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Abstract  Öz 

Population-based local search is a meta-heuristic algorithm combining 
the principles of the population-based search and the local search. This 
study presents an extensive comparison of two population-based local 
search approaches, specifically, the steady state memetic algorithm 
(SSMA) and a population-based iterated local search (PILS). To the best 
of our knowledge, PILS is proposed first for cross-domain search. Both 
approaches are implemented in Hyper-heuristics Flexible Framework 
(HyFlex) which contains different operators for different problem 
domains. The operators used in PILS and SSMA are the ones defined in 
HyFlex and the operator selection is done using two heuristic selection 
methods, namely, Simple Random and Reinforcement Learning with 
Tournament selection. The performance of the proposed methods with 
the selection methods is assessed over nine problem domains in HyFlex. 
The results reveal the success of the presented approaches for the cross-
domain search. 

 Popülasyona dayalı yerel arama, popülasyona dayalı arama ve yerel 
aramanın ilkelerini birleştiren meta-sezgisel bir algoritmadır. Bu 
çalışma, iki farklı popülasyona dayalı yerel arama yaklaşımının 
kapsamlı bir karşılaştırmasını sunmaktadır: kararlı durum memetik 
algoritma (SSMA) ve popülasyona dayalı iteratif yerel arama (PILS). 
PILS, bildiğimiz kadarıyla, alanlar arası arama için ilk önerilen 
yöntemdir. Her iki yaklaşım da farklı problem alanları için farklı 
operatörler içeren Hyper-heuristics Flexible Framework (HyFlex) 
üzerinde uygulanmıştır. PILS ve SSMA'da kullanılan operatörler, 
HyFlex'te tanımlanan operatörlerdir ve bu operatörler arasından seçim 
yapmak için Basit Rastgele ve Turnuva seçimi ile Pekiştirmeli Öğrenme 
yöntemleri kullanılmaktadır. Önerilen yöntemlerin her iki seçim 
yöntemiyle performansı HyFlex' teki dokuz farklı problem üzerinden 
değerlendirilmiştir. Sonuçlar, alanlar arası arama için sunulan 
yaklaşımların başarılı olduğunu ortaya koymaktadır. 

Keywords: Population-based local search, Memetic algorithms, 
Hyper-heuristics, Iterated local search, Combinatorial optimization. 

 Anahtar kelimeler: Popülasyona dayalı yerel arama, Memetik 
algoritma, Üst-sezgiseller, Yinelemeli yerel arama, Kombinatoryal 
optimizasyon. 

1 Introduction 

There are many different heuristic/meta-heuristic methods 
that can be employed for solving NP-complete combinatorial 
optimization problems [1]-[7]. Most of the time, these methods 
perform well in finding an optimal/near-optimal solution to the 
problem they are designed for. However, they will need to be 
redesigned to obtain good performance in other specific 
problems. Hyper-heuristics [8], on the other hand, are used to 
automate the selection (selection hyper-heuristics) or 
generation of heuristics (generation hyper-heuristics) to solve 
combinatorial optimization problems. This study uses selection 
hyper-heuristics, which seeks a good method based on 
heuristic selection approaches. The method is searched among 
a set of heuristics, which are called low-level heuristics in the 
context of hyper-heuristics. The chosen low-level heuristic is 
considered to produce a new solution from the current one. 
Subsequently, the new solution is assessed and either approved 
or discarded according to the acceptance criteria. Hyper-
heuristics Flexible Framework (HyFlex) enables researchers to 
design and test general-purpose heuristic search methods with 
a focus on selection hyper-heuristics. It contains 
implementations of many problem-specific operators as low-
level heuristics for nine different problem domains. This study 
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uses HyFlex as a design and test environment for the proposed 
methods in cross-domain search. 

