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Abstract 

The aim of this study is to calculate sample size and power for several varieties of general full factorial 

designs, in order to help researchers to avoid the waste of resources by collecting surplus data before 

designing experiments. It was found out that the calculations were significantly affected by many factors in 

full factorial experimental designs, such as number of levels for each factor, number of replications, 

maximum difference between main effect means and standard deviation.  
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Öz 

 
Genel tam faktöriyel deney tasarımlarda örneklem büyüklüğü ve güç tahmini  

 
Bu çalışmanın amacı, farklı boyutlardaki çok sayıda genel  tam faktöriyel tasarımlar için örneklem 

büyüklüğü ve güç hesaplamalarıni yaparak, deney tasarımını kurmadan önce gereğinden fazla veri 

toplamanın neden olduğu kaynak israfını önlemektir. Bu hesaplamaların faktörlerin düzey sayısı, analizde 

kullanılan modeldeki ana etkilerin ortalamaları ve standart sapma gibi birçok faktöre dayalı olduğu 

görülmüştür. 

Anahtar sözcükler: tam faktöriyel tasarım, istatistiksel güç, örneklem büyüklüğü, testin gücü 

 

1. Introduction 

Full factorial design approaches are the most commonly utilized ways to carry out experiments with two 

or more factors. These designs allow researcher workers to analyze responses (i.e. observations) measured 

at all combinations of the experimental factor levels. In many applied research work, full factorial designs 

are used to answer questions such as: i) which factors have the most influence on the response, and ii) are 
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there any interactions between two or more factors that influence the response? For instance, in 

educational studies, the researchers often use factorial designs to assess educational methods taking into 

account the influence of socio-economic, demographic or related factors.  Lodico et al.[1] analyzed the 

reaction problem of boys and girls to computer use, and whether this reaction can influence their math 

achievement by using a  factorial design. Hereby, educational researchers are interested in 

determining the effectiveness of certain techniques in classroom teaching. Similarly, by examining the 

multiple variables we get more accurate results of other real life examples.  

The simplest type of factorial designs involves only two factors each including two levels, which is 

usually called a  factorial design. In  factorial designs, a total of  combinations 

exist and thus, four runs are required for an experiment without replicate. Replicate is the number of times 

a treatment combination is run. A general full factorial design is used when any experimental factor has 

more than two levels with or without replicate. For general full factorial designs, ANOVA shows which 

factors are significant and regression analysis provides the coefficients for the prediction equations.  

If the number of factors, level of factors and replicate of the experiment are too high, the most costly 

experimental resources are encountered. The fact that the sample size grows in the number of factors and 

levels of factors makes full factorial designs too expensive to run for the purpose of experiment. For this 

reason, after defining the research question and relevant hypotheses for the experimental design to be 

attempted, how many numbers of factors, levels of factors and replication of each combination will be 

included, namely estimation of the sample size is an important consideration in designing the experiment. 

Browner et. al. [2] suggested some strategies to minimize the sample size through power analysis. 

Statistical power calculation is one of the methods in sample size estimation, which can be estimated 

before collecting necessary data set for the study. In factorial designs, power is generally used to ensure 

that the hypothesis test will detect significant effects (or differences). However, in a full factorial 

designed experiment, there are many factors affecting power calculation: such as number of levels, 

standard deviation of responses, number of replicates and maximum difference between main effect 

means. 

In this paper, we examine sample size and power calculations for several varieties of general full factorial 

designed experiments with different numbers of levels of factors and replicates under different values of 

maximum difference between main effect means. Thus we indicate the calculation of sample size through 

power analysis in order to avoid unnecessary levels of factors and number of replications that might cause 

waste of time and resources in the experimental designs, and hence to analyze responses out of as few 

runs as possible in several full factorial designs.   

2. General factorial designs 

Factorial designs have been widely used in manufacturing industry studies as a tool of maximizing output 

(response) for the given input factors [3-5]. The  simplest full factorial design may be extended to 

the 2-factor factorial design with levels a for factor A, levels b for factor B and n replicates, or general full 

factorial designs with k-factors including 2 or more than 2 levels and n replicates. For general full 

factorial design with k-factors, each factor with any number of levels, the model is sum of  means of all 

observations, k main effects,  two-factor interactions,  three-factor interactions, …etc., until k-

factor interaction and error term (if n> 1).  

