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Abstract

This study examines two different approaches based on
Bernstein polynomials and rational Bernstein polynomials for
parameter estimation of probability distributions. It is discussed
how both methods can be used in the parameter estimation
process, and it is aimed to determine the optimal parameters
with the least squares method. Monte Carlo simulations are
performed to evaluate the effectiveness of the methods, and
their estimation performances are analyzed for various
distributions. Simulation results demonstrate that rational
Bernstein polynomials achieve lower mean squared error
values, which consequently raise parameter estimation
accuracy through enhanced flexibility.

Keywords: Bernstein Polynomials; Rational Bernstein Polynomials;
Parameter Estimation; Nonparametric Estimation; Mean Squared Error

Oz

Bu calismada olasilik dagilimlarinin parametre kestirimi igin
Bernstein polinomlari ve rasyonel Bernstein polinomlarina
dayali iki farkh yaklasim incelenmektedir. Her iki yontemin
parametre  kestirim  slirecinde  nasil  kullanilabilecegi
tartisiimakta ve en kiglk kareler yontemi ile optimum
parametrelerin belirlenmesi amacglanmaktadir. Yontemlerin
etkinligini degerlendirmek icin Monte Carlo similasyonlari
gergeklestiriimekte ve c¢esitli  dagihmlar igin  kestirim
performanslari analiz edilmektedir. Similasyon sonuglari
rasyonel Bernstein polinomlarinin daha dusik ortalama karesel
hata degerlerine ulastigini ve bunun sonucunda artan esneklik

yoluyla ~ parametre  kestirim  dogrulugunu  artirdigini
gostermektedir.
Anahtar Kelimeler: Bernstein polinomlari; Rasyonel Bernstein

polinomlari; Parametre kestirimi; Parametrik olmayan kestirim;
Ortalama karesel hata

1. Introduction

Parameter estimation is a fundamental aspect of
statistical data analysis and nonparametric modeling.
Estimating the parameters of a distribution—such as the
mean and variance—that define its essential
characteristics is crucial before conducting any statistical
analysis. Accurate parameter estimates in probability and
statistics enable researchers to develop strong statistical
models and gain a deeper understanding of distributional
properties. Various disciplines, including biology,
engineering, economics, and the social sciences, widely
apply these estimates, particularly in modeling problems

and probabilistic analyses.

The current study aims to estimate parameters using
rational Bernstein polynomials and classical Bernstein
polynomials. The literature widely recognizes equations
based on Bernstein polynomials and their generalizations
as fundamental tools for function approximation. When
viewed from a probabilistic perspective, these commonly

used polynomial methods facilitate the estimation of
probability density and distribution functions. Their
simplicity in approximating functions across many
intervals makes them particularly appealing. Bernstein
polynomials were originally introduced by Bernstein
(1912) as a constructive proof of the Weierstrass
Approximation Theorem. Later, Lorentz (1986) provided a
comprehensive mathematical foundation for these
polynomials, emphasizing their uniform convergence and
approximation capabilities. Vitale (1975) was the first to
propose a nonparametric technique for estimating
density functions in probability and statistics using
Bernstein polynomials. Petrone (1999) explored the use
of Bernstein polynomials from a Bayesian perspective for
probability density estimation. This line of research was
further advanced by Petrone and Wasserman (2002), who
examined the asymptotic properties of Bernstein-based
estimators and demonstrated their consistency and
flexibility within Bayesian frameworks. Ghosal (2001) also
contributed significantly by investigating convergence
rates in density estimation using Bernstein polynomials.
Babu et al. (2002) discussed the use of Bernstein
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polynomials for constructing smooth density and
distribution functions. Their findings revealed that this
method outperforms traditional kernel density
estimators. Kakizawa (2004) considered Bernstein
polynomials as nonparametric priors for continuous
probability densities. Babu and Chaubey (2006) employed
these polynomials to estimate the smooth density
function of dependent random vectors and proposed a
method suitable for high-dimensional data. Turnbull and
Ghosh (2014) demonstrated that their method using
Bernstein polynomials for unimodal density estimation
outperformed  existing  techniques.  Additionally,
Carnicero et al. (2018) applied Bernstein polynomial-
based estimators to circular data, highlighting their
flexibility across diverse data types. In a more recent
study, Erdogan et al. (2019) introduced a novel approach
for estimating the cumulative distribution function using
rational Bernstein polynomials. Their results indicated
that rational Bernstein polynomials offer greater
flexibility  and, consequently, = more  accurate
approximations.

