte ve Guan 2011). LDA algoritmasında, 

sınıflar için aynı kovaryans matrisine sahip Gaussian 

dağılımları kullanılır. İki sınıf arasındaki farkı en üst düzeye 

çıkaran projeksiyon, ayırıcı hiper düzlemi oluşturur. İkili 

sınıflandırma görevlerinde, bu hiper düzlem Denklem 1 ile 

tanımlanan bir ayırt edici fonksiyon üzerinden belirlenir 

(Krusienski vd. 2006). 

𝑓(𝑥) = ŵ. 𝑓(𝑣) + 𝑏                                  (1) 

Verilen denklemde (Denklem 1), 𝑣 özellik vektörü, 𝑏 ofset 

terimi ve ŵ sınıflandırma ağırlık vektörü olarak tanımlanır.  

3.3.2. k-tane En yakın komşuluk (k-EYK) 

k-EYK, makine öğreniminde sıklıkla kullanılan basit bir 

algoritmadır ve hem sınıflandırma hem de regresyon için 

kullanılabilir. Algoritma, bir veri noktasını 

değerlendirirken, o noktaya en yakın k komşusunun 

niteliklerini baz alır. k-EYK’e göre birbirine yakın veriler 

aynı özellikte verilerdir. Algoritma, eğitim aşamasında 

herhangi bir öğrenme gerçekleştirmez; bunun yerine, tüm 

eğitim verilerini bellekte saklar (Lotte ve Guan 2011). 

Çalışmada veriler arasındaki uzaklık Öklid teoremi 

Denklem 2 kullanılarak hesaplanır. 

𝑑(𝑋, 𝑌) =  √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1                                            (2) 

burada (Denklem 2) 𝑥𝑖  ilk veri noktasını, 𝑦𝑖  ikinci veri 

noktasını ve 𝑑(𝑋, 𝑌) ise iki nokta arasındaki Öklid 

mesafesini temsil eder. 

3.4. Performans parametreleri 

3.4.1. Doğruluk Oranı (DO)  

BBA sistemlerinde Doğruluk oranı (DO), sistemin kullanıcı 

tarafından gönderilen komutları veya beyin sinyallerini 

doğru bir şekilde algılama ve sınıflandırma başarısını ölçen 

önemli bir performans göstergesidir. Bu oran, doğru 

sınıflandırılmış sinyallerin toplam sınıflandırılan sinyallere 

oranı olarak hesaplanır ve genellikle yüzdelik bir değerle 

ifade edilir. Doğruluk oranı, sistemin genel etkinliğini ve 

güvenilirliğini değerlendirmek için temel bir kriterdir. 
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Yüksek bir doğruluk oranı, sistemin beyin sinyallerini 

doğru şekilde işleyip yorumladığını gösterir. 

3.4.2. Bilgi Aktarım Hızı (BAH) 

Bilgi aktarım hızı (BAH), BBA sistemlerinde performansı 

değerlendirmek için yaygın olarak kullanılan bir ölçüm 

parametresidir. Bu metrik, sistemin doğruluk oranı, 

kullanıcı seçim sayısı ve karar süresi gibi faktörleri 

birleştirerek etkinliğini değerlendirme imkânı sunar 

(Volosyak 2011). Genellikle bit/saniye (bit/s) birimiyle 

ifade edilen BAH, yalnızca doğruluk oranını değil, aynı 

zamanda işlem hızını da dikkate alır. Performans 

hesaplamaları, Shannon teorisine dayanır ve Denklem 3 

ile belirlenir (Wolpaw vd. 1998). 

𝐵𝑡 = log2 𝐾 + 𝑝 log2 𝑝 + (1 − 𝑝) log2(
1−𝑝

𝐾−1
)             (3) 

Denklemde (3) K ve p değerleri sırasıyla tercih hakkı 

miktarını ve sistemin doğruluk oranı değerini ifade eder. 

𝐵𝑡  kullanılarak BAH parametresi Denklem 4 ile hesaplanır.  

𝐵𝐴𝐻 = 60 ∗ 
𝐵𝑡

𝑇
                                                                 (4) 

Burada (Denklem 4) T değeri yapılan tek bir tahminin 

değerlendirilebilmesi için verilen süredir.  

3.4.3. Hassasiyet 

Hassasiyet, sinyal işleme alanında yapılan çalışmalarda 

(Altan vd. 2021) modellerin pozitif tahminlerinin ne 

kadarının gerçekten doğru olduğunu ölçmek için sıklıkla 

kullanılan bir performans metriğidir. Hassasiyet Denklem 

5 ile hesaplanmaktadır. 

𝐻𝑎𝑠𝑠𝑎𝑠𝑖𝑦𝑒𝑡 =  
𝐷𝑃

𝐷𝑃+𝑌𝑃
                  (5) 

Denklemde (5) YP parametresi gerçekte negatif olan ama 

model tarafından yanlışlıkla pozitif tahmin edilen örnek 

sayısını ve DP ise doğru şekilde pozitif olarak 

sınıflandırılmış örnek sayısını temsil etmektedir.  

3.4.4. Özseçicilik 

Sinyal işlemede Özseçicilik bir sınıflandırma 

algoritmasının, gerçek pozitif örneklerin ne kadar doğru 

tespit edildiğini gösteren bir ölçüttür. Özseçicilik Denklem 

6 ile hesaplanmaktadır. 

Özseçicilik =  
𝐷𝑃

𝐷𝑃+𝑌𝑁
                  (6) 

Burada DP, pozitif sınıfa ait olup doğru şekilde pozitif 

olarak sınıflandırılmış örneklerin sayısını temsil ederken; 

YN, pozitif olduğu hâlde yanlışlıkla negatif olarak 

sınıflandırılan örneklerin sayısını ifade etmektedir. 

3.4.5. F1 Skoru 

F1 skoru metriği, hassasiyet ve özseçicilik metriklerinin 

harmonik ortalamasıdır. Bu metrik, iki değeri de 

dengeleyerek genel sınıflandırma performansını daha adil 

bir şekilde ölçmeyi amaçlar. Özellikle dengesiz veri 

kümelerinde etkili bir ölçüt olan F1 skoru, alanda yapılan 

çalışmalarda (Hacıbeyoglu vd. 2024) sınıflar arası dengeyi 

ölçmek için sıklıkla kullanılmakta ve Denklem 7 ile 

hesaplanmaktadır. 

F1 Skoru =  2 𝑥
ℎ𝑎𝑠𝑠𝑎𝑠𝑖𝑦𝑒𝑡 𝑥 ö𝑧𝑠𝑒ç𝑖𝑐𝑖𝑙𝑖𝑘

ℎ𝑎𝑠𝑠𝑎𝑠𝑖𝑦𝑒𝑡+ö𝑧𝑠𝑒ç𝑖𝑐𝑖𝑙𝑖𝑘
                 (7) 

F1 skoru özetle özseçicilik ve hassasiyet parametrelerinin 

birlikte sağlanıp sağlanmadığını ölçer. 

3.4.6. AUC 

AUC değeri, çalışma karakteristik eğrisi altında kalan 

alanın hesaplanmasıyla elde edilmektedir. Sinyal işleme 

alanında yapılan sınıflandırmalarda, modelin sınıflar 

arasındaki ayrımı ne kadar iyi yaptığına dair genel bir ölçü 

sunmaktadır. Alanda yapılan çalışmalarda (Top vd. 2024) 

sıklıkla kullanılan AUC, modelin sınıflar arasındaki ayrım 

yeteneğini ölçmekte olup, özellikle veri dengesizliği 

bulunan durumlarda doğruluktan daha güvenilir bir 

gösterge olarak kabul edilmektedir. 

3.5. Güç Spektral Yoğunluğu (GSY) 

Bireylerin kafa derisi üzerine yerleştirilen yüzeysel 

elektrotlarla algılanan EEG sinyalleri, bilgisayarlar 

aracılığıyla gerilim ve zaman serisi verisi olarak kaydedilir. 

Bu sinyallerin zaman ve gerilim verisi şeklinde kaydedilmiş 

olması, anlamlandırma ve analiz sürecini oldukça 

zorlaştırmaktadır. Bu nedenle, verilerin zaman alanından 

frekans alanına dönüştürülmesi gerekir. Çalışmada 

kullanılan Welch GSY yöntemi Denklem 8 ile ifade edilir. 

