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Abstract 
This study examines two different approaches based on 
Bernstein polynomials and rational Bernstein polynomials for 
parameter estimation of probability distributions. It is discussed 
how both methods can be used in the parameter estimation 
process, and it is aimed to determine the optimal parameters 
with the least squares method. Monte Carlo simulations are 
performed to evaluate the effectiveness of the methods, and 
their estimation performances are analyzed for various 
distributions. Simulation results demonstrate that rational 
Bernstein polynomials achieve lower mean squared error 
values, which consequently raise parameter estimation 
accuracy through enhanced flexibility.  
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Öz 
Bu çalışmada olasılık dağılımlarının parametre kestirimi için 
Bernstein polinomları ve rasyonel Bernstein polinomlarına 
dayalı iki farklı yaklaşım incelenmektedir. Her iki yöntemin 
parametre kestirim sürecinde nasıl kullanılabileceği 
tartışılmakta ve en küçük kareler yöntemi ile optimum 
parametrelerin belirlenmesi amaçlanmaktadır. Yöntemlerin 
etkinliğini değerlendirmek için Monte Carlo simülasyonları 
gerçekleştirilmekte ve çeşitli dağılımlar için kestirim 
performansları analiz edilmektedir. Simülasyon sonuçları 
rasyonel Bernstein polinomlarının daha düşük ortalama karesel 
hata değerlerine ulaştığını ve bunun sonucunda artan esneklik 
yoluyla parametre kestirim doğruluğunu artırdığını 
göstermektedir.  
 
Anahtar Kelimeler: Bernstein polinomları; Rasyonel Bernstein 
polinomları; Parametre kestirimi; Parametrik olmayan kestirim; 
Ortalama karesel hata 

  

 

1. Introduction 

Parameter estimation is a fundamental aspect of 

statistical data analysis and nonparametric modeling. 

Estimating the parameters of a distribution—such as the 

mean and variance—that define its essential 

characteristics is crucial before conducting any statistical 

analysis. Accurate parameter estimates in probability and 

statistics enable researchers to develop strong statistical 

models and gain a deeper understanding of distributional 

properties. Various disciplines, including biology, 

engineering, economics, and the social sciences, widely 

apply these estimates, particularly in modeling problems 

and probabilistic analyses. 

The current study aims to estimate parameters using 
rational Bernstein polynomials and classical Bernstein 
polynomials. The literature widely recognizes equations 
based on Bernstein polynomials and their generalizations 
as fundamental tools for function approximation. When 
viewed from a probabilistic perspective, these commonly 

used polynomial methods facilitate the estimation of 
probability density and distribution functions. Their 
simplicity in approximating functions across many 
intervals makes them particularly appealing. Bernstein 
polynomials were originally introduced by Bernstein 
(1912) as a constructive proof of the Weierstrass 
Approximation Theorem. Later, Lorentz (1986) provided a 
comprehensive mathematical foundation for these 
polynomials, emphasizing their uniform convergence and 
approximation capabilities. Vitale (1975) was the first to 
propose a nonparametric technique for estimating 
density functions in probability and statistics using 
Bernstein polynomials. Petrone (1999) explored the use 
of Bernstein polynomials from a Bayesian perspective for 
probability density estimation. This line of research was 
further advanced by Petrone and Wasserman (2002), who 
examined the asymptotic properties of Bernstein-based 
estimators and demonstrated their consistency and 
flexibility within Bayesian frameworks. Ghosal (2001) also 
contributed significantly by investigating convergence 
rates in density estimation using Bernstein polynomials. 
Babu et al. (2002) discussed the use of Bernstein 
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polynomials for constructing smooth density and 
distribution functions. Their findings revealed that this 
method outperforms traditional kernel density 
estimators. Kakizawa (2004) considered Bernstein 
polynomials as nonparametric priors for continuous 
probability densities. Babu and Chaubey (2006) employed 
these polynomials to estimate the smooth density 
function of dependent random vectors and proposed a 
method suitable for high-dimensional data. Turnbull and 
Ghosh (2014) demonstrated that their method using 
Bernstein polynomials for unimodal density estimation 
outperformed existing techniques. Additionally, 
Carnicero et al. (2018) applied Bernstein polynomial-
based estimators to circular data, highlighting their 
flexibility across diverse data types. In a more recent 
study, Erdoğan et al. (2019) introduced a novel approach 
for estimating the cumulative distribution function using 
rational Bernstein polynomials. Their results indicated 
that rational Bernstein polynomials offer greater 
flexibility and, consequently, more accurate 
approximations. 