This work investigates the influence of two approaches
for estimating the cumulative distribution function (CDF)
on parameter estimation. Without compromising the
advantages of classic Bernstein polynomials, rational
Bernstein polynomials provide additional control and
flexibility for better model fitting. By incorporating extra
weight factors, rational Bernstein polynomials offer
greater modeling flexibility than classical Bernstein
polynomials, allowing for more precise function fitting
and, consequently, improved model accuracy. Using CDF
estimates generated via rational and classical Bernstein
polynomials, the optimal parameter estimates are
determined based on the least squares approach. A
Monte Carlo simulation is employed to assess the
performance of both techniques; the mean squared error

(MSE) is used to guide the comparison of the results.

The remainder of this work is organized as follows.
Section 2 presents the mathematical foundations of
Bernstein and rational Bernstein estimators. Section 3
introduces the parameter estimation method using the
least-squares approach. Section 4 reports the results of
the Monte Carlo simulation studies and compares the
parameter estimates obtained from the Bernstein and
rational Bernstein polynomials. Section 5 evaluates the
effectiveness of both methods in parameter estimation
using a real data set. Section 6 concludes the study.

2. Bernstein Polynomials and Cumulative distribution
function estimation

Estimating cumulative distribution functions is a
fundamental problem in probability theory and statistics.
Nonparametric methods stand out in these estimations

due to their flexibility and lack of reliance on distributional

assumptions; one of these methods is the Bernstein

polynomials. Bernstein polynomials can smoothly

approximate any continuous function. In statistical
analysis, rational generalizations of these polynomials are
also employed to better fit the data and achieve lower
estimation errors. We mathematically demonstrate two
different distribution function estimation methods, one
based on the Bernstein polynomial proposed by Babu et
al. (2002), and the other based on the rational Bernstein
polynomial proposed by Erdogan et al. (2019), and

summarize the advantages of these methods.
2.1 CDF estimation with classical Bernstein polynomials

Bernstein polynomials are extensively utilized in
mathematical literature. Furthermore, these polynomials
have begun to be employed in the realm of distribution
functions and density estimates, supported by the
probabilistic  demonstration of the Weierstrass
Approximation Theorem published by Bernstein (1912).
This theorem states that Bernstein polynomials converge
uniformly to any continuous function, f(x), on the closed
interval [a, b] as the degree of m — oo, specifically for
a < x < b. The Bernstein-Weierstrass Approximation
theorem ensures that when the degree of the polynomial
infinity, the  Bernstein

approaches polynomial

approximation converges uniformly to the target
function. In a more basic scenario, we can examine the
case where a random variable takes values in the interval
[0, 1]. The approximation of a continuous function F(x)
using Bernstein polynomials is expressed as follows

(Lorentz, 1986):
m k
B =) F()BinG) ()

where m is the degree of the polynomial, F (%) is the
value of the function F(x) at the point k/m, By ,,(x) are
called Bernstein basis functions, and they are given by:

Bim(0) = (1) #* -0k xe01] @

where (Y:) represent the binomial coefficient. This
methodology enables the smooth estimation of the
function F(x) by Bernstein polynomials. Babu et al.
(2002)
cumulative distribution function (CDF)

proposed a technique for estimating the

using these

polynomials. Classical Bernstein polynomials vyield
smooth approximations of the actual distribution
function as follows:
m k
Fun@ =) B(S)Ben@ @)
k=0 m

where F,(x) =n 'YL, I{X; <x} is the empirical
cumulative distribution function estimator and n denotes
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the sample size. This method vyields smoother
approximations than the empirical distribution function
and produces a monotonically increasing function.
Nonetheless, a drawback is that Bernstein polynomials
are prone to errors, particularly at extreme points in low-