The observations in a factorial experiment with three factors A, B, C at levels a, b, c and n replicates are 

shown in Table 1. In this kind of experiment, total observations will be . They can be 

described by a model in Eq. (1) [6]: 

                                    (1) 
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                                     i=  ;  ;  ;  

where,  is a response in l’th replicate with factors A, B, C at levels i, j, k, respectively;  is the overall 

mean effect; ,  and  are main effects of factors A,B, C at levels i, j, k, respectively;  is the effect 

of the interaction between
 

 and ,  is the effect of the interaction between  and ;  is the 

effect of the interaction between  and ; 
 
is the effect of the three-factor interaction between , 

  and  and finally  is a random error component. 

Table 1. Representation of three-factor factorial designs with n replicates 

 

 

 

 

 

 

 

 

In a factorial experiment with factor A at a levels and factor B at b levels, the fixed-effects model is also 

described as 

,                                       (2) 

where  is a response in n replicate with factors A and B at levels i and j respectively;  is the overall 

mean effect;  and  are main effects of factors A and B at levels i and j respectively;  is the effect 

of the interaction between
 

 and  and  represents the error term.  

The two-way analysis of variance (two-way ANOVA) is the most popular layout in the design of 

experiments with two factors. When the  factorial experiment is conducted with an equal number of 

replicate per factor-level combination, computational formula and analysis summary for two-way 

ANOVA are given in Table 2. 

Table 2. The general case for two-way ANOVA 

Source of 

variation 

Sum of squares  

(SS) 

Degrees of 

freedom 

(df) 

Mean square 

(MS) 
F-statistic 

Rows (A)  
2

A .. ...

=1

SS =
a

i

i

nb Y Y  a-1 A ASS /df  
A ErrorMS MS  

Columns (B)  
2

B . . ...

1

SS =
b

j

j

n a Y Y


  b-1 B BSS /df  
B ErrorMS MS  

  Factor B 

  1 2  b 

  Factor C Factor C  Factor C 

   1 2  c 1 2  c  1 2  c 

  
  

  
  

  
  

  
 F

a
ct

o
r 

A
 

1 

Y1111 

Y1112 

… 

Y111n 

Y1121 

Y1122 

… 

Y112n 

 

Y11c1 

Y11c2 

… 

Y11cn 

Y1211 

Y1212 

… 

Y121n 

Y1221 

Y1222 

… 

Y122n 

 

Y12c1 

Y12c2 

… 

Y12cn 

 

Y1b11 

Y1b12 

… 

Y1b1n 

Y1b21 

Y1b22 

… 

Y1b2n 

 

Y1bc1 

Y1bc2 

… 

Y1bcn 

 

a 

Ya111 

Ya112 

… 

Ya11n 

Ya121 

Ya122 

… 

Ya12n 

 

Ya1c1 

Ya1c2 

… 

Ya1cn 

Ya211 

Ya212 

… 

Ya21n 

Ya221 

Ya222 

… 

Ya22n 

 

Ya2c1 

Ya2c2 

… 

Ya2cn 

 

Yab11 

Yab12 

… 

Yab1n 

Yab11 

Yab12 

… 

Yab1n 

 

Yabc1 

Yabc2 

… 

Yabcn 
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Interaction (AB)  
2

AB . .. . .

=1 =1

SS = ...
b a

ij i j

j i

n Y Y Y Y    (a-1)(b-1) AB ABSS /df  
AB ErrorMS MS  

Error  
2

Error .

=1 =1 =1

SS =
n a b

ijk ij

k i j

Y Y  ab(n-1) Error ErrorSS /df   

Total  
2

Total ...

=1 =1 1

SS =
n a b

ijk

k i j

Y Y


  abn-1   

 

The following hypothesis tests are used to check whether each of the factors in two factorial design is 

significant or not: 

      vs.         at least one  

     vs.         at least one  

  i, j                vs.         at least one  

 

The F- test statistics for these three tests are given in Table 2. They are identical with the partial F-test in 

multiple linear regression analysis.  