𝑃𝑤𝑒𝑙𝑐ℎ(𝑓) =
1

𝐾.𝐿.𝑈
∑ |𝑘−1

𝑖=0 ∑ 𝑥𝑖(𝑛). 𝜔(𝑛)𝑒−𝑗2𝜋𝑓n𝐿−1

𝑛=0
   (8) 

Welch yönteminde, veri örtüşme miktarı 𝐾 olacak şekilde 

eşit parçalara bölünür. Her bir segmentin uzunluğu 𝐿 

olarak belirlenir. GSY, Welch tahmininde örtüşen 𝐾 

segmentten elde edilen periodogramların ortalaması 

alınarak hesaplanır. 𝑈 değeri ise pencere fonksiyonunun 

toplam gücünü ifade eder (Tiwari vd. 2022). 

3.6. Ayrık Dalgacık Dönüşümü (ADD) 

ADD, bir sinyalin zaman ve frekans ekseninde detaylı 

analizini yapabilen gelişmiş bir yöntemdir. Zamanla 

değişen sinyallerin analizinde etkili bir yöntem olan 

ADD’nin Fourier dönüşümünden en büyük farkı, analiz 

sonucunda yalnızca frekans bileşenlerini değil, 

bileşenlerin zaman bilgilerini de sağlamasıdır. ADD 

yöntemi temelde sinyali yaklaşım (A) ve ayrıntı (D) 

bileşenlerine ayırır. Yaklaşım bileşeni düşük frekans 

değerine sahip iken ayrıntı bileşeni yüksek frekans 

değerine sahiptir. Sinyali yaklaşım ve ayrıntı bileşenlerine 

ayırma işlemi etkin çözünürlük seviyesi elde edilene kadar 
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devam eder. Bu sayede, istenilen çözünürlük seviyesine 

kadar ayrıştırılan sinyal detaylı bir şekilde incelenebilir 

(Faust vd. 2015).  

3.7. Veri kayıt aşaması 

Çalışmada, ilk olarak sinyal kaydı için uygun ortam 

hazırlanmıştır. Hazırlanan ortam yüksek ışık ve ses gibi 

bozucu etkilerden arındırılmış ve içerisinde EEG cihazı, 

monitör, bilgisayar, masa ve sandalye gibi araç gereçler 

hazır bulundurulmuştur. Çalışma için seçilen denekler, 

deneyler öncesinde ayrıntılı olarak çalışma hakkında 

bilgilendirilmiştir. Gerekli ortam hazırlandıktan sonra 

denekler birer birer deney odasına alınmıştır. İçeri alınan 

deneğe EEG cihazı tuzlu (salinli) su kullanılarak 

giydirilmiştir. Elektrotların temas ve sinyal kalitesi 

bilgisayar aracılığıyla kontrol edilmiştir. Sinyal seviyesi 

istenilen düzeye ulaştığında veri kayıt aşamasına 

geçilmiştir. Deneyler sırasında Emotiv Epoc X EEG 

cihazının tüm kanallarından (14) 256Hz örnekleme 

frekansında veri kaydı yapılmış herhangi bir kanal devre 

dışı bırakılmamıştır. Cihaz deneye başlamadan ve her 

deneyden sonra sterilize edilmiştir ve bataryası tam 

kapasitede doldurulmuştur. 

Önerilen yaklaşımda üçgen (Δ) hareket yörüngesi, yukarı 

ve sağa (L) hareket yörüngesi, yuvarlak (O) hareket 

yörüngesi ve sağ-sol (—) hareket yörüngeleri 

bulunmaktadır. Belirtilen hareket yörüngelerinin 

deneklere gösterildiği arayüz 3ds Max kullanılarak 

tasarlanmıştır. Yörüngelerin yol uzunluğunun eşit 

olmasına dikkat edilmiştir. Hareket yörüngelerinin deneğe 

uygulanma görev sırası Şekil 3’te gösterilmiştir. 

 

Şekil 3. Önerilen yaklaşımın deneklere uygulanan görev sırası. 

Şekil 3 incelendiğinde, deneyin ilk olarak üçgen hareket 

yörüngesi ile başladığı görülmektedir. Başlangıçta deneğe 

3 saniyelik başlangıç uyarı sesi dinletilmiştir. Uyarı 

sesinden sonra üçgen hareket yörüngesi deneğe 10 saniye 

(10 tur) boyunca izletilmiş ve veri kaydı yapılmıştır. 10 

saniye sonunda bitiş uyarı sesi ile birlikte ilk hareket 

yörüngesi için veri kaydı tamamlanmıştır. 3 dakika 

dinlenme süresi verildikten sonra bir sonraki hareket 

yörüngesine geçilmiştir. Üçgen hareket yörüngesinde 

uygulanan işlemler diğer hareket yörüngelerinde de aynı 

şekilde uygulanarak veri kaydı yapılmıştır. Kayıt 

tamamlandıktan sonra 5 dakika dinlenme arası verilmiştir. 

Tüm hareket yörüngeleri ile her bir denek için 10 tekrar 

olacak şekilde sinyal kaydı gerçekleştirilmiştir. Veri kayıt 

düzeneği Şekil 4’te gösterilmiştir. 

  
Şekil 4. Veri kayıt düzeneği. 

Deneklerden alınan veriler bilgisayar aracılığıyla doğrudan 

kayıt altına alınmıştır. 8 denekten toplamda 320 kayıt 

yapılmıştır. Kaydedilen veriler sinyal işleme aşaması için 

MATLAB ortamına aktarılmıştır.  

4. Bulgular 

Sinyal işleme aşamasında ilk olarak kaydedilen ham 

verilerden başlangıç ve bitiş uyarı sesleri kesilmiştir. 

Kesilen sinyaller 1 saniyelik örtüşme ile 3 saniyelik veriler 

şeklinde parçalanmıştır. Her 10 saniyelik (2560x14) 

hareket yörüngesi verisinden toplamda 5 adet 3 saniyelik 

(768x14) veri elde edilmiştir. Sinyallerinden gürültü ve 

istenmeyen frekans bileşenlerinin uzaklaştırılması 

amacıyla parçalanan veriler filtfilt komutu kullanılarak, 1–

50Hz bant aralığında 4. dereceden Butterworth bant 

geçiren filtre ile filtrelenmiştir. Butterworth filtresi, geçiş 

bandındaki düz frekans yanıtı ile sinyalin genlik 

bileşenlerini bozmadan filtreleme yapması nedeniyle 

sinyal işleme çalışmalarında yaygın olarak tercih 

edilmektedir (Sörnmo ve Laguna 2005). Filtre derecesi, 

geçiş bölgesinin keskinliği ile doğrudan ilişkili olup, yüksek 

dereceler daha keskin geçiş sağlar ancak aynı zamanda faz 

bozulması riskini de artırır. Bu nedenle, sinyalin hem bilgi 

içeriğini koruyacak hem de istenmeyen bileşenleri yeterli 

düzeyde bastıracak şekilde filtreleme yapabilmek için 
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farklı (1-15 aralığı) derecelerde filtre dereceleri denenmiş; 

elde edilen sonuçlar doğrultusunda 4. derece, frekans 

geçiş karakteristiği ve zaman alanındaki bozulumun 

dengelenmesi açısından en uygun derece olarak 

belirlenmiştir.  

4.1. Etkin kanal seçimi 

Filtrelenen verilere ADD yöntemi uygulanmıştır. ADD için 

db2 dalgacığı kullanılmış ve altı seviyeli bileşenlerine 

ayırma uygulanmıştır. Bileşenlerine ayırma işlemine ait 

bant ayrıntıları Şekil 5’te gösterilmiştir.

 
Şekil 5. Verilerin altı seviyeli bileşenlerine ayrıştırılması. 

Şekil 5’te sinyallere altı seviyeli ADD yönteminin 

uygulanması sonucunda elde edilen alt bantlara ait 

yaklaşım ve ayrıntı veri kümeleri gösterilmiştir. Yaklaşım 

ve ayrıntı verilerine ait frekans aralığı değerleri Çizelge 

1’de verilmiştir. 

Çizelge 1. ADD alt bant ayrışımlarına ait frekans aralıkları. 

Ayrıştırılmış sinyal Frekans aralığı (Hz) 

A1 / D1 0-128 / 128-256 
A2 / D2 0-64 / 64-128 
A3 / D3 0-32 / 32-64 
A4 / D4 0-16 / 16-32 
A5 / D5 0-8 / 8-16 
A6 / D6 0-4 / 4-8 

Çizelge 1’de verilen ayrıştırılmış ayrıntı ve yaklaşım 

sinyallerinin frekans aralıkları incelendiğinde, Delta (0.5-

4Hz), Teta (4-7Hz), Alfa (7-12Hz), Beta (12-30Hz) ve 

Gama(30-50Hz) dalgalarına ait frekans değerlerinin tam 

olarak elde edilemediği görülmektedir. Bu nedenle tüm 

alt bant verilerinden varyans özniteliği çıkartılmıştır. 