degree scenarios.
2.2 CDF estimation with rational Bernstein polynomials

It is possible to generalize Bernstein polynomials in a
variety of ways (Orug, Phillips, and Davis, 1999; Barry,
Beatty, and Goldman, 1992; Budakgi and Orug, 2012). One
of the most striking of them is the rational Bernstein
polynomials. A strong substitute for calculating the
distribution function, rational Bernstein polynomials are
now employed in probability and statistics. The rational
Bernstein  polynomial-based  distribution  function
estimator by Erdogan et al. (2019) is a more adaptable
extension of the classical Bernstein polynomials that Babu
et al. (2002) suggested. Using weighted basis functions,
this method approximates the cumulative distribution
function. Because rational Bernstein polynomials
generalize Bernstein polynomials with extra weight
coefficients, they offer a more sensitive function
approach. Using rational Bernstein polynomials, the

cumulative distribution function is estimated as follows:

B =Y F () R @)

where,
wi (F)xk (1 —x)mk

k=0 Wk (T)xk(l — x)m-k’

(Erdogan et al., 2019). The weights w;, are preferred to

Rimw (%) = x € [0,1]

manipulate the curve's shape, in contrast to the fixed
structure of classical Bernstein polynomials. Optimization
techniques determine the ideal weights by minimizing the
difference between the rational estimator and the
empirical distribution function.

The following optimization problem is considered to
obtain the wy, coefficients.

W = argmin Zr-lzl[Fn(xi) - Fm,n,w(x)]z ©)

F,(x) represents the empirical distribution function.
When weights are set based on the data structure, there
are several benefits compared to classical Bernstein
polynomials. These include lower MSE values, more
modeling options, better results in small samples, and
better results at extreme values.

3. Parameter estimation
The parameters of a distribution are any quantity of a
statistical population that summarizes or describes an

aspect of the population. Parameters determine
characteristics of a distribution, such as the mean and
variance, as well as critical features such as the shape and
scale of the distribution. We can estimate the parameters
of a distribution using estimates of distribution functions
based on both Bernstein and rational Bernstein
polynomials. This work calculates the optimal parameter
values with the help of the least squares method for both
estimators. In this section, we explain how to estimate the
parameters of distributions using classical Bernstein and

rational Bernstein polynomials.
3.1 Optimization with Least Squares Method

We aim to approximate the parameters of the
of the
distribution functions obtained through classic Bernstein

distribution function using the estimates
and rational Bernstein polynomials. For this purpose, we
utilize the least squares approach to minimize the error
function, thereby determining the optimal parameters
(Kutner et al., 2005).

6* = argmin Z;[F(Xi) — F(X;, 9)]2 (6)

The distribution function F(X;) is estimated using
Bernstein or rational Bernstein polynomials, and the
parameter vector is denoted by 6. This optimization
technique yields 6 values that guarantee the estimated
distribution function best matches the actual distribution
function. This optimization procedure is carried out using
the optim function in R, employing the L-BFGS-B
algorithm.

We evaluate the estimated model's correctness using the
mean squared error measure:

MSE = izN [6; — 6)]2 @)

NZLu-
where 6 represents the actual parameter values, N is the
number of Monte Carlo simulation replications, and 8*
indicates the estimated parameter values. A lower MSE
value indicates that the estimated parameter better
approximates the true parameter.

4, Simulation studies

This section designs a comprehensive Monte Carlo
simulation study to measure the effect of rational
Bernstein and Bernstein polynomials on parameter
estimation. Six different distributions are used in the
simulation study: Normal (0,1), Lognormal (0,1), Weibull
(2,2), Gamma (2,2), Beta (4,4), and Exponential (4)
(Erdogan et al., 2019). These distributions have a wide
range of supports, properties, and shapes. This simulation
study examines the performance of four distinct methods
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for estimating the parameter: the 3-degree Bernstein
(BP3),
polynomial (RBP3), the 5-degree Bernstein polynomial