Cross-domain search tasks, where the goal is to find the best 
solution to a problem that spans multiple domains or 
disciplines, can be effectively studied with local search 
approaches. The key advantage of local search methods is that 
they may be used to efficiently explore a large solution space, 
even when there is no obvious path to the ideal solution. 
Moreover, using a population of candidate solutions to explore 
the search space allows exploration of a larger portion of the 
search space. In summary, population-based search enables 
concurrent exploration of many locations within the search 
space, while local search helps to converge toward promising 
solutions in each region. A memetic algorithm (MA) is a 
population-based meta-heuristic approach that combines local 
search techniques with genetic algorithms. This combination 
enables the MA to discover solutions that neither a genetic 
algorithm nor a local search approach could discover alone. In 
its simplest version, a local search method is employed after 
crossover and mutation operators in the genetic algorithms. 
The MAs have been applied effectively to many different 
problems [9]-[13]. Similar to other meta-heuristic methods, the 
memetic algorithms require designing problem-specific 
operators for different problem domains.  
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In this study, we introduce two population-based local search 
approaches for cross-domain search, specifically, population-
based iterated local search (PILS) and steady-state memetic 
algorithm (SSMA). The implementations of these approaches 
are done within HyFlex. PILS maintains a set of solutions 
(population), which allows to explore the search space more 
effectively. At each step, a new single solution is created by 
perturbing the current solution and applying a local search 
operator. Regardless of the quality of the new solution, it is 
accepted and inserted into the population, replacing it with the 
worst-performing solution in the population. Perturbation and 
local search operators are selected from a set of operators (low-
level heuristics) provided in HyFlex. The local search operator 
is chosen randomly, while the perturbation operator is selected 
based on the heuristic selection component in the selection 
hyper-heuristics. To select the operator, two heuristic selection 
techniques are used, namely Simple Random (SR) and 
Reinforcement Learning with Tournament Selection (RLT). 
Simple Random uses no feedback, while Reinforcement 
Learning with Tournament Selection, which is a learning 
selection method, gets feedback during the search. The second 
approach, SSMA, is proposed in [14]. It is implemented within 
HyFlex and proved to perform well on cross-domain search. 
This algorithm applies genetic operators, specifically, parent 
selection, crossover, and mutation, to generate a candidate 
solution at each iteration. Then, a local search is employed to 
the candidate solution to improve its quality. Finally, the 
candidate solution is replaced by the worst solution in the 
current population.  Since the algorithm is implemented within 
HyFlex, an operator is randomly selected from a corresponding 
set of low-level heuristics, which corresponds to Simple 
Random selection method. In this study, as an improvement to 
the original SSMA, RLT is also incorporated as another selection 
method besides SR.  

The experiments are conducted in two phases: Experiments on 
(1) six problem domains provided in the original HyFlex and 
(2) three additional HyFlex problem domains. In the first phase, 
the performances of four local search approaches, namely 
SSMA-SR, SSMA-RLT, PILS-SR, and PILS-RLT, are assessed on six 
problem domains in HyFlex. We consider five instances for each 
problem domain used in Cross-domain Heuristic Search 
Challenge held in 2011 (CHeSC 2011). The experimental results 
reveal that PILS-RLT outperforms the other approaches based 
on the statistical results. We also compare four approaches to 
the selected approaches including twenty CHeSC competitors, a 
self-adaptive self-configuring steady state multimeme memetic 
algorithm (SSMMA) [15], and a multi-stage hyper-heuristic 
(MSHH) [16]. All algorithms are ranked according to the 
Formula 1 point system. SSMA-RLT ranks third among twenty-
six approaches, beating SSMA-SR and PILS-based algorithms. 
Furthermore, the second phase includes the experiments on 
three additional HyFlex problem domains presented in [17]. In 
this phase, ten instances for each problem domain are used to 
assess the performance of four approaches. In this phase, PILS-
SR yields better performance than the others according to the 
statistical results. In addition, our approaches are compared 
with six algorithms presented in [17]. The median values 
generated by the approaches and the scores for all approaches 
according to the Formula 1 point system are presented in this 
phase. The results show that PILS-SR gives competitive results 
for all problem instances, and it ranks second among ten 
approaches.  

 

1.1 Motivation and contribution 

Population-based local search approaches can effectively 
address cross-domain search tasks [14-15]. Through the 
integration of population-based strategies, which exploit 
diverse candidate solutions and collective intelligence, these 
approaches present a promising method for improving solution 
quality, enhancing exploration capabilities, and achieving 
convergence toward optimal solutions. This study introduces 
two population-based local search approaches for cross-
domain search. The following is a summary of the main 
contributions of this paper:  

 PILS algorithm with two heuristic selection methods is 
proposed for the cross-domain search, 

 RLT is integrated into the SSMA along with SR, 

 A thorough experimental examination of all approaches is 
conducted. 