Çıkartılan öznitelik verileri Hold-out yöntemi kullanılarak 

%75 eğitim ve %25 test verisi olarak ayrılmıştır. EEG 

cihazının tüm kanallarına (AF3, F7, F3, FC5, T7, P7, O1, O2, 

P8, T8, FC6, F4, F8, AF4) ait öznitelik verileri, her kanal 

kendi içerisinde olacak şekilde, k-EYK ve LDA makine 

öğrenme algoritmaları kullanılarak sınıflandırılmıştır. k-

EYK algoritmasının performansı, büyük ölçüde k 

parametresinin doğru seçimine bağlıdır. Bu parametre, 

sınıflandırma işlemi sırasında dikkate alınacak komşu 

sayısını ifade eder ve modelin genelleme yeteneği ile aşırı 

öğrenme (aşırı uyum) arasında bir denge kurulmasında 

kritik rol oynar. Düşük k değerleri, modelin eğitim verisine 

fazla duyarlı olmasına ve gürültüye açık hale gelmesine 

neden olurken; çok yüksek k değerleri ise sınıflar arası 

sınırların bulanıklaşmasına ve aşırı genelleme (yetersiz 

uyum) sorununa yol açabilir. Bu nedenle, literatürde 

deneme-yanılma yöntemi ve çapraz doğrulama gibi 

yöntemlerle farklı k değerlerinin test edilmesi yaygın bir 

yoldur. Yapılan çalışmalarda genellikle tek sayı değerleri 

tercih edilmekte ve en uygun k değeri, modelin doğruluk, 

hata oranı veya F1 skoru gibi performans metriklerine 

göre belirlenmektedir (Li vd. 2002, Z. Zhang 2016). Bu 

bağlamda, çalışmamızda da k parametresi oylama 

durumunda eşitlikten kaçınmak için 1-3-5-7-9 tek sayı 

değerleri için denenmiş ve en yüksek sınıflandırma 

başarımı sağlayan 3 değeri optimum k değeri olarak kabul 

edilmiştir. Sınıflandırma işlemi 10 kez tekrarlanmış ve her 

sınıflandırma aşamasında verilere karıştırma işlemi 

uygulanmıştır. LDA algoritması için elde edilen ortalama 

doğruluk oranları Çizelge 2’de verilmiştir.

 

Çizelge 2. ADD yöntemi uygulanan EEG kanallarına ait öznitelik verilerinin LDA algoritması ile sınıflandırılmasına ait doğruluk oranları. 

Kanallar Denek-1 Denek-2 Denek-3 Denek-4 Denek-5 Denek-6 Denek-7 Denek-8 Ort. (%) 

AF3 77.92 68.75 69.50 75.83 74.07 75.54 67.26 71.60 72.55 
F7 57.08 62.92 64.58 58.33 60.78 64.34 61.95 62.93 61.61 
F3 64.17 60.42 58.33 65.42 55.74 51.49 54.40 57.00 58.37 
FC5 25.00 46.67 22.92 48.33 50.25 54.20 46.66 37.20 41.40 
T7 54.17 58.75 54.17 39.58 46.80 44.47 54.00 43.37 49.41 
P7 45.83 60.42 60.42 45.83 48.53 50.35 57.63 41.74 51.34 
O1 37.50 45.00 49.17 27.08 37.39 46.96 44.43 42.17 41.21 
O2 25.00 31.25 52.08 36.67 36.12 43.07 41.73 39.50 41.09 
P8 43.75 68.75 50.00 43.75 45.33 45.95 39.75 57.08 49.30 
T8 54.17 64.58 58.75 52.08 56.17 53.78 59.17 59.33 57.25 
FC6 64.58 64.58 43.75 50.00 44.92 46.42 48.25 44.25 50.84 
F4 39.58 61.25 45.83 39.58 51.67 58.42 42.20 62.75 50.16 
F8 66.67 61.25 69.17 56.25 63.57 63.76 62.50 65.42 63.57 
AF4 73.00 70.83 72.50 66.67 67.62 73.49 70.59 69.33 70.50 
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Çizelge 2 incelendiğinde, ADD yöntemi uygulanarak LDA 

algoritması ile sınıflandırılmış kanallardan, AF3 ve AF4 

kanallarına ait doğruluk oranlarının diğer kanallardan 

daha yüksek olduğu görülmektedir. Bu kanallara ait 

doğruluk oranları sırasıyla 72.55%, 70.50% şeklindedir. 

ADD yöntemi uygulanmış EEG kanallarına ait verilerin k-

EYK algoritması kullanılarak sınıflandırılmasına ait 

doğruluk oranları ise Çizelge 3’te verilmiştir.
Çizelge 3. ADD yöntemi uygulanan EEG kanallarına ait öznitelik verilerinin k-EYK algoritması ile sınıflandırılmasına ait doğruluk 
oranları. 

Kanallar Denek-1 Denek-2 Denek-3 Denek-4 Denek-5 Denek-6 Denek-7 Denek-8 Ort. (%) 

AF3 66.66 68.33 72.16 60.42 72.50 73.54 64.17 75.79 69.20 
F7 59.60 58.33 63.25 64.58 56.25 66.43 43.33 69.08 60.11 
F3 53.75 50.00 57.30 43.75 43.75 52.33 50.00 54.48 50.67 
FC5 48.92 48.36 47.15 60.42 45.00 50.33 33.33 66.38 49.99 
T7 47.90 54.17 39.58 52.92 56.25 49.76 50.00 54.38 50.62 
P7 47.13 43.75 37.33 58.25 62.50 58.15 37.50 34.05 47.33 
O1 50.55 27.17 42.82 64.58 52.92 44.20 35.42 60.18 47.23 
O2 38.78 22.92 53.36 25.00 58.33 48.36 37.50 44.33 41.07 
P8 50.42 35.42 42.75 56.25 56.25 49.04 50.00 41.35 47.68 
T8 49.20 41.67 45.92 58.33 52.50 54.62 47.92 57.28 50.93 
FC6 52.30 47.92 45.50 59.20 25.00 42.34 52.08 54.11 47.30 
F4 42.42 33.33 55.46 52.29 50.00 52.46 29.17 48.25 45.42 
F8 61.69 60.42 62.86 68.75 64.58 63.72 57.33 70.47 63.72 
AF4 70.77 69.58 75.27 79.17 64.58 71.12 65.83 78.27 71.82 

Çizelge 3’e bakıldığında AF3 ve AF4 kanallarının doğruluk 

oranlarının sırasıyla 69.20% ve 71.82% ile en yüksek 

değerler olduğu görülmektedir. ADD yöntemi uygulanmış 

öznitelik verilerinin k-EYK ve LDA algoritmaları ile 

sınıflandırılması sonucunda her iki makine öğrenme 

algoritması içinde AF3 ve AF4 kanallarının en yüksek 

doğruluk oranlarını verdiği görülmektedir. ADD yöntemi 

uygulanan veriler kullanılarak EEG kanallarının doğruluk 

oranları hesaplandıktan sonra ön işleme yapılan ham 

verilere GSY yöntemi uygulanmıştır. GSY analizinde 

kullanılan Hanning pencereleme parametreleri, veri 

yapısına uygun olarak deneysel yöntemlerle 

belirlenmiştir. Literatürde, pencere uzunluğu ve örtüşme 

oranının doğru seçilmesinin, frekans çözünürlüğü ile 

zamansal hassasiyet arasında bir denge kurulmasında 

önemli rol oynadığı belirtilmiştir (Mitra ve Bokil 2007, 

Welch 1967). 256Hz ile örneklenmiş 3 saniyelik 768x14 

boyutundaki sinyal matrisinde, pencere uzunluğu 650 

örnek, örtüşme miktarı ise 649 örnek olarak seçilmiştir. 