This work investigates the influence of two approaches 

for estimating the cumulative distribution function (CDF) 

on parameter estimation. Without compromising the 

advantages of classic Bernstein polynomials, rational 

Bernstein polynomials provide additional control and 

flexibility for better model fitting. By incorporating extra 

weight factors, rational Bernstein polynomials offer 

greater modeling flexibility than classical Bernstein 

polynomials, allowing for more precise function fitting 

and, consequently, improved model accuracy. Using CDF 

estimates generated via rational and classical Bernstein 

polynomials, the optimal parameter estimates are 

determined based on the least squares approach. A 

Monte Carlo simulation is employed to assess the 

performance of both techniques; the mean squared error 

(MSE) is used to guide the comparison of the results. 

The remainder of this work is organized as follows. 

Section 2 presents the mathematical foundations of 

Bernstein and rational Bernstein estimators. Section 3 

introduces the parameter estimation method using the 

least-squares approach. Section 4 reports the results of 

the Monte Carlo simulation studies and compares the 

parameter estimates obtained from the Bernstein and 

rational Bernstein polynomials. Section 5 evaluates the 

effectiveness of both methods in parameter estimation 

using a real data set. Section 6 concludes the study. 

2. Bernstein Polynomials and Cumulative distribution 

function estimation 

Estimating cumulative distribution functions is a 

fundamental problem in probability theory and statistics. 

Nonparametric methods stand out in these estimations 

due to their flexibility and lack of reliance on distributional 

assumptions; one of these methods is the Bernstein 

polynomials. Bernstein polynomials can smoothly 

approximate any continuous function. In statistical 

analysis, rational generalizations of these polynomials are 

also employed to better fit the data and achieve lower 

estimation errors. We mathematically demonstrate two 

different distribution function estimation methods, one 

based on the Bernstein polynomial proposed by Babu et 

al. (2002), and the other based on the rational Bernstein 

polynomial proposed by Erdoğan et al. (2019), and 

summarize the advantages of these methods. 

2.1 CDF estimation with classical Bernstein polynomials 

Bernstein polynomials are extensively utilized in 

mathematical literature. Furthermore, these polynomials 

have begun to be employed in the realm of distribution 

functions and density estimates, supported by the 

probabilistic demonstration of the Weierstrass 

Approximation Theorem published by Bernstein (1912). 

This theorem states that Bernstein polynomials converge 

uniformly to any continuous function, 𝑓(𝑥), on the closed 

interval [𝑎, 𝑏] as the degree of 𝑚 → ∞, specifically for 

𝑎 <  𝑥 <  𝑏. The Bernstein-Weierstrass Approximation 

theorem ensures that when the degree of the polynomial 

approaches infinity, the Bernstein polynomial 

approximation converges uniformly to the target 

function. In a more basic scenario, we can examine the 

case where a random variable takes values in the interval 

[0, 1]. The approximation of a continuous function 𝐹(𝑥) 

using Bernstein polynomials is expressed as follows 

(Lorentz, 1986): 

𝐵𝑚(𝐹)(𝑥) = ∑ 𝐹 (
𝑘

𝑚
) 𝐵𝑘,𝑚(𝑥)

𝑚

𝑘=0
 (1) 

where 𝑚 is the degree of the polynomial, 𝐹 (
𝑘

𝑚
) is the 

value of the function 𝐹(𝑥) at the point 𝑘/𝑚, 𝐵𝑘,𝑚(𝑥) are 

called Bernstein basis functions, and they are given by: 

𝐵𝑘,𝑚(𝑥) = (
𝑚

𝑘
) 𝑥𝑘(1 − 𝑥)𝑚−𝑘 , 𝑥 ∈ [0,1] (2) 

where (𝑚
𝑘

) represent the binomial coefficient. This 

methodology enables the smooth estimation of the 

function 𝐹(𝑥)  by Bernstein polynomials. Babu et al. 