The subsequent sections of the paper are structured in the 
following manner: Section 2 provides background information 
on hyper-heuristics, HyFlex, and local search-based algorithms, 
which is followed by the methodology. Then, the design of 
experiments and results are provided. The last section gives a 
conclusion. 

2 Background 

An overview of selection hyper-heuristics, population-based 
iterated local search, HyFlex, and local search algorithms 
proposed for HyFlex is presented in this section.   

2.1 Selection hyper-heuristics  

Selection hyper-heuristics decide on which low-level heuristic 
(LLH) will be employed to the current solution among a set of 
LLHs defined for the problem. After applying the chosen LLH, 
the created solution is accepted as the current solution or 
rejected, depending on a move acceptance approach. This 
search continues until the termination condition is satisfied. A 
thorough survey of selection hyper-heuristics can be read in 
[18]. In this section, we will outline some basic techniques and 
recent research in the field of selection hyper-heuristics. 

Three basic categories of heuristic selection approaches as a 
component of selection hyper-heuristics are introduced in [19], 
i.e., random, greedy, and choice-function based. In the first 
category, they propose Simple Random (SR) and Random 
Permutation (RP) to apply a different LLH at each iteration and 
Random Permutation Descent (RPD) and Random Descent 
(RD) to select a new LLH only if the current LLH does not 
improve anymore. When necessary, RD selects a random LLH, 
whereas RPD selects a LLH regarding a permutation of LLHs 
generated randomly at the beginning. The greedy approach 
(GR) computes the difference between the fitness value of the 
present solution and the solution produced by each LLH at each 
step. The LLH that causes the best improvement is then applied. 
For the last category, a choice-function (CF) is introduced to 
choose the next LLH. The performance of each heuristic 
selection method is examined with Only Improving (OI) and All 
Moves (AM) move acceptance methods, where AM accepts all 
moves and OI accepts only the moves that yield a better 
solution. As a result of an experimental study, in [19], it is 
concluded that combining the use of a choice function to select 
the LLH and accepting all moves performs better than all other 
combinations. 
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Sequence-based Selection (SS) hyper-heuristics utilizing the 
Markov model are identified to perform well in different 
problem domains [20]-[31]. In [20], besides the SS method, a 
set of basic selection methods is paired with a set of move 
acceptance methods. Their basic selection methods include SR, 
RD, RP, RPD, and GR. In the experimental study, they pair each 
of these selection methods with the move acceptance methods: 
OI, Improve or Equal (IE), Great Deluge (GD), Late Acceptance 
(LA), and Simulated Annealing (SA). IE accepts the moves that 
do not result in a worse solution. LA, GD, and SA are non-
deterministic move acceptance approaches; in GD and SA, the 
improving and equal moves are accepted; in LA, a solution is 
accepted or rejected following a comparison with another 
solution that was created several steps earlier.  Moreover, the 
move that results in a worse solution is accepted if it is below a 
dynamically changing threshold in GD. On the other hand, it is 
accepted with a probability which decreases as the search 
continues in SA. As a result, the SS-GD pair is found to perform 
the best for urban transit route design problems.  

2.2 Population-based ıterated local search 

Iterated Local Search (ILS) is a single point-based search 
algorithm consisting of two steps: perturbation and local 
search. Many successful applications of ILS are presented in the 
literature [23],[24]. On the other hand, some recent studies 
make use of the population for exploring the different regions 
in the search space [25],[26]. 

Evolutionary iterated local search algorithm (EILS), in which 
ILS is integrated with evolutionary operators, is introduced to 
solve the problem of antenna positioning in cellular networks 
[25]. It is also a population-based ILS algorithm including two 
neighborhood structures for local search, crossover and 
mutation operators, and a selection procedure based on a 
binomial distribution. The main steps of EILS are as follows: 
Initially, a population of individuals and a candidate solution 
are randomly created. At each iteration, the local search is 
employed to the candidate solution to obtain an improved one. 
The improved solution is inserted into the current population, 
replacing it with the worst solution in the population. Then, the 
two-point crossover is applied to generate a new population. 
The mutation is applied to the candidate solution which is 
selected based on the selection procedure for a new cycle. This 
process is iterated until a specified stopping criterion is met.  