Seçilen değerler, 450-750 aralığında değerlerin 

performans açısından karşılaştırıldığı bir deneme ve 

yanılma süreci sonucunda belirlenmiştir. Seçilen bu 

parametrelerin, kısa süreli biyo sinyallerin frekans içeriğini 

daha kararlı biçimde temsil ettiği ve spektral özelliklerin 

çıkarımında daha yüksek ayrıştırıcılık sağladığı 

gözlemlenmiştir. Frekans çözünürlüğü kullanılarak Delta 

(0.5-4Hz), Teta (4-7Hz), Alfa (7-12Hz), Beta (12-30Hz) ve 

Gama(30-50Hz) frekans bantlarından varyans özniteliği 

çıkartılmıştır. Elde edilen öznitelik verileri Hold-out 

yöntemi kullanılarak %75 eğitim ve %25 test verisi olarak 

ayrılmıştır. EEG cihazının tüm kanallarına ait öznitelik 

verileri k-EYK ve LDA makine öğrenme algoritmaları 

kullanılarak her kanal kendi içerisinde olacak şekilde 

sınıflandırılmıştır. k-EYK algoritması için ADD yönteminde 

de olduğu gibi k değeri 1-3-5-7-9 tek sayı değerleri için 

denenmiş ve en yüksek sınıflandırma başarımı sağlayan 3 

değeri  optimum k değeri olarak seçilmiştir. Sınıflandırma 

işlemleri 10 kez tekrarlanmış ve her sınıflandırma 

aşamasında verilere karıştırma işlemi uygulanmıştır.  Elde 

edilen doğruluk oranı değerleri LDA algoritması için 

Çizelge 4’te ve k-EYK algoritması için ise Çizelge 5’te 

verilmiştir.

Çizelge 4. GSY yöntemi uygulanan EEG kanallarına ait öznitelik verilerinin LDA algoritması ile sınıflandırılmasına ait doğruluk oranları. 

Kanallar Denek-1 Denek-2 Denek-3 Denek-4 Denek-5 Denek-6 Denek-7 Denek-8 Ort. (%) 

AF3 74.63 82.92 73.50 71.67 68.33 73.89 76.96 76.24 74.77 
F7 65.05 67.25 65.62 41.67 62.50 69.76 67.28 56.25 61.92 
F3 52.95 45.83 59.33 50.00 56.25 52.85 66.27 35.42 52.36 
FC5 49.93 46.23 52.17 29.17 56.25 60.13 58.76 54.17 50.85 
T7 36.20 43.05 40.70 52.08 62.92 51.34 50.19 58.26 49.34 
P7 40.50 60.37 31.45 37.50 66.67 33.85 40.67 36.80 43.80 
O1 55.17 41.25 52.40 22.92 60.83 56.85 44.33 37.50 46.90 
O2 48.45 58.33 51.58 41.67 38.75 42.15 54.68 22.92 44.56 
P8 54.67 60.66 40.82 60.42 64.58 49.98 56.15 35.42 52.09 
T8 55.87 59.17 41.66 50.00 58.33 40.77 59.56 25.00 48.80 
FC6 62.43 61.22 57.25 57.23 46.66 54.74 61.87 33.71 54.89 
F4 56.27 55.42 61.33 52.08 58.12 60.31 66.17 37.50 55.14 
F8 62.08 66.67 54.37 67.72 69.21 61.77 65.65 65.62 62.14 
AF4 71.25 80.42 72.58 78.33 72.53 74.83 73.47 78.75 75.27 
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Çizelge 5. GSY yöntemi uygulanan EEG kanallarına ait öznitelik verilerinin k-EYK algoritması ile sınıflandırılmasına ait doğruluk oranları. 

Kanallar Denek-1 Denek-2 Denek-3 Denek-4 Denek-5 Denek-6 Denek-7 Denek-8 Ort. (%) 

AF3 70.83 78.62 72.50 73.33 65.83 74.24 75.75 77.25 73.54 
F7 58.33 63.95 68.75 59.75 51.32 71.03 57.80 54.63 60.70 
F3 59.58 64.17 51.67 48.78 39.58 66.48 42.75 54.17 53.40 
FC5 50.00 60.33 37.50 60.85 37.50 59.25 52.75 47.92 50.76 
T7 56.25 52.45 33.33 40.80 56.25 49.33 53.17 63.25 50.60 
P7 50.16 58.58 54.17 38.40 43.75 41.75 50.95 52.08 48.48 
O1 35.42 51.25 70.83 60.12 31.25 51.65 44.90 52.92 46.92 
O2 27.08 44.24 47.92 51.60 39.58 49.33 37.65 42.20 42.75 
P8 33.33 52.33 52.08 44.98 41.67 38.22 58.33 56.50 47.42 
T8 31.25 49.60 56.25 48.95 39.58 40.73 39.40 54.25 46.97 
FC6 41.67 56.17 41.67 62.70 58.33 59.33 64.32 57.33 57.94 
F4 37.50 61.89 56.25 57.33 45.83 62.17 51.33 61.17 54.64 
F8 47.92 58.52 72.92 62.38 64.58 65.11 60.66 66.25 62.77 
AF4 76.33 73.00 79.58 72.10 77.92 66.27 77.42 72.08 74.34 

Çizelge 4 incelendiğinde, LDA algoritması için 74.77% ve 

75.27% doğruluk oranları ile AF3 ve AF4 kanallarının en 

yüksek doğruluk oranlarına sahip kanallar olduğu 

görülmektedir. Çizelge 5’e bakıldığında ise k-EYK 

algoritması için 73.54% ve 74.34% doğruluk oranları ile 

yine AF3 ve AF4 kanallarının en yüksek değerlere sahip 

olduğu görülmektedir. GSY yöntemi ile k-EYK ve LDA 

algoritmaları kullanılarak etkin kanal tespiti amacıyla 

yapılan sınıflandırmalarda AF3 ve AF4 kanallarının, 

doğruluk oranı en yüksek iki kanal olduğu tespit 

edilmiştir. ADD ve GSY yöntemleri kullanılarak k-EYK ve 

LDA makine öğrenme algoritmaları ile yapılan etkin 

kanal seçimine ait sınıflandırma doğruluk oranları Şekil 

6’da karşılaştırılmıştır.

 

Şekil 6. GSY ve ADD yöntemleri uygulanan EEG kanal verilerinin etkin kanal seçimi amacıyla LDA, k-EYK algoritmaları kullanılarak 

sınıflandırılmasına ait sonuçların karşılaştırılması.

Şekil 6 incelendiğinde, etkin kanal seçimi için yapılan 

sınıflandırmaların tamamında en yüksek doğruluk 

oranına sahip iki kanalın AF3 ve AF4 kanalları olduğu 

açıkça görülmektedir. Bu kanalların kafa tası üzerindeki 

yerleşimi Şekil 7’de gösterilmiştir. 

Kullanılan yaklaşımın içerdiği hareketli nesneler 

doğrudan göz hareketleri ile bağlantılı olduğundan 

dolayı tasarlanan sistem EOG tabanlı bir İMA sistemidir. 

Dolayısıyla, göz bölgesine en yakın olan AF3 ve AF4 

kanallarının etkin kanal seçiminde en yüksek doğruluk 

oranlarına sahip olması beklenen bir sonuçtur. Yapılan 

sınıflandırma işlemleri sonucunda, etkin olarak tespit 

edilen bu kanallara ait ham veriler çalışmanın ileri 

aşamalarında hareket yörüngelerini sınıflandırmak 

amacıyla kullanılmıştır.  

 

Şekil 7. Tespit edilen etkin kanalların (AF3, AF4) kafa tası 
üzerindeki konumları. 
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4.2. Hareketli uyaranların sınıflandırılması 

Çalışmada hareketli uyaranların sınıflandırılması için 

sadece etkin olarak tespit edilen kanallara (AF3 ve AF4)   

ait veriler kullanılmıştır. Bu kanallara ait ham veriler ilk 

olarak filtfilt komutu kullanılarak 1-45Hz aralığında 3. 

dereceden Butterworth filtre kullanılarak 

filtrelenmiştir. Filtre derecesi 1-15 aralığında deneme 

yanılma yolu ile belirlenmiştir. Filtrelenen verilere ADD 

yöntemi uygulanmıştır. ADD için db2 dalgacığı 

kullanılmış ve altı seviyeli bileşenlerine ayırma 

uygulanmıştır. Elde edilen alt bantlardan varyans, 

basıklık, çarpıklık, maksimum ve minimum öznitelikleri 

çıkartılmıştır. Çıkartılan öznitelik verileri Hold-out 

yöntemi kullanılarak %75 eğitim ve %25 test verisi 

olarak ayrılmıştır. Eğitim ve test verileri k-EYK ve LDA 

makine öğrenme algoritmaları ile sınıflandırılmıştır. 

Sınıflandırma işlemi 10 kez tekrarlanmış ve elde edilen 

doğruluk oranları ve BAH değerlerinin ortalaması 

alınmıştır. Her Hold-out yöntemi uygulanmadan önce 

veriler karıştırılarak, eğitim ve test verilerinin 

farklılaşması sağlanmıştır. ADD yöntemi uygulanmış 

verilerin k-EYK ve LDA algoritmaları ile 

sınıflandırılmasına ait doğruluk oranları, BAH, 

Hassasiyet, Özseçicilik, F1 skoru ve AUC performans 

metriklerine ait değerler Çizelge 6’da verilmiştir. Her 

sınıfa ait DO, BAH, Hassasiyet, Özseçicilik, F1 skoru ve 

AUC değerlerinin makro ortalaması hesaplanmıştır. 