(2002) proposed a technique for estimating the 

cumulative distribution function (CDF) using these 

polynomials. Classical Bernstein polynomials yield 

smooth approximations of the actual distribution 

function as follows: 

𝐹̂𝑚,𝑛(𝑥) = ∑ 𝐹𝑛 (
𝑘

𝑚
) 𝐵𝑘,𝑚(𝑥)

𝑚

𝑘=0
 (3) 

where 𝐹𝑛(𝑥) = 𝑛−1 ∑ 𝐼{𝑋𝑖 ≤ 𝑥}𝑛
𝑖=1  is the empirical 

cumulative distribution function estimator and 𝑛 denotes 
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the sample size. This method yields smoother 

approximations than the empirical distribution function 

and produces a monotonically increasing function. 

Nonetheless, a drawback is that Bernstein polynomials 

are prone to errors, particularly at extreme points in low-

degree scenarios. 

2.2 CDF estimation with rational Bernstein polynomials 

It is possible to generalize Bernstein polynomials in a 

variety of ways (Oruç, Phillips, and Davis, 1999; Barry, 

Beatty, and Goldman, 1992; Budakçı and Oruç, 2012). One 

of the most striking of them is the rational Bernstein 

polynomials. A strong substitute for calculating the 

distribution function, rational Bernstein polynomials are 

now employed in probability and statistics. The rational 

Bernstein polynomial-based distribution function 

estimator by Erdoğan et al. (2019) is a more adaptable 

extension of the classical Bernstein polynomials that Babu 

et al. (2002) suggested. Using weighted basis functions, 

this method approximates the cumulative distribution 

function. Because rational Bernstein polynomials 

generalize Bernstein polynomials with extra weight 

coefficients, they offer a more sensitive function 

approach. Using rational Bernstein polynomials, the 

cumulative distribution function is estimated as follows: 

𝐹̂𝑚,𝑛,𝑤(𝑥) = ∑ 𝐹𝑛 (
𝑘

𝑚
) 𝑅𝑘,𝑚,𝑤(𝑥)

𝑚

𝑘=0
(4) 

where, 

𝑅𝑘,𝑚,𝑤(𝑥) =
𝑤𝑘(𝑚

𝑘
)𝑥𝑘(1 − 𝑥)𝑚−𝑘

∑ 𝑤𝑘(𝑚
𝑘

)𝑥𝑘(1 − 𝑥)𝑚−𝑘𝑚
𝑘=0

, 𝑥 ∈ [0,1]  

(Erdoğan et al., 2019). The weights 𝑤𝑘  are preferred to 

manipulate the curve's shape, in contrast to the fixed 

structure of classical Bernstein polynomials. Optimization 

techniques determine the ideal weights by minimizing the 

difference between the rational estimator and the 

empirical distribution function. 

The following optimization problem is considered to 

obtain the  𝑤𝑘  coefficients. 

𝑤̂ = argmin ∑ [𝐹𝑛(𝑥𝑖) − 𝐹̂𝑚,𝑛,𝑤(𝑥)]
2𝑛

𝑖=1
 (5) 

𝐹𝑛(𝑥) represents the empirical distribution function. 

When weights are set based on the data structure, there 

are several benefits compared to classical Bernstein 

polynomials. These include lower MSE values, more 

modeling options, better results in small samples, and 

better results at extreme values. 