In [26], a population-based ILS approach is developed for 
solving dynamic vehicle routing problems. First, the initial 
population is generated randomly. Then, a new solution is 
created by ILS at each iteration. The new solution is inserted in 
the current population concerning its quality and diversity. In 
ILS part, the skewed variable neighborhood descent (SVND) is 
considered as a local search method. In the perturbation step, 
the current solution is perturbed by three different rules to 
generate a new one. This perturbation procedure provides 
diverse solutions and high quality. The first two rules use the 
crossover operator, but the third one uses the ruin-recreate 
operator. At each iteration, a rule is chosen using the 𝜖-greedy 
strategy. Finally, the new solution has been accepted using the 
exponential Monte Carlo criterion (EMS). 

2.3 HyFlex 

HyFlex (Hyper-heuristics Flexible Framework) [27] is a 
software framework that contains the implementations of 
problem-specific components for a set of problem domains. The 
framework was implemented for the Cross-domain Heuristic 

Search Challenge (CHeSC) held in 2011 [28]. The initial set of 
problems implemented in the original Hyflex includes Vehicle 
Routing (VRP), Permutation Flow Shop (PFS), Travelling 
Salesman (TSP), Personnel Scheduling (PS), One Dimensional 
Bin Packing (BP), and Boolean Satisfiability (SAT) problems. 
Then, in 2015, Adriaensen et. al. [17] implemented three more 
problem domains, i.e., 0–1 Knapsack Problem (KP), Quadratic 
Assignment Problem (QAP), and MaxCut (MAC) in HyFlex. This 
version of HyFlex including three new problem domains will be 
referred to as extended HyFlex throughout the paper. For each 
problem domain, the solution representation, initial solution 
generation, fitness function evaluation, and low-level 
perturbative heuristics are implemented in the framework. 
Therefore, this framework makes it possible for the user not to 
think of details of the problem domain, rather, the user can 
concentrate on the hyper-heuristic methods. As a result, HyFlex 
is commonly used for research on cross-domain selection 
perturbative hyper-heuristics. 

In the HyFlex implementation, several problem instances are 
included for each problem domain. Also, four different types of 
low-level heuristics (LLH) are implemented for each domain. 
The LLH types are crossover (XO), mutational (MU), hill-
climbing (HC), and ruin-recreate (RR). Mutational heuristics 
are also called perturbation heuristics, and they result in a 
small change in the solution. Ruin-recreate heuristics, on the 
other hand, first destructs some part of the solution (ruin) and 
then reconstructs this part (recreate), which leads to a larger 
change in the solution. The process of hill climbing heuristics 
involves making incremental changes to a solution and only 
accepting the new solution if it is better than the original. The 
final type of heuristic, called crossover, combines two solutions 
to create a single offspring. The number of different LLHs 
implemented in HyFlex for each type and for each domain is 
given in Table 1.  

Table 1. The number of different LLHs implemented in HyFlex 
for each type and for each domain. 

HyFlex Problem MU RR HC XO Total 
Original SAT 6 1 2 2 11 
 BP 3 2 2 1 8 
 PS 1 3 5 3 12 
 PFS 5 2 4 4 15 
 TSP 5 1 3 4 13 
 VRP 3 2 3 2 10 
Extended KP 5 2 6 3 16 
 QAP 2 3 2 2 9 
 MAC 2 3 3 2 10 

There is a wide variety of selection hyper-heuristics that are 
proposed and evaluated for the problem domains provided in 
both the original and the extended HyFlex [18]. Some methods 
include a hidden Markov model-based method [29], a tensor-
based selection hyper-heuristic [30], an iterated multi-stage 
hyper-heuristic approach [16], iterated local search based 
hyper-heuristic [31], a multi-armed bandit selection 
mechanism for hyper-heuristics [32], and a simulated 
annealing approach [33].  