3. Power and sample size estimation in factorial designs 

In full factorial designs, statistical power depends on the following parameters: i) standard deviation (to 

indicate experimental variability), ii) maximum difference between main effect means, iii) number of 

replicates, iv) number of levels for factors in the model and v) the significance level (i.e., the Type I error 

probability). Cohen [7] suggested and classified the effect sizes as “small,” “medium,” or “large”. Effect 

sizes of interest may vary according to the essence of the research work under concern. 

The power of an experiment is the probability of detecting the specified effect size.  A power analysis can 

be used to estimate the sample size that would be needed to detect the differences involved. Power and 

sample size calculations should be considered in the design phase of any research study to avoid choosing 

a sample size that might be too large and costly or too small and possibly of inadequate sensitivity. 

Therefore, in planning and development stage of experimental designs, a sample size calculation is a 

critical step. In most studies, sample size calculation requires to maintain a specific statistical power (i.e., 

e.g. 80 % power).  

In factorial designs, except the levels of factors, the number of replicates or observations taken from each 

case in design forwards a sample size for factorial designs. The engineer or investigator wishes to decide 

how many replicates should be taken and the number of replicates, which is suitable for the desired 

power. For this purpose, we give some tables which include the number of replicates, values of power 

according to the properties of general full factorial design (standard deviation, levels of factors and values 

of the maximum difference between main effect means). 

When the true difference between the means is , suppose the desired power (i.e., the chance of finding a 

significant difference) is . Let  denote the standard normal curve value cutting off the proportion 

β in the upper tail. For example, if 95% power is demanded,  = 0.95 so that β = 0.05 and  = 

1.645.The sample size for any study depends on the i) acceptable level of significance, ii) power of the 

study, iii) expected effect size and iv) standard deviation in the population [8, 9]. 

In this study, MINITAB 17 statistical software program was performed for sample size and power 

calculations of several general factorial designs as in the study of Kirby et al. [8]. Calculations for 

 factorial designs are implemented for the following parameters: 
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: 1, 1.5, 2 , 3 , 4 

Number of replicates: 2,3,4 

Dimension: 2x2x3, 3x3x2, 3x3x3, 3x3x4, 4x4x2 

Mean difference: 2, 2.5, 3 

Table 3 gives the power calculations under those various combinations.  The power in Table 3 may be a 

guide for determining the sample size. The other combinations might be studied to calculate the sample 

size for a different combination of levels of , number of replications, dimension and mean difference. 

Table 3. Power calculations for general full factorial design under different conditions 