3. Parameter estimation 

The parameters of a distribution are any quantity of a 

statistical population that summarizes or describes an 

aspect of the population. Parameters determine 

characteristics of a distribution, such as the mean and 

variance, as well as critical features such as the shape and 

scale of the distribution. We can estimate the parameters 

of a distribution using estimates of distribution functions 

based on both Bernstein and rational Bernstein 

polynomials. This work calculates the optimal parameter 

values with the help of the least squares method for both 

estimators. In this section, we explain how to estimate the 

parameters of distributions using classical Bernstein and 

rational Bernstein polynomials. 

3.1 Optimization with Least Squares Method 

We aim to approximate the parameters of the 

distribution function using the estimates of the 

distribution functions obtained through classic Bernstein 

and rational Bernstein polynomials. For this purpose, we 

utilize the least squares approach to minimize the error 

function, thereby determining the optimal parameters 

(Kutner et al., 2005). 

𝜃∗ = argmin ∑ [𝐹̂(𝑋𝑖) − 𝐹(𝑋𝑖 , 𝜃)]
2𝑛

𝑖=1
 (6) 

The distribution function 𝐹̂(𝑋𝑖) is estimated using 

Bernstein or rational Bernstein polynomials, and the 

parameter vector is denoted by 𝜃. This optimization 

technique yields 𝜃 values that guarantee the estimated 

distribution function best matches the actual distribution 

function. This optimization procedure is carried out using 

the optim function in R, employing the L-BFGS-B 

algorithm. 

We evaluate the estimated model's correctness using the 

mean squared error measure: 

𝑀𝑆𝐸 =
1

𝑁
∑ [𝜃𝑖

∗ − 𝜃)]2
𝑁

𝑖=1
 (7) 

where 𝜃 represents the actual parameter values, 𝑁 is the 

number of Monte Carlo simulation replications, and 𝜃∗ 

indicates the estimated parameter values. A lower MSE 

value indicates that the estimated parameter better 

approximates the true parameter. 

4. Simulation studies 

This section designs a comprehensive Monte Carlo 

simulation study to measure the effect of rational 

Bernstein and Bernstein polynomials on parameter 

estimation. Six different distributions are used in the 

simulation study: Normal (0,1), Lognormal (0,1), Weibull 

(2,2), Gamma (2,2), Beta (4,4), and Exponential (4) 

(Erdoğan et al., 2019). These distributions have a wide 

range of supports, properties, and shapes. This simulation 

study examines the performance of four distinct methods 
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for estimating the parameter: the 3-degree Bernstein 

polynomial (BP3), the 3-degree rational Bernstein 

polynomial (RBP3), the 5-degree Bernstein polynomial 

(BP5), and the 5-degree rational Bernstein polynomial 

(RBP5). For each distribution, four different sample sizes 

are determined as n=20, 50, 100, and 200. For each given 

sample size, data are generated from the desired 

distributions, and the performance of four estimators is 

assessed by the mean squared error metric. The process 

is repeated N = 2000 times. We use the R programming 

language in the implementation phase. The optimization 

of the weights in the rational Bernstein polynomial 

estimator is carried out using the optim function in R with 

the L-BFGS-B algorithm, a quasi-Newton method for 

bound-constrained optimization. The least squares 

approach is employed for parameter estimation, where 

the objective is to minimize the squared differences 

between the estimated and theoretical cumulative 

distribution functions (CDFs). The optimization starts with 

initial parameter values based on the sample mean and 

standard deviation. All plots and tables presented in the 

study are generated directly from this simulation 

framework. Table 1 shows the obtained MSE values in the 

parameter estimation for each estimator. Simulation data 

shows that the MSE values for parameter estimation are 

usually lower for rational Bernstein polynomials (RBP3 

and RBP5) compared to classical Bernstein polynomials 

(BP3 and BP5). This situation expresses how RBP lowers 

error levels by means of more weight factors and provides 

more modeling freedom. The simulation findings reveal 

that the values of mean squared error decrease with an 

increase in sample size. The parameter estimates based 

on rational estimators give very effective results with low 

MSE values even though in a small sample size. In Gamma 

and Beta distributions, both estimators based on 

Bernstein polynomials cannot give the desired result, and 

these estimators need to be increased in degree. 