polynomial the 3-degree rational Bernstein
(BP5), and the 5-degree rational Bernstein polynomial
(RBP5). For each distribution, four different sample sizes
are determined as n=20, 50, 100, and 200. For each given
sample size, data are generated from the desired
distributions, and the performance of four estimators is
assessed by the mean squared error metric. The process
is repeated N = 2000 times. We use the R programming
language in the implementation phase. The optimization
of the weights in the rational Bernstein polynomial
estimator is carried out using the optim function in R with
the L-BFGS-B algorithm, a quasi-Newton method for
bound-constrained optimization. The least squares
approach is employed for parameter estimation, where
the objective is to minimize the squared differences
between the estimated and theoretical cumulative
distribution functions (CDFs). The optimization starts with
initial parameter values based on the sample mean and
standard deviation. All plots and tables presented in the
study are generated directly from this simulation
framework. Table 1 shows the obtained MSE values in the
parameter estimation for each estimator. Simulation data
shows that the MSE values for parameter estimation are
usually lower for rational Bernstein polynomials (RBP3
and RBP5) compared to classical Bernstein polynomials
(BP3 and BP5). This situation expresses how RBP lowers
error levels by means of more weight factors and provides
more modeling freedom. The simulation findings reveal
that the values of mean squared error decrease with an
increase in sample size. The parameter estimates based
on rational estimators give very effective results with low
MSE values even though in a small sample size. In Gamma
and Beta distributions, both estimators based on
Bernstein polynomials cannot give the desired result, and
these estimators need to be increased in degree.
Parameter estimates obtained using methods based on
rational Bernstein polynomials have low MSE values
without requiring high degrees. The estimator based on
rational polynomials shows impressive performance,
especially for Standard Normal, Lognormal, Weibull, and
Exponential. The shape parameters and support sets of
Gamma and Beta distributions do not work well with
classical Bernstein polynomials, making them unsuitable
for these distributions. Because the Gamma distribution
is right-skewed and the Beta distribution only works
within the [0,1] range, classical polynomials struggle to
give accurate estimates for their parameters. These
thus,

rational Bernstein polynomials provide better results.

distributions need more flexible approaches;

Rational Bernstein polynomials overcome these

limitations by better adapting to both the shape
parameters and the characteristics of the support sets.
This situation reveals that rational Bernstein polynomials
are a reliable alternative in parameter estimation.

5. Real data example

This section of the study evaluates the performance of the
two different methods using a real data set. The data
represent the total milk production (in kilograms) at the
first birth of 107 cows from the SINDI breed. This data set
was initially reported by Cordeiro and Brito (2012). In a
(2022)
parameter of LEP distribution using several techniques
with this data set.

later study, Korkmaz et al. estimated the

The LEP distribution
parameters: a and S. If a random variable X follows the
LEP distribution, denoted by X~LEP (a, ), its cumulative
distribution function (CDF) is given by (Korkmaz et al.,
2021):

is defined by two positive

FX,a,B) = el—exp{a(_ log x)#} ®)

In this study, the parameters of LEP distribution are
estimated using two different methods based on
polynomials: the Bernstein polynomial (BP) and the
rational Bernstein polynomial (RBP). We use polynomial
degrees m = 1,...10 for estimating parameters using
both methods. Table 2 displays the results of estimating
parameters for the LEP distribution using BP and RBP
methods with various degrees, as well as their
Kolmogorov-Smirnov statistics. Figure 1 also shows how
the estimated values of the parameters a and 8 of the LEP
distribution change with the polynomial degree for both
the BP and RBP methods. The results in Table 2 show that
the parameter estimates obtained using the Bernstein
polynomial and the rational Bernstein polynomial are
different. Particularly at lower degrees, the Bernstein
approach vyields notably lower a and S estimates
compared to RBP. However, as the degree increases, the
estimates obtained by the Bernstein method begin to
closely resemble those of RBP. The result indicates that
while low-degree Bernstein polynomials have limited
flexibility, higher degrees can approximate the flexibility
provided by the rational Bernstein approach. To
objectively identify the best-performing model, the
Kolmogorov-Smirnov (KS) test was employed. Among the
20 models fitted, the rational Bernstein polynomial with
degree m = 2 provided the highest p-value and the
lowest KS statistics. As a result, the findings indicate that
the RBP model with m = 2 offers a good balance
between fit accuracy and model simplicity, making it the
choice in terms of statistical

most appropriate

performance.
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Table 1. Simulation results in terms of mean squared error for parameter estimation