Moreover, the performance of six selection hyper-heuristics, 
namely, dominance-based, and random descent hyper-
heuristic, sequence-based selection hyper-heuristic, fuzzy late 
acceptance-based hyper-heuristic, simple random-great 
deluge, robinhood (round-robin neighborhood) hyper-
heuristic, modified choice function, are compared on three 
problem domains in the extended HyFlex in [34].  
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2.4 Local search algorithms for HyFlex 

Iterated local search is used as a selection hyper-heuristic in 
literature. In addition to the heuristic selection and acceptance 
method, a local search is included in the ILS-based selection 
hyper-heuristic. The fair-share iterated local search (FS-ILS), 
proposed in [35], is one of the well-known selection hyper-
heuristics for cross-domain search. In this method, a 
constructive heuristic is considered to create the initial 
solution. In the perturbation step, a LLH is chosen among 
mutation and ruin-recreate heuristics according to the 
acceptance rate of previous solutions and applied to the current 
solution. In the local search step, a heuristic is selected from the 
hill-climbing heuristics provided in HyFlex and applied in tabu-
search manner. Then, the metropolis acceptance condition is 
used to accept or discard the new solution. The search process 
is restarted when there is no improvement for a certain time. 
The FS-ILS performance has been evaluated in six HyFlex 
problem domains. It is reported that FS-ILS outperforms the 
competing algorithms from the CHeSC 2011 competition. In 
[17], three problems provided in the extended HyFlex are used 
to examine the performance of FS-ILS. FS-ILS is compared to 
five selection hyper-heuristics including the winner of CHeSC 
2011 (AdapHH), an evolutionary programming hyper-heuristic 
(EH), FS-ILS without restart (NR-FS-ILS), and two simple single 
point hyper-heuristics (AA-HH and ANW-HH). The results 
reveal that AdapHH outperforms the others for the extended 
HyFlex.   

Two recent studies on the iterated local search hyper-heuristics 
for cross-domain search are presented in [36],[37]. In [36], 
probabilistic learning is employed in the perturbation step. 
This algorithm combines the advantages of Thompson 
Sampling algorithm and FS-ILS. Unlike FS-ILS, the current 
solution is perturbed according to four operators: mutation 
heuristic followed by ruin-recreate, ruin-recreate followed by 
ruin-recreate, only mutation heuristic, and only ruin-recreate 
heuristic. The performance of the proposed approach is 
assessed on six problem domains in HyFlex. The experimental 
findings suggest that the algorithm described in this study has 
superior performance compared to FS-ILS and the competing 
approaches in CHeSC 2011. It is significantly better than FS-ILS 
for BP, PS, and PFS. The second approach is the evolutionary 
iterated local search hyper-heuristic (EA-ILS), combining the 
principles of ILS and the evolutionary algorithm [37]. In this 
algorithm, a sequence of low-level heuristics is created and 
updated in accordance with ILS steps that include first 
implementing multiple perturbation heuristics and finally 
finishing with a local search heuristic. A new mutation operator 
has been proposed to regulate the order of low-level heuristics. 
The performance of EA-ILS is examined on three combinatorial 
optimization problems provided in extended HyFlex. It 
provides superior performance in these problem domains. Its 
performance is also evaluated on the problem instances used in 
CHeSC 2011. It gives competitive results for these instances.  

In general, the problem-specific operators are designed in MAs, 
requiring a different implementation for each problem domain 
[10]. However, in [14], the MA is implemented without any 
modification for various optimization problems in HyFlex. The 
authors present two MAs, namely steady-state memetic 
algorithm (SSMA) and trans-generational memetic algorithm 
(TGMA) for the six problem domains used in CHeSC2011 
competition. In the SSMA, an offspring is created at each 
generation. To create an offspring; crossover, mutation, and hill 
climbing operators are sequentially applied. Binary 

tournament selection is considered to pick two parents for 
crossover. The selection of operators, namely crossover, 
mutation, and hill climbing, is performed randomly from a set 
of defined operators. The offspring substitutes for the worst-
performing individual in the population. On the other hand, 
TGMA creates an offspring population at each generation 
instead of generating a single offspring. It uses the same 
selection rules to pick a genetic operator as in SSMA. The 
experiments are conducted under the competition conditions. 
The results indicate that SSMA yields superior performance 
compared to TGMA for most cases.  