Parameter estimates obtained using methods based on 

rational Bernstein polynomials have low MSE values 

without requiring high degrees. The estimator based on 

rational polynomials shows impressive performance, 

especially for Standard Normal, Lognormal, Weibull, and 

Exponential. The shape parameters and support sets of 

Gamma and Beta distributions do not work well with 

classical Bernstein polynomials, making them unsuitable 

for these distributions. Because the Gamma distribution 

is right-skewed and the Beta distribution only works 

within the [0,1] range, classical polynomials struggle to 

give accurate estimates for their parameters. These 

distributions need more flexible approaches; thus, 

rational Bernstein polynomials provide better results. 

Rational Bernstein polynomials overcome these 

limitations by better adapting to both the shape 

parameters and the characteristics of the support sets. 

This situation reveals that rational Bernstein polynomials 

are a reliable alternative in parameter estimation.  

5. Real data example 

This section of the study evaluates the performance of the 

two different methods using a real data set. The data 

represent the total milk production (in kilograms) at the 

first birth of 107 cows from the SINDI breed. This data set 

was initially reported by Cordeiro and Brito (2012). In a 

later study, Korkmaz et al. (2022) estimated the 

parameter of LEP distribution using several techniques 

with this data set. 

The LEP distribution is defined by two positive 

parameters: 𝛼 and 𝛽. If a random variable 𝑋 follows the 

LEP distribution, denoted by 𝑋~𝐿𝐸𝑃(𝛼, 𝛽), its cumulative 

distribution function (CDF) is given by (Korkmaz et al., 

2021):  

𝐹(𝑋, 𝛼, 𝛽) = 𝑒1−𝑒𝑥𝑝{𝛼(− log 𝑥)𝛽} (8) 

In this study, the parameters of LEP distribution are 

estimated using two different methods based on 

polynomials: the Bernstein polynomial (BP) and the 

rational Bernstein polynomial (RBP). We use polynomial 

degrees 𝑚 = 1, . . .10 for estimating parameters using 

both methods. Table 2 displays the results of estimating 

parameters for the LEP distribution using BP and RBP 

methods with various degrees, as well as their 

Kolmogorov-Smirnov statistics. Figure 1 also shows how 

the estimated values of the parameters 𝛼 and 𝛽 of the LEP 

distribution change with the polynomial degree for both 

the BP and RBP methods. The results in Table 2 show that 

the parameter estimates obtained using the Bernstein 

polynomial and the rational Bernstein polynomial are 

different. Particularly at lower degrees, the Bernstein 

approach yields notably lower 𝛼 and 𝛽 estimates 

compared to RBP. However, as the degree increases, the 

estimates obtained by the Bernstein method begin to 

closely resemble those of RBP. The result indicates that 

while low-degree Bernstein polynomials have limited 

flexibility, higher degrees can approximate the flexibility 

provided by the rational Bernstein approach. To 

objectively identify the best-performing model, the 

Kolmogorov-Smirnov (KS) test was employed. Among the 

20 models fitted, the rational Bernstein polynomial with 

degree 𝑚 =  2 provided the highest p-value and the 

lowest KS statistics. As a result, the findings indicate that 

the RBP model with 𝑚 =  2 offers a good balance 

between fit accuracy and model simplicity, making it the 

most appropriate choice in terms of statistical 

performance. 
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Table 1. Simulation results in terms of mean squared error for parameter estimation 

Distribution n BP3 RBP3 BP5 RBP5 

N(0, 1) 

20 0.133223 0.050219 0.062688 0.054648 
50 0.109811 0.018841 0.035577 0.018530 

100 0.104897 0.009904 0.029363 0.009983 
200 0.102526 0.004931 0.026677 0.004801 

Lognormal(0,1) 