Hesaplanan değerler, modelin tüm sınıflar üzerindeki 

genel başarımını göstermektedir. Çizelge de (Çizelge 6), 

Sınıf-1 “üçgen hareket” yörüngesini, Sınıf-2 “L hareket” 

yörüngesini, Sınıf-3 “yuvarlak hareket” yörüngesini ve 

Sınıf-4 ise “sağ-sol hareket” yörüngesini temsil 

etmektedir.

Çizelge 6.  ADD yöntemi uygulanmış etkin kanallara (AF3, AF4) ait verilerin LDA ve k-EYK makine öğrenme algoritmaları ile 
sınıflandırılmalarına ait DO, BAH, Hassasiyet, Özseçicilik, F1 skoru ve AUC değerleri. 

Sınıflandırıcı Sınıflar Denek1 Denek2 Denek3 Denek4 Denek5 Denek6 Denek7 Denek8 Ort. 

LDA 

Sınıf-1 94.17 100.0 96.67 95.83 96.67 99.17 93.33 100.0 96.98 

Sınıf-2 92.27 91.67 94.57 85.00 87.50 93.34 85.00 95.50 90.61 

Sınıf-3 86.67 90.00 92.00 87.50 90.83 93.34 93.33 92.50 90.77 

Sınıf-4 90.00 92.50 95.83 90.83 92.50 93.33 95.83 93.33 93.02 

DO (%) 90.77 93.54 94.76 89.78 91.88 94.79 91.87 95.33 92.84 

BAH (bit/dk) 28.19 31.04 32.40 27.24 29.29 32.44 29.28 33.07 30.36 

Hassasiyet 89.90 93.91 93.74 88.50 92.14 93.91 90.00 93.91 92.00 

Özseçicilik 90.77 93.54 94.76 89.78 91.88 94.79 91.87 95.33 92.84 

F1 skoru 90.33 93.72 94.24 89.13 92.00 94.34 90.92 94.61 92.41 

AUC 91.05 93.83 94.83 90.66 92.44 94.83 91.05 94.83 92.94 

k-EYK 

Sınıf-1 94.57 100.0 96.67 100.0 100.0 95.83 95.83 99.17 97.76 

Sınıf-2 88.77 93.33 95.00 96.67 91.67 93.33 93.33 92.50 93.08 

Sınıf-3 86.22 91.67 92.83 82.10 83.83 92.83 90.00 90.00 88.68 

Sınıf-4 91.67 92.50 86.67 83.83 92.83 90.83 87.50 87.50 89.17 

DO (%) 90.31 94.38 92.79 90.64 92.08 93.21 91.66 92.29 92.17 

BAH (bit/dk) 27.74 31.97 30.24 28.06 29.50 30.68 29.07 29.71 29.62 

Hassasiyet 90.76 95.00 91.63 91.88 92.72 92.04 90.24 92.41 92.08 

Özseçicilik 90.31 94.38 92.79 90.64 92.08 93.21 91.66 92.29 92.17 

F1 skoru 90.53 94.68 92.20 91.25 92.39 92.62 90.94 92.34 92.11 

AUC 90.05 94.83 92.44 91.44 92.44 92.42 91.05 92.44 92.14 

Çizelge 6 doğruluk oranı açısından değerlendirildiğinde, 

LDA algoritması 92.84% doğruluk oranı ile k-EYK 

algoritmasına (92.17%) kıyasla daha yüksek performans 

göstermiştir. Benzer şekilde BAH, LDA için ortalama 

30.36 bit/dk, k-EYK için ise 29.62 bit/dk olarak 

hesaplanmış ve bu sonuç LDA’nın kullanıcıya daha hızlı 

ve etkili bir iletişim sağlayabileceğini göstermiştir. 

Hassasiyet değerlerine bakıldığında her iki algoritma da 

benzer sonuçlar üretmiş olup, LDA 92.00, k-EYK ise 

92.08 ortalama hassasiyet sağlamıştır. Özseçicilik 

metriği k-EYK için 92.17, LDA için 92.84 olarak elde 

edilmiştir. F1 skoru bakımından LDA algoritması 92.41 

ile, k-EYK’nin 92.11’lik değerine göre bir miktar daha 

yüksek performans sergilemiştir. Bununla birlikte, AUC 

değerleri incelendiğinde LDA algoritmasının 92.94 ile k-

EYK’ye (92.14) üstünlük sağladığı görülmektedir. Bu 

sonuçlar doğrultusunda, her iki algoritma da yüksek 

sınıflandırma başarısı göstermiş olmakla birlikte, LDA 

algoritmasının genel doğruluk, bilgi aktarım hızı ve AUC 

gibi kritik metriklerde k-EYK'ye kıyasla daha tutarlı ve 

üstün bir performans sergilediği söylenebilir. 

ADD yöntemi ile sınıflandırma işlemleri 

tamamlandıktan sonra etkin kanallara ait filtrelenen 

ham verilere GSY yöntemi uygulanmıştır.  GSY 

analizinde kullanılan Hanning pencereleme 

parametreleri, 256Hz ile örneklenmiş 3 saniyelik 

768x14 boyutundaki sinyal matrisinde, pencere 

uzunluğu 650 örnek, örtüşme miktarı ise 649 örnek 
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olarak seçilmiştir. Seçilen değerler, 450-750 aralığında 

değerlerin performans açısından karşılaştırıldığı bir 

deneme ve yanılma süreci sonucunda belirlenmiştir. 

Delta, Teta, Alfa, Beta ve Gama dalgaları tespit edilerek 

dalga bantlarına ait verilerden varyans, basıklık, 

çarpıklık, maksimum ve minimum öznitelikleri 

çıkartılmıştır. Çıkartılan öznitelikler %75 eğitim ve %25 

test verisi olarak bölünmüştür. k-EYK algoritması için k 

değeri 1-3-5-7-9 tek sayı değerleri için denenmiş ve en 

yüksek sınıflandırma başarımı sağlayan 5 değeri  

optimum k değeri olarak seçilmiştir. Eğitim ve test 

verileri k-EYK ve LDA makine öğrenme algoritmaları ile 

sınıflandırılmıştır. Sınıflandırma işlemi 10 kez 

tekrarlanmış ve ortalama doğruluk oranları ile BAH 

değerleri hesaplanmıştır. Her sınıflandırma için Hold-

out yöntemi öncesinde veriler harmanlanmıştır.  GSY 

yöntemi kullanılmış verilerin k-EYK ve LDA algoritmaları 

ile sınıflandırılmasına ait DO, BAH, Hassasiyet, 

Özseçicilik, F1 skoru ve AUC değerleri Çizelge 7’de 

verilmiştir.  Her sınıfa ait DO, BAH, Hassasiyet, 

Özseçicilik, F1 skoru ve AUC değerlerinin makro 

ortalaması hesaplanmıştır. Hesaplanan değerler, 

modelin tüm sınıflar üzerindeki genel başarımını 

göstermektedir. Verilen sınıfların doğruluk oranlarına 

bağlı olarak ortalama doğruluk oranları ve BAH 

değerleri hesaplanmıştır.  Çizelge de (Çizelge 7), Sınıf-1 

“üçgen hareket” yörüngesini, Sınıf-2 “L hareket” 

yörüngesini, Sınıf-3 “yuvarlak hareket” yörüngesini ve 

Sınıf-4 ise “sağ-sol hareket” yörüngesini temsil 

etmektedir. 

Çizelge 7. GSY yöntemi uygulanmış etkin kanallara (AF3, AF4) ait verilerin LDA ve k-EYK makine öğrenme algoritmaları ile 
sınıflandırılmalarına ait DO, BAH, Hassasiyet, Özseçicilik, F1 skoru ve AUC değerleri. 

Sınıflandırıcı Sınıflar Denek1 Denek2 Denek3 Denek4 Denek5 Denek6 Denek7 Denek8 Ort. 