One of the main issues in meta-heuristic approaches is 
parameter tuning. The experiments for the parameter tuning of 
the SSMA are conducted using a design of experiments approach 
[38] across several problem domains provided in HyFlex. Based 
on the experimental results, the tuned SSMA performs better in 
most instances. The results also show that the crossover 
operators did not influence the performance of SSMA. The 
authors compare the performance of SSMA with the best 
settings, referred to as SSMA-Best, with that of SSMA, TGMA, 
and twenty competing approaches in CHeSC 2011. The 
experimental results show that the SSMA-Best outperforms 
SSMA and TGMA and ranks fourth among twenty-three 
algorithms according to the Formula 1 point system. Moreover, 
the performance of SSMA-Best is tested on the problems in the 
extended HyFlex and compared with some selection hyper-
heuristic approaches. SSMA-Best gives competitive results for 
these problem domains.  

A self-adaptive steady state multimeme memetic algorithm 
(SSMMA) is presented in [15]. In this method, an individual 
consists of two parts: chromosome (solution) and memeplex 
(memetic information). A memeplex contains five memes, each 
of which encodes a selection of algorithmic components, 
namely the intensity of mutation parameter, crossover 
operator, mutation or ruin-recreate operator, and hill-climbing 
operator, depth of search parameter. Five memes within the 
memeplex utilize scores for each operator and their parameter 
settings. Tournament selection is used to select the operator 
and parameter setting. In the experiments, six optimization 
problems in HyFlex are used to assess the performance of 
SSMMA. The results show that SSMA yields better performance 
than the other memetic algorithms including SSMA, TGMA, and 
a self-adaptive multimeme memetic algorithm (MMA) for most 
cases.  

3 Methodology 

In this study, a population-based iterated local search (PILS) 
and the steady state memetic algorithm (SSMA) are utilized for 
cross-domain search. This section presents the details of PILS, 
SSMA, and the operator selection methods based on the 
heuristic selection methods.   

3.1 Population-based iterated local search  

In this study, we propose a population-based iterated local 
search (PILS) algorithm for the cross-domain search. This 
algorithm has three main components: a population of 
individuals, ILS steps (perturbation, local search, acceptance 
criterion), and a population update mechanism. The initial 
population is randomly created and the best solution in the 
population is picked as the current solution. Then, the current 
solution undergoes a randomly selected hill-climbing operator 
(line 3 in Figure 1).  
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Figure 1. The pseudo-code of the PILS algorithm. 

At each step, a candidate solution is generated by ILS and the 
population is updated. In the perturbation step (lines 5 and 6 in 
Figure 1), an operator is selected from a set of crossover, 
mutation, and ruin-recreate heuristics according to the 
operator selection method (see Section 3.3). If the selected 
operator is a crossover heuristic, two parents are selected by 
using the binary tournament selection. Then, the selected 
crossover operator is applied to generate a candidate solution. 
It should be noted that the crossover operators provided in 
HyFlex generate only one solution.  Otherwise, it is applied to 
the current solution (𝑆𝑐) to create a candidate solution (𝑆𝑛). In 
the local search step, a hill-climbing operator is selected 
randomly among the set of hill-climbing operators provided in 
HyFlex and is employed to the candidate solution (lines 7 and 8 
in Figure 1). Then, the candidate solution is accepted regardless 
of its quality (line 9 in Figure 1). The candidate solution 
replaces the individual having the lowest performance in the 
population. Figure 1 presents the pseudo-code of the PILS. 

3.2 Steady state memetic algorithm  

We consider the steady state memetic algorithm (SSMA) 
proposed in [14]. The pseudo-code of the SSMA is presented in 
Figure 2.  

 

Figure 2. The pseudo-code of the SSMA. 

First, the individuals in the population are generated randomly. 
Then, a randomly selected hill-climbing operator is employed 
to each individual in the population. Afterwards, the main cycle 
of the SSMA is employed: Tournament selection is used to select 

two parents for recombination. These parents undergo 
crossover, mutation, and hill climbing operators to generate 
offspring. Crossover, mutation, and hill climbing operators are 
randomly selected. Then, at the end of each iteration, the 
offspring replaces the individual with the lowest performance 
within the population. In this method, the ruin-recreate 
heuristics of HyFlex are used as mutation operators. In Hyflex, 
the solution representation, initial solution generation, fitness 
function evaluation, low-level perturbative heuristics, and 
genetic operators are implemented for each problem domain. 
Therefore, those operators are used as they are defined in the 
framework. 