  a×b×c 

  2×2×3 3×3×2 3×3×3 3×3×3 4×4×2 

σ 
Number 

of 

replicates 

Mean difference Mean difference Mean difference Mean difference Mean difference 

2 2.5 3 2 2.5 3 2 2.5 3 2 2.5 3 2 2.5 3 

 2 0.89 0.98 0.99 0.98 0.99 0.99 0.99 1 1 0.99 1 1 0.85 0.97 0.99 

1 3 0.98 0.99 1 0.99 1 1 1 1 1 1 1 1 0.98 0.99 0.99 

 4 0.99 1 1 0.99 1 1 1 1 1 1 1 1 0.99 0.99 1 

 2 0.55 0.75 0.89 0.77 0.99 0.99 0.93 0.99 0.99 0.90 0.98 0.99 0.49 0.69 0.85 

1.5 3 0.79 0.94 0.98 0.94 0.99 0.99 0.99 0.99 1 0.98 0.99 1 0.73 0.91 0.98 

 4 0.91 0.98 0.99 0.99 0.99 0.99 0.99 1 1 0.99 0.99 1 0.87 0.97 0.99 

 2 0.33 0.49 0.65 0.51 0.71 0.86 0.72 0.89 0.97 0.45 0.66 0.82 0.28 0.43 0.59 

2 3 0.53 0.73 0.87 0.73 0.91 0.98 0.90 0.98 0.99 0.66 0.86 0.96 0.47 0.67 0.84 

 4 0.68 0.86 0.96 0.86 0.97 0.99 0.97 0.99 0.99 0.81 0.95 0.99 0.61 0.82 0.94 

 2 0.17 0.24 0.33 0.25 0.37 0.51 0.38 0.55 0.72 0.32 0.48 0.66 0.14 0.21 0.29 

3 3 0.26 0.38 0.53 0.39 0.56 0.73 0.56 0.76 0.90 0.49 0.70 0.86 0.22 0.33 0.47 

 4 0.35 0.52 0.69 0.51 0.71 0.86 0.70 0.88 0.96 0.64 0.84 0.95 0.29 0.45 0.62 

 2 0.12 0.15 0.21 0.16 0.23 0.31 0.23 0.34 0.46 0.19 0.29 0.40 0.11 0.13 0.17 

4 3 0.16 0.23 0.32 0.23 0.34 0.47 0.34 0.50 0.67 0.29 0.44 0.60 0.14 0.20 0.27 

 4 0.21 0.31 0.43 0.31 0.45 0.61 0.44 0.64 0.80 0.39 0.57 0.75 0.18 0.26 0.37 

 

With the fixed values of  and number of replicates, if the maximum difference between means increases, 

the power increases. For each general full factorial design with fixed main difference and  value, if the 

number of replicates increases, the power increases. 

Table 4 presents power calculations for  factorial designs for different values of maximum 

difference and number of replications. Estimation of sample size is illustrated for power=0.90 and 

standard deviation=1. It is seen that the highest actual power is obtained for the  dimension with 32 

total runs and number of replications=2.  

Table 4. Estimation of sample size for power=0.90 and standard deviation=1 

Maximum difference Number of dimensions Number of replication Actual power 

1 2x2 12 0.92 

2 2x2 4 0.96 

2.5 2x2 3 0.96 

1 3x3 9 0.91 

2 3x3 3 0.95 

2.5 3x3 2 0.91 

1 2x3 14 0.92 

2 2x3 4 0.92 

2.5 2x3 3 0.93 

1 4x4 8 0.93 

2 4x4 3 0.98 

2.5 4x4 2 0.97 
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4. Numerical example  

Cambridge English Proficiency test results of 40 subjects are illustrated in Table 5 [10]. Each test score is 

cross-classified by sex and different regions. Marks of 40 subjects in a multiple-choice test are enlisted. 

The subjects are classified by geographical location and sex. The dependent variable is the score on the 

Cambridge English Proficiency test. 

 

Table 5. Cambridge English Proficiency marks of 40 subjects 

 Geographical location 

 Europe South America North Africa South East Asia 

 10 33 26 26 

 19 21 25 21 

Male 24 25 19 25 

 17 32 31 22 

 29 16 15 11 

 37 16 25 35 

Female 32 20 23 18 

 29 13 32 12 

 22 23 20 22 

 31 20 15 21 

 

Data are analyzed by two-way ANOVA for the purpose of testing the effects of the sex, region and sex-

region on proficiency marks. The results are given in Table 6.  

 

Table 6. Results of two-way ANOVA for proficiency marks 

Source of 

variance 
df SS MS F statistic p-value 

Sex 1 9.03 9.03 0.22 0.645 

Region 3 79.88 26.63 0.64 0.597 

Sex×Region 3 384.88 128.29 3.07 0.042 

Error 32 1338.00 41.81   

Total 39 1811.78    

 

As can be seen from Table 6, the interaction term Sex×Region is statistically significant (p-value<0.05). 

No significant differences are found for main effects (Figure 1). 
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Figure 1. Main effects plot for Cambridge English Proficiency marks  
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Figure 2. Power curve for general full factorial of Table 5 

Figure 2 displays the power curve of this study. It is estimated approximately 80% based on alpha=5%, 

standard deviation=2 and maximum difference=2.   

5. Conclusion 

Experimental design is the process of planning an experiment that collects the sufficient data to answer a 

question of interest. Power of a test is the probability of detecting a true underlying difference. In this 

study, we intend to find out the ideal number of replicates for various  full factorial designs by 

assigning some values to standard deviation ( ) of collected data and main difference. As the standard 

deviation of collected data increases, power will decrease. For the large values of maximum differences, 

power will increase in cases of included terms in the model up through order three and without including 

blocks in the model. The main disadvantage of full factorial designs is the difficulty of experimenting 

with more than two factors, or at many levels. Therefore, simplifying the factorial design process enables 

the researchers a cost-effective process. MINITAB provides a simple and user-friendly method to 

calculate power for full factorial designs. In the educational experiments, what sample is needed for the 
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experiment and sample size calculation is the first step of planning the experiment. It should carefully be 

taken into consideration, that determining the sample size is very much related to research components 

such as time and cost.  
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