Distribution n BP3 RBP3 BP5 RBP5
20 0.133223 0.050219 0.062688 0.054648
N(O, 1) 50 0.109811 0.018841 0.035577 0.018530
! 100 0.104897 0.009904 0.029363 0.009983
200 0.102526 0.004931 0.026677 0.004801
20 0.130477 0.050483 0.067375 0.049094
Lognormal(0,1) 50 0.115773 0.019922 0.051556 0.020106
100 0.111698 0.010242 0.046587 0.009651
200 0.110129 0.004777 0.043111 0.004836
20 0.797413 0.067467 0.460105 0.157703
. 50 0.741312 0.026374 0.442740 0.051945
Weibull(2, 2)
100 0.726775 0.015577 0.436631 0.026128
200 0.721498 0.008929 0.433992 0.012952
20 1.741081 0.605132 1.153526 0.940792
Gamma(2, 2) 50 1.680226 0.297883 1.133365 0.292105
100 1.668933 0.149353 1.126791 0.142647
200 1.647754 0.083783 1.106257 0.069236
20 6.730791 2.377447 4.582160 5.533315
Beta(4, 4) 50 6.718733 1.149828 4.552348 1.416966
100 6.695179 0.248238 4.540641 0.557964
200 6.660357 0.247870 4.441913 0.231831
20 0.007695 0.007333 0.006575 0.007620
Exponential(4) 50 0.004062 0.002065 0.002928 0.002351
100 0.002992 0.001010 0.001514 0.000877
200 0.002485 0.000455 0.001113 0.000451

Table 2. Parameter estimation for the LEP distribution

using BP and RBP approaches with different degrees and Kolmogorov-Smirnov

results.
Kolmogorov-Smirnov
Method Degree « B Statistics P-value
BP 1 0.68357 0.74698 0.22392 0.00004
RBP 1 0.63461 0.78162 0.19222 0.00074
BP 2 0.65698 0.76678 0.20623 0.00022
RBP 2 0.79525 1.54467 0.10194 0.21613
BP 3 0.69611 0.90206 0.18451 0.00137
RBP 3 0.81065 1.60806 0.10396 0.19773
BP 4 0.68143 1.00445 0.15290 0.01343
RBP 4 0.81602 1.62943 0.10718 0.17106
BP 5 0.69684 1.06665 0.14346 0.02445
RBP 5 0.81554 1.62796 0.10693 0.17298
BP 6 0.70581 1.07350 0.14483 0.02246
RBP 6 0.81674 1.63252 0.10761 0.16767
BP 7 0.71575 1.16171 0.12807 0.05978
RBP 7 0.81701 1.63383 0.10778 0.16637
BP 8 0.71406 1.19822 0.11975 0.09291
RBP 8 0.81761 1.63591 0.10810 0.16393
BP 9 0.73477 1.20951 0.12340 0.07685
RBP 9 0.81896 1.64084 0.10883 0.15847
BP 10 0.73512 1.27025 0.11089 0.14382
RBP 10 0.81888 1.64048 0.10879 0.15883
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Figure 1. Estimations @ and S for the First Birth Milk Production data of SINDI Cows

6. Conclusions

In conclusion, this study provides a comprehensive
comparison of rational Bernstein polynomials (RBP) and
Bernstein polynomials (BP) for parameter estimation
across various distributions. By employing the least
squares method, we demonstrated the ability of these
estimators to accurately estimate the parameters of
interest. Through a series of Monte Carlo simulations, we
showed that RBP outperforms BP, particularly in terms of
mean squared error (MSE), highlighting its superior
accuracy and efficiency. Furthermore, we demonstrate
the practical applicability of these methods by applying
them to a real data set. The key contribution of this
research lies in the introduction of RBP as a more flexible
and adaptable tool for parameter estimation, offering
distinct advantages over traditional BP estimators in
complex data sets. The findings highlight that RBP, with
its flexible and adaptable structure, provides a more
reliable approach to parameter estimation, especially in
the presence of complex and challenging data sets.
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