3.3 Operator selection method  

In SSMA [14], an operator from the set of operators for 
crossover, mutation, and hill climbing is randomly chosen. This 
is the same as the Simple Random (SR) which is one of the 
heuristic selection methods in selection hyper-heuristics. In 
addition, we also employed SR in the PILS algorithm for 
selecting the perturbation operators (line 5 in Figure 1).  

Additionally, we use another heuristic selection method 
incorporating a learning mechanism, namely Reinforcement 
Learning with Tournament selection (RLT) [15]. RLT maintains 
a utility score for each operator. The initial score of each 
operator is set to the same value. An operator is selected based 
on tournament selection according to the score values 
whenever an operator is needed. The score of the selected 
operator is updated depending on the change in the solution 
quality. If an offspring generated by a crossover operator is 
better than any one of the parents, it is said that there is an 
improvement in solution quality. Similarly, if an offspring 
generated by a mutation operator is better than the one before 
mutation, there is an improvement. On the other hand, in this 
method, a hill-climbing operator is randomly selected at each 
iteration to maintain diversity. 

4 Experimental setup  

Experiments are conducted in accordance with the following 
CHeSC 2011 competition rules. Each algorithm is executed for 
31 runs. We consider six problem domains in HyFlex, namely 
Boolean Satisfiability (SAT), Travelling Salesman (TSP), 
Personnel Scheduling (PS), One Dimensional Bin Packing (BP), 
Permutation Flow Shop (PFS), and Vehicle Routing (VRP) 
problems. The five competition instances are employed for 
each problem. Three additional problem domains in the 
extended HyFlex are also used in experiments: 0–1 Knapsack 
Problem (KP), Quadratic Assignment Problem (QAP), and 
MaxCut (MAC). Each of these domains consists of 10 instances. 
A benchmarking program on the competition website 
determines the equivalent time limit on test machines, which 
corresponds to 10 minutes (600 seconds) on the competition 
machine. The experiments are conducted on a PC with 8 GB 
RAM and Intel Core i7-2600K Processor. 

We utilize the CHeSC 2011 ranking methodology that relies on 
Formula 1 points from before 2010 to evaluate and compare 
the performance of the approaches. In this system, for each 
problem instance, the top eight approaches are determined 
after comparing the median values of all approaches obtained 
over 31 runs. The approach in the first place is awarded 10 
points, the second place receives 8 points, and each subsequent 
approach receives 6, 5, 4, 3, 2 and 1 points, respectively. Any 
other approaches get 0 points. If there is a tie for a given 
instance, the mean of corresponding points is calculated for the 
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tied position and assigned for each approach. The final score of 
an approach is calculated as the sum of points earned over all 
problem instances.  

The parameters of SSMA-SR are tuned using Taguchi’s design of 
experiments method [38]. The best settings of the parameter 
among 25 different configurations are reported as: Population 
size is 5, intensity of mutation in mutation and ruin-recreate 
operators is 0.2, depth of search in local search operators is 1.0, 
and the tournament size is 5. Here, the intensity of mutation is 
a parameter that specifies the extent to which a given solution 
is perturbed by the corresponding operator and the depth of 
search parameter is the termination condition (i.e., the number 
of steps) in local search. The algorithm with the best setting is 
referred to as SSMA-Best (SR). We consider the same settings 
for all operator selection methods. In addition, we use the 
following settings for RLT in both algorithms recommended in 
[15]:  the initial score of each operator is set to 0. The score of 
the selected operator is increased by 1 if it improves the 
solution; otherwise, there is no change in the value of the score. 
The tournament size for RLT is set to 2.  

For the statistical comparison, we perform the Wilcoxon 
signed-ranks test at a 95% confidence interval for paired 
approaches and one-way ANOVA and Tukey's HSD test at a 95% 
confidence interval for more than two approaches. The overall 

win/tie/loss (w / t / l) counts over 30 instances are provided in 
the results tables to provide a summary for the statistical 
comparisons.  