20 0.130477 0.050483 0.067375 0.049094 
50 0.115773 0.019922 0.051556 0.020106 

100 0.111698 0.010242 0.046587 0.009651 
200 0.110129 0.004777 0.043111 0.004836 

Weibull(2, 2) 

20 0.797413 0.067467 0.460105 0.157703 
50 0.741312 0.026374 0.442740 0.051945 

100 0.726775 0.015577 0.436631 0.026128 
200 0.721498 0.008929 0.433992 0.012952 

Gamma(2, 2) 

20 1.741081 0.605132 1.153526 0.940792 
50 1.680226 0.297883 1.133365 0.292105 

100 1.668933 0.149353 1.126791 0.142647 
200 1.647754 0.083783 1.106257 0.069236 

Beta(4, 4) 

20 6.730791 2.377447 4.582160 5.533315 
50 6.718733 1.149828 4.552348 1.416966 

100 6.695179 0.248238 4.540641 0.557964 
200 6.660357 0.247870 4.441913 0.231831 

Exponential(4) 

20 0.007695 0.007333 0.006575 0.007620 
50 0.004062 0.002065 0.002928 0.002351 

100 0.002992 0.001010 0.001514 0.000877 
200 0.002485 0.000455 0.001113 0.000451 

 

 

 

Table 2. Parameter estimation for the LEP distribution using BP and RBP approaches with different degrees and Kolmogorov-Smirnov 

results. 

Method Degree 𝜶 𝜷 
Kolmogorov-Smirnov 

Statistics P-value 

BP 1 0.68357 0.74698 0.22392 0.00004 

RBP 1 0.63461 0.78162 0.19222 0.00074 

BP 2 0.65698 0.76678 0.20623 0.00022 

RBP 2 0.79525 1.54467 0.10194 0.21613 

BP 3 0.69611 0.90206 0.18451 0.00137 

RBP 3 0.81065 1.60806 0.10396 0.19773 

BP 4 0.68143 1.00445 0.15290 0.01343 

RBP 4 0.81602 1.62943 0.10718 0.17106 

BP 5 0.69684 1.06665 0.14346 0.02445 

RBP 5 0.81554 1.62796 0.10693 0.17298 

BP 6 0.70581 1.07350 0.14483 0.02246 

RBP 6 0.81674 1.63252 0.10761 0.16767 

BP 7 0.71575 1.16171 0.12807 0.05978 

RBP 7 0.81701 1.63383 0.10778 0.16637 

BP 8 0.71406 1.19822 0.11975 0.09291 

RBP 8 0.81761 1.63591 0.10810 0.16393 

BP 9 0.73477 1.20951 0.12340 0.07685 

RBP 9 0.81896 1.64084 0.10883 0.15847 

BP 10 0.73512 1.27025 0.11089 0.14382 

RBP 10 0.81888 1.64048 0.10879 0.15883 
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Figure 1. Estimations 𝛼 and 𝛽 for the First Birth Milk Production data of SINDI Cows 

 

6. Conclusions 

In conclusion, this study provides a comprehensive 

comparison of rational Bernstein polynomials (RBP) and 

Bernstein polynomials (BP) for parameter estimation 

across various distributions. By employing the least 

squares method, we demonstrated the ability of these 

estimators to accurately estimate the parameters of 

interest. Through a series of Monte Carlo simulations, we 

showed that RBP outperforms BP, particularly in terms of 

mean squared error (MSE), highlighting its superior 

accuracy and efficiency. Furthermore, we demonstrate 

the practical applicability of these methods by applying 

them to a real data set. The key contribution of this 

research lies in the introduction of RBP as a more flexible 

and adaptable tool for parameter estimation, offering 

distinct advantages over traditional BP estimators in 

complex data sets. The findings highlight that RBP, with 

its flexible and adaptable structure, provides a more 

reliable approach to parameter estimation, especially in 

the presence of complex and challenging data sets.  
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