LDA 

Sınıf-1 100.0 99.17 100.0 95.83 100.0 100.0 99.17 100.0 99.27 

Sınıf-2 95.50 94.17 91.67 93.33 88.07 92.34 97.67 93.34 93.26 

Sınıf-3 89.50 92.27 93.33 90.00 88.00 90.00 90.00 89.00 89.01 

Sınıf-4 95.00 89.50 94.79 92.27 92.27 91.67 92.50 93.33 92.67 

DO (%) 95.00 93.78 94.95 92.86 92.08 93.50 94.84 93.92 93.86 

BAH (bit/dk) 32.68 31.30 32.62 30.31 29.50 30.99 32.50 31.46 31.42 

Hassasiyet 93.97 94.02 94.02 91.99 94.09 93.94 96.10 94.19 94.29 

Özseçicilik 95.00 93.78 94.95 92.86 92.08 93.50 94.84 93.92 93.86 

F1 skoru 94.48 93.89 94.48 92.42 93.07 93.71 95.46 94.05 93.94 

AUC 94.83 94.83 95.23 93.44 93.83 93.83 94.22 94.83 94.38 

k-EYK 

Sınıf-1 100.00 95.83 97.76 96.67 100.00 100.00 100.00 99.17 98.68 

Sınıf-2 95.00 95.67 92.83 96.67 95.83 91.67 95.50 93.33 94.56 

Sınıf-3 80.00 93.33 92.08 89.50 89.17 83.33 93.33 90.00 88.84 

Sınıf-4 85.00 86.67 90.83 90.00 86.67 90.00 92.86 85.00 88.38 

DO (%) 90.00 92.88 93.38 93.21 92.92 91.25 95.42 91.88 92.62 

BAH (bit/dk) 27.45 30.33 30.86 30.68 30.37 28.66 33.18 29.29 30.10 

Hassasiyet 90.12 89.99 94.08 96.08 91.88 92.10 94.17 92.24 92.83 

Özseçicilik 90.00 92.88 93.38 93.21 92.92 91.25 95.42 91.88 92.62 

F1 skoru 90.06 91.41 93.72 94.62 92.40 91.68 94.80 92.05 92.72 

AUC 90.46 91.26 94.83 95.22 93.44 92.44 95.43 92.44 93.19 

 

Çizelge 7’ye bakıldığında, LDA algoritması 93.86% 

doğruluk oranı ile 92.62% doğruluk oranına sahip k-EYK 

algoritmasına kıyasla daha yüksek bir sınıflandırma 

performansı sergilemiştir. BAH değeri açısından 

incelendiğinde ise LDA algoritması 31.42 bit/dk ile k-EYK 

algoritmasından (30.10 bit/dk) daha hızlı bir veri 

aktarım hızına ulaşmıştır. Hassasiyet metriği 

incelendiğinde, LDA algoritması 94.29% ortalama değer 

ile k-EYK algoritmasının 92.83% değerine üstünlük 

sağlamıştır. Benzer şekilde, ortalama Özseçicilik değeri 

LDA için 93.86%, k-EYK için ise 92.62% olarak elde 

edilmiştir. F1 skoru açısından da LDA algoritması 

93.94% ile, k-EYK’nin 92.72% ortalamasına kıyasla daha 

yüksek bir başarı sergilemiştir. Ayrıca, sınıflar arası 

ayrım gücünü yansıtan AUC metriği 

değerlendirildiğinde, LDA 94.38% ortalama AUC değeri 

ile k-EYK algoritmasından (93.19%) daha başarılı 

sonuçlar ortaya koymuştur. 

5. Sonuçlar 

Bu çalışmada; resim, ışık vb. görsel uyaranlar 

kullanılarak beyinde elektriksel potansiyel meydana 

getiren DDGUP ve P300 gibi görsel uyaran tabanlı BBA 

sistemlerinin kullanıcı göz sağlığı üzerindeki negatif 

etkisini azaltmak için hareketli uyaranlar yaklaşımı 

önerilmiştir. Önerilen yaklaşım, farklı frekans 

değerlerinde titreşen görsel uyaranlar yerine farklı 

yörüngelere sahip hareketli cisimler kullanmaktadır. 

Hareketli cisimler denekler tarafından göz hareketleri 

ile takip edildiğinde sistem tarafından veri kaydı yapılır 

ve çıktı komutu üretilir. Böylece sistem kullanıcısı 

herhangi bir görsel uyarana maruz kalmamış olur. 

Önerilen yaklaşım, sadece göz hareketi odaklı olması 
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sebebiyle göz hareketlerinin meydana getirdiği EOG 

artefaktları ile doğrudan alakalıdır. Fakat çalışmada 

gözün direkt çevresine konumlanmış elektrotlara sahip 

bir EOG cihazı yerine nispeten daha konforlu olan 

Emotiv Epoc X EEG cihazı kullanılmıştır. Kaynak sinyal 

olarak, EEG cihazının göz bölgesine yakın kanallarına ait 

EEG sinyallerinde meydana gelen EOG artefaktları 

kullanılmıştır. EEG cihazının tüm kanalları içerisinden en 

çok EOG artefaktının meydana geldiği kanallar makine 

öğrenme algoritmaları ile tespit edilmiştir.  

Çalışmada, iki farklı sınıflandırma aşaması 

gerçekleştirilmiştir. Birinci sınıflandırma aşamasında, 

EEG cihazına ait tüm kanallar içerisinde etkin kanal 

seçimi yapılmıştır. Kaydedilen ham verilere ön işleme 

aşamaları uygulanmış ve işlenen verilere GSY ve ADD 

yöntemleri uygulanmıştır. Her iki yöntem içinde 

varyans özniteliği çıkartılmış ve öznitelik verileri LDA ve 

k-EYK algoritmaları ile sınıflandırılmıştır. GSY yöntemi 

kullanılarak LDA algoritması ile sırasıyla 74.77%, 75.27% 

en yüksek doğruluk oranları ve k-EYK algoritması için ise 

73.54%, 74.34% en yüksek doğruluk oranları AF3 ve AF4 

kanalları ile elde edilmiştir. ADD yöntemi için LDA 

algoritması için en yüksek 72.55%, 70.50% doğruluk 

oranları ve k-EYK için ise 69.20%, 71.82% doğruluk 

oranları AF3 ve AF4 kanalları ile elde edilmiştir.  

İkinci sınıflandırma aşamasında, tespit edilen etkin 

kanallara (AF3 ve AF4) ait ham veriler hareket 

yörüngelerinin sınıflandırılması için kullanılmıştır. İlk 

olarak kanallara ait ham verilere kesme ve filtreleme 

işlemleri gerçekleştirilmiştir. Ön işleme yapılan verilere 

GSY ve ADD yöntemleri uygulanmıştır. Her yöntem için 

varyans, basıklık, çarpıklık, maksimum ve minimum 

öznitelikleri çıkartılmıştır. Çıkartılan özniteliklere ait 

veriler LDA ve k-EYK algoritmaları ile sınıflandırılmıştır. 

GSY yöntemi için LDA ve k-EYK algoritmaları ile sırasıyla 

93.86%, 92.62% DO, 31.42 (bit/dk), 30.10 (bit/dk) BAH, 

94.29%, 92.83% hassasiyet, 93.86%, 92.62% Özseçicilik, 

93.94%, 92.72% F1 skoru ve 94.38%, 93.19% AUC 

değerleri hesaplanmıştır. ADD yöntemi ile ise LDA ve k-

EYK algoritmaları için sırasıyla 92.84%, 92.17% DO, 

30.36 (bit/dk), 29.62 (bit/dk) BAH, 92.00%, 92.08% 

hassasiyet, 91.66%, 91.40% Özseçicilik, 92.41%, 92.11% 

F1 skoru ve 92.94%, 92.14% AUC değerleri elde 

edilmiştir. Her iki yöntem ile LDA ve k-EYK algoritmaları 

kullanılarak elde edilen AF3 ve AF4 kanallarına (birinci 

sınıflandırma aşaması) ve hareket yörüngelerinin 

sınıflandırılmasına (ikinci sınıflandırma aşaması) ait 

doğruluk oranları ve BAH değerleri Şekil 8’de 

karşılaştırılmıştır.

 
Şekil 8. ADD ve GSY yöntemleri uygulanmış verilerden LDA ve k-EYK algoritmaları kullanılarak AF3 ve AF4 kanalları için elde edilen 

doğruluk oranlarının ve yörüngelerin sınıflandırıldığı ikinci sınıflandırma aşamasına ait DO ve BAH değerlerinin karşılaştırılması 

 

Şekil 8 incelendiğinde, AF3 ve AF4 kanalları için GSY 

yöntemi uygulanan verilerin LDA makine öğrenme 

algoritması ile en yüksek sonuçları verildiği 

görülmektedir. Birinci sınıflandırma aşaması için AF3 ve 

AF4 kanallarının çalışma için EOG artefakt seviyesi en 

yüksek kanallar olduğu ve GSY yönteminin LDA 

algoritması ile en iyi sonucu verdiği görülmüştür. Yine 

Şekil 8 incelendiğinde hareket yörüngelerinin 

sınıflandırıldığı ikinci sınıflandırma aşamasında 93.86% 

DO ve 31.42 (bit/dk) BAH değeri ile en yüksek sonucu 

GSY yönteminin LDA makine öğrenme algoritması ile 

verdiği görülmektedir. ADD yöntemi ise LDA algoritması 
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ile 92.84% DO ve 30.36 (bit/dk) BAH değeri ile GSY 

yöntemine yakın sonuçlar vermiştir. GSY yöntemi ile k-

EYK algoritması için 92.62% DO elde edilirken ADD 

yöntemi ile 92.17% DO elde edilmiştir. Mevcut çalışma 

için GSY yönteminin ADD yönteminden daha yüksek 

sonuçlar verdiği ve LDA algoritmasının performansının 

k-EYK algoritmasından daha yüksek olduğu 

görülmüştür. 

Yapılan çalışmada, elde edilen sonuçlar sistemin 

çevrimdışı performansına ait değerlerdir. Çevrimdışı 

şekilde test edilen sistemlere oranla çevrimiçi olarak 

test edilen sistemlerden elde edilen değerler gerçeğe 

daha yakındır. Çevrimiçi olarak elde sistem performans 

parametreleri çevrimdışı elde edilen parametrelere 

göre daha düşük olsa da sistemin gerçek davranışına en 

yakın değerlerdir. Dolayısıyla geliştirilen sistemin 

gerçek zamanlı olarak test edilmesi elzemdir. Ayrıca 

deneylerin gerçekleştirildiği denek sayısının yüksek 

olması sistemin gerçek performansına en yakın 

sonuçları elde etmek için gereklidir. Çalışmada 

kullanılan denek sayısı (8) artırılarak sistem daha kararlı 

hale getirilebilir. Tasarlanan sistem göz hareketi tabanlı 

bir sistem olması dolasıyla, kullanıcı tarafından istemsiz 

şekilde yapılabilecek göz hareketlerine karşı 

savunmasızdır. Sistemi gerekli durumlarda devreye alıp, 

istenilmeyen durumlarda devre dışı bırakabilecek, 

sistem için emniyet valfi görevi görebilecek bir karar 

mekanizmasının geliştirilmesi gerekmektedir. Ayrıca 

sistemde kullanılan EEG cihazının uzun süreli 

kullanımlarda elektrot temas noktalarında kullanıcılara 

acı hissi verdiği görülmüştür. Deneyler sonunda, cihazın 

konfor açısından ayrıntılı şekilde değerlendirilmesi 

gerekmektedir. 

6. Tartışma 

Yapılan çalışmada görsel uyaran tabanlı BBA 

sistemlerinde bulunan titreşen ışıkların, kullanıcı göz 

sağlığı üzerindeki olumsuz etkisini minimize etmeyi 

amaçlayan, sistemin daha uzun süreli kullanımına 

olanak sağlamayı hedefleyen yenilikçi yaklaşıma sahip 

bir EOG tabanlı İMA sistemi önerilmiştir. Sistemde 

hareketli nesneler yaklaşımı ile kullanıcıya göz sağlığı ve 

kullanım kolaylığı açısından daha avantajlı, kontrolü 

kolay ve konforlu bir sistem sunmak amaçlanmıştır. 

Çalışmada GSY yöntemi uygulanan verilerden LDA 

algoritması ile en yüksek 93.86% DO ve 31.42 (bit/dk) 

BAH değerleri elde edilmiştir. Çalışmanın alanda yapılan 

EOG tabanlı güncel çalışmalar ile karşılaştırılması 

Çizelge 8’de verilmiştir. 

Çizelge 8’e bakıldığında yapılan çalışmaların birçoğunun 

(Deng vd. 2025, Hernández Pérez vd. 2023, López vd. 

2023, Mai vd. 2024) görüşü engelleyen, kullanıcının 

yüzüne rahatsız edici elektrotların yapıştırılmasını 

gerektiren konfor açısından yetersiz EOG cihazları ile 

gerçekleştirildiği görülmektedir. Çalışmaların çok 

azında (Glavas vd. 2024, Kaya ve Saritas, 2024) 

tasarlanan sistemlerde kullanılan veri kayıt cihazlarının 

konfor ve kullanılabilirliğinin önemsendiği 

görülmektedir. Yapılan çalışmada Emotiv Epoc EEG 

cihazı seçilerek, kullanılabilirlik, konfor ve maliyet 

açısından uygun bir cihaz kullanımı hedeflenmiştir. Yine 

yapılan çalışmalar incelendiğinde, geliştirilen 

sistemlerin bazılarında (Efe ve Ozsen 2023, Hu vd. 2024, 

Mai vd. 2024) EOG ve EEG sinyallerinin birlikte 

değerlendirildiği görülmektedir. Bu durum sistem 

performansını arttırmak için sıkça tercih edilen bir 

yöntem olmasına rağmen hibrit sistemler taşınabilirlik 

açısından ve donanım karmaşıklığı açısından sınırlayıcı 

olabilmektedir. Yine Çizelge 8 incelendiğinde; 

çalışmalarda kullanılan denek sayılarının ortalamasının 

11,7 olduğu görülmektedir. Yapılan çalışmada 8 

katılımcıdan veri toplanmıştır. Makine öğrenme temelli 

uygulamalarda örneklem büyüklüğünün sınırlılığı, 

sonuçların genellenebilirliği açısından önemli bir 

sınırlılıktır. Çalışmada geliştirilen sistemin daha fazla 

katılımcı ile test edilmesi, elde edilen sonuçların 

doğruluğu ve kararlılığı açısından gereklidir.  

Veri kaydı için yapılan deneyler herhangi bir problem 

yaşanmaksızın denekler tarafından rahatlıkla 

tamamlanmıştır. Fakat literatürde yapılan çalışmalarda 

(Brennan vd. 2015), görsel uyaranların kullanıcılar 

üzerindeki olumsuz etkileri nedeniyle deneklerin 

deneysel aşamaları tamamlayamadıkları görülmüştür. 

Bu durum önerilen yaklaşımın sistem kullanıcılarının 

görsel uyaranlardan arındırılması amacını destekler 

niteliktedir. İMA ve BBA sistemlerinde araştırmacılar, 

mümkün olan en düşük kanal sayısı ile yüksek 

performanslı sistemler geliştirmeye odaklanmıştır 

(Avcu vd. 2019, Shah vd. 2017). Kullanılan kanal sayısını 

azaltılması kullanıcı konforu, taşınabilirlik ve sistem 

maliyetini azaltma açısından önem kazanmaktadır. Bazı 

çalışmalarda ise (Kabir vd. 2023, Sarhan vd. 2024), 

araştırmacıların yüksek sistem performansı sağlamak 

için sıklıkla kanal sayısını arttırdıkları görülmüştür. Buna 

karşılık, mevcut çalışma Emotiv Epoc X EEG cihazının 

yalnızca F7 ve F8 kanallarını kullanmaktadır. Bu durum 

çalışmayı kullanıcı konforu açısından ön plana 

çıkartmaktadır. Çalışmanın odaklandığı görsel 

uyaranların olumsuz etkisini yok etmek üzerine yapılan 

benzer çalışmalara bakıldığında ise (Kondo ve Tanaka 

2023, Melek vd. 2020) veri kayıt sürelerinin çok yüksek 

olduğu veya doğruluk oranlarının nispeten düşük 

olduğu görülmektedir.  
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Çizelge 8. Alanda yapılan EOG tabanlı çalışmalar. 

Çalışma 
Veri 
kayıt 
cihazı 

Denek 
sayısı 

Kullanılan 
sinyal türü 

Öznitelik 
çıkartma 
yöntemi 

Kullanılan 
Öznitelikler 

Sınıflandırma 
Yöntemi 

Doğruluk 
Oranı (%) 

Bilgi 
Aktarım 

Hızı 
(bit/dk) 

Hassasiyet (H), 
Özseçicilik (Ö), 
F1 skoru (F1), 

AUC (A) 

(Deng vd. 
2025) 

EOG 
cihazı 

6 EOG- IOG YOLOV3 
Genlik, 
enerji 

Eşik tabanlı 
sınıflandırma 

97.60 62.65 
97.1 (Ö),  
0.94 (F1) 

(Mifsud vd. 
2024) 

- 10 EOG - 
Yörünge yön 

açıları 
- 83.73 - - 

(Glavas vd. 
2024) 

Emotiv 
Epoc 

28 EOG 
Ortak 

Mekansal 
Desen 

- DVM 86.90 - - 

(Efe ve 
Ozsen 2023) 

- 20 EOG- EEG 
Ayrık 

Kosinüs 
Dönüşümü 

- 
Hibrit Sinir Ağı 

(HSA) 
87.11 - 

79.74 (H), 96.47 
(Ö), 79.83 (F1) 

(J. Zhang vd. 
2023) 

EOG 
cihazı 

10 EOG KKA 
Genlik ve 

zaman farkı 
Eşik tabanlı 

sınıflandırma 
94.75 99.72 - 

(Hernández 
Pérez vd. 
2023) 

EOG 
cihazı 

- EOG 
Dalgacık 

Dönüşümü 
(DD) 

Varyans, 
güç, 

medyan, 
kovaryans 

k-EYK,  
DVM, 

KA 

69.40, 
76.90, 
60.50 

- 

50.0, 50.0, 
50.0(H), 

50.0, 50.0, 
43.0(Ö) 

(Kaya ve 
Saritas 
2024) 

Emotiv 
Epoc 

5 EOG 

GSY, 
Varyasyonel 

Mod 
Ayrıştırması 

Çarpıklık, 
basılıklık, 
entropi, 
ortalama 

Topluluk 
Altuzay 

Diskriminant  

71.84, 
 

- - 

(Zhao 2025) - 12 EOG KKA - DVM 90.00 - - 

(López vd. 
2023) 

EOG 
cihazı 

9 EOG - 
Varyans, 
genlik, 

ortalama 

Statik 
Eşikleme(SE), 
DVM, k-EYK 

88.21, 
76.34, 
76,45 

- 
91.29, 
90.01, 

90.05 (Ö) 

(Jiang vd. 
2024) 

EEG 
bant 

15 EOG GSY Güç, enerji 
Eşik tabanlı 

sınıflandırma 
87.00 67.5 - 

(Mai vd. 
2024) 

EOG 
cihazı 

10 EOG-EEG 
Kakonik 

korelasyon 
analiz (KKA) 

- - 81.67 - - 

(Hu vd. 
2024) 

- 10 EOG- EEG - Türev analizi DVM 94.03 31.42 - 

Kendi 
çalışmamız 

Emotiv 
Epoc 

8 EOG ADD, GSY 

Varyans, 
basıklık, 
çarpıklık, 

maksimum, 
minimum 

LDA, k-EYK 
93.86, 
92.62  

31.42, 
30.10 

94.29, 92.83 
(H), 93.86, 
92.62 (Ö), 

93.94, 92.72 
(F1), 94.38, 
93.19 (A) 

Yine Çizelge 8 incelendiğinde (Glavas vd. 2024, Hernández 

Pérez vd. 2023, Jiang vd. 2024, Mifsud vd. 2024, Zhao, 

2025) mevcut çalışmada elde edilen sonuçların kabul 

edilebilir aralıkta olduğu, önerilen İMA modelinin iyi bir 

performans sergilediği ve görsel uyaran tabanlı sistemler 

için iyi bir alternatif oluşturduğu görülmektedir. 

Çalışmada kullanılan metot ve yöntemlerin, odaklanılan 

probleme uygun olarak seçilmesi hedeflenmiştir. 

Literatürde, hareketli görsel uyaranlara odaklanan 

bireylerde oluşan EOG artefaktlarının, özellikle düşük 

frekans bileşenlerinde yoğunlaştığı ve frekans alanında 

daha belirgin ayrım sunduğu belirtilmiştir (Fatourechi vd. 

2007, Sane ve Chambers 2013) GSY yöntemi, sinyalin 

frekans dağılımını etkili şekilde temsil ettiği için tercih 

edilmiştir. Özellikle hareketli top izleme sırasında ortaya 

çıkan düşük frekanslı EOG artefaktlarının frekans 

özelliklerini doğru bir şekilde yansıtarak, frekans-zaman 

çözümlemesi sunan ADD yönteminden kısmen daha 

yüksek sınıflandırma başarımı sağlamıştır. Ayrıca LDA 

algoritmasının, öznitelik uzayındaki verilerin lineer 

ayrılabilirliğini iyi değerlendirebilmesi sayesinde, örnek 

yoğunluğuna dayalı bir algoritma olan k-EYK algoritmasına 

göre daha yüksek doğruluk oranlarına ulaştığı 

gözlemlenmiştir. Bu sonuç, çalışmada kullanılmış ve 

literatürde de yaygın olarak kullanılan (Kaya ve Saritas 

2024) varyans, basıklık, çarpıklık, maksimum ve minimum 

değer gibi özniteliklerin lineer ayrılabilir bir yapıya sahip 

olduğunu desteklemektedir. Ayrıca, başarı özellikle 

hareketli top yörüngelerinin neden olduğu belirgin EOG 

sinyallerinde sağlanmıştır. AF3 ve AF4 frontal bölge 

elektrotlarının etkin kanal olarak seçilmesi, göz 

hareketlerine duyarlı veri elde edilmesini mümkün kılmış 

ve başarıyı arttırmıştır.  

Önerilen EOG tabanlı İMA sisteminin geliştirilmesi 

gereken noktalar bulunmaktadır. Örneğin yaklaşımın 

ekranda tek bir yörünge görev sırası ile deneklere 

gösterilmiş olması sistemin çevrimdışı performansını 

artırırken, çevrimiçi kullanılabilirliğini düşürtebilir. 

Sistemin tek ekran ile gerçekleştirilmesi gerçeğe 

uyarlanabilirliği açısından elzemdir. Ayrıca çalışmada 

tasarlanan sistem çevrimdışı ortamda test edilmiştir. Bu 

durum, sistemin gerçek zamanlı kullanım potansiyeli 
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üzerinde ciddi bir sınırlılık oluşturmaktadır. Gelecekte 

yapılacak çalışmalarda sistemin çevrimiçi testlerinin 

yapılması gerçeğe uyarlanabilirlik açısından gereklidir. 

Ayrıca yaklaşımda belirlenen hareket yörüngelerine 

benzer göz hareketleri, kullanıcı tarafından sistemi 

devreye geçirme amacı taşımadan istem dışı şekilde 

yapılabilir. Sistem, bu istemsiz göz hareketini algılayarak 

devreye girebilir. Bu durum sistemin performansını 

düşürterek kullanılabilirliğini sınırlandırır. Kullanıcının 

yaptığı göz hareketlerinin sistemi devreye geçirmek için 

yapılıp yapılmadığına karar veren bir algoritmanın mevcut 

çalışmaya entegre edilmesi gereklidir. Bu husus sistemin 

kullanılabilirliği ve performansı açısından önem arz 

etmektedir. Bir diğer önemli konu ise geliştirilen 

sistemlerde kullanılan veri kayıt cihazlarının konforu ve 

kullanılabilirliğidir. EOG cihazlarına ait elektrotlar 

doğrudan kullanıcının yüzüne konumlandırıldığı için 

kullanımı zordur ve görüşü etkileyebilir. Buna karşılık 

tasarlanan sistemde kullanılan Emotiv EPOC X EEG 

cihazının kolay uygulanabilir olması, görüşü etkilememesi, 

kullanılan salinli suyun basit şekilde temizlenebilir olması 

ve mobil olması gibi avantajları öne çıkmaktadır. Fakat 

kullanılan EEG cihazının deneyler sırasında bazı 

dezavantajları olduğu fark edilmiştir. Örneğin cihazın 

başlık ölçülerine göre ayarlanabilir olmaması deneklerden 

alınan verilerin bölgesel olarak farklılık göstermesine 

sebep olmaktadır. Kafatası boyutları başlık ölçülerine 

uygun deneklerde elektrotlar tam olarak istenilen 

bölgede konumlanırken, kafatası ölçüleri küçük veya 

büyük olan deneklerde ise elektrotların tam olarak 

istenilen bölgelerde konumlanamadığı görülmüştür. Bu 

durum kaydedilen sinyallerin kişiden kişiye farklılık 

göstermesine sebep olmaktadır. Ayrıca cihazın uzun süreli 

kullanımlar da kullanıcının başında basınca bağlı olarak acı 

hissi verdiği görülmüştür. Geliştirilen sistemlerde 

kullanıcıların veri kayıt cihazlarını gün boyu giymesi 

gerektiği düşünüldüğünde bu cihazların uzun süreli 

kullanımlar için uygunluğunun ayrıntılı olarak incelenmesi 

gerekmektedir. Gelecekte, sistemin geliştirilebilmesi 

amacıyla bahsedilen dezavantajların çözümüne yönelik 

çalışmalar yapılabilir. 
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