5 Results and discussion 

In this study, we provide a comprehensive analysis of local 
search-based algorithms for cross-domain search. The 
experimental evaluation of these algorithms consists of two 
parts: First, we explore the performance of algorithms and 
compare them to the methods participating in the CHeSC 2011 
competition on six problem domains in the original HyFlex. 
Then, the performance of these algorithms is tested on three 
problem domains provided in the extended HyFlex. The results 
and discussion for each part of the experiments are presented 
in this section. 

5.1 Comparison of local search-based algorithms 

In this part of the experiments, we conduct experiments to 
compare the performance of local search-based algorithms on 
six problem domains in HyFlex. Table 2 presents the average 
fitness values generated by these methods for each instance of 
six problem domains in HyFlex. Each row in the table presents 
the performance of these approaches for the corresponding 
instance. Based on the results, we can conclude that: 

 

Table 2. Average fitness values generated by different local search-based algorithms for instances of six problem domains in HyFlex. 

Problem ID SSMA-SR  SSMA-RLT PILS-SR  PILS-RLT 

SAT 1 17.323 17.419 11.290 11.226 
 2 44.871 44.710 33.226 27.000 
 3 27.516 27.774 16.323 13.935 
 4 21.516 22.968 15.516 14.484 
 5 17.871 17.258 14.290 13.968 

BP 1 0.05444 0.05009 0.02868 0.03359 
 2 0.01047 0.01053 0.00684 0.00677 
 3 0.03073 0.02619 0.01297 0.01323 
 4 0.10968 0.10922 0.10895 0.10870 
 5 0.05705 0.04782 0.02594 0.02615 

PS 1 20.77 20.68 22.10 22.19 
 2 9560.71 9519.16 9944.10 9791.90 
 3 3210.77 3224.39 3253.65 3239.61 
 4 1573.55 1578.06 1625.94 1603.48 
 5 308.90 313.71 335.52 335.97 

PFS 1 6251.65 6249.97 6261.19 6258.23 
 2 26799.84 26774.16 26813.55 26799.32 
 3 6348.06 6351.06 6357.06 6347.94 
 4 11375.45 11369.81 11396.39 11390.23 
 5 26624.13 26592.35 26641.61 26615.06 

TSP 1 48218.62 48218.62 48225.61 48230.47 
 2 20892206.89 20917311.69 21137038.29 21074726.35 
 3 6812.84 6808.94 6819.90 6814.59 
 4 66754.38 66707.01 67256.04 66946.82 
 5 53541.38 53250.28 53850.54 53271.37 

VRP 1 71641.79 75218.71 60020.50 60070.81 
 2 13881.05 13916.49 13415.97 13414.84 
 3 147510.17 147502.31 147304.53 147287.83 
 4 21081.29 21343.58 21078.73 21205.92 
 5 147549.95 148170.72 147541.30 147083.33 

w / t / l      12 / 48 / 30  22 / 42 / 26 25 / 41 / 24 31 / 49 / 10 
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 For all problem instances of SAT, PILS-RLT is the best-
performing approach. It performs significantly better than 
the others for 10 cases. There are no statistically significant 
differences between PILS-RLT and PILS-SR for the SAT 
problem. In addition, PILS-based algorithms are 
significantly better than SSMA-based algorithms. The 
differences between SSMA-SR and SSMA-RLT are not 
statistically significant for all instances. 

 PILS-based algorithms are also significantly better than 
SSMA-based algorithms for all problem instances of BP. 
PILS-RLT is significantly better than PILS-SR for instance 4, 
but it is significantly worse for instance 4. Others have no 
statistically significant differences. In addition, SSMA-RLT is 
slightly worse than SSMA-SR for instance 1, however, it is 
significantly better than SSMA-SR for the other instances.  

 The differences between the approaches are not 
statistically significant for the following problem instances 
of PS: instance 1 and instance 4. SSMA-SR is significantly 
better than PILS-SR for instances 2, 3, and 5. SSMA-based 
algorithms significantly outperform the PILS-based 
algorithms for instance 5. 

 SSMA-RLT delivers good performance for almost all 
problem instances of PFS except for instance 3. ILS-RLT 
yields better performance for this instance; however, there 
is no statistical difference between them. In addition, PILS-
SR performs worse than SSMA-based algorithms.  

 For the problem instances of TSP, SSMA-RLT is the best-
performing approach overall. There are no statistical 
differences between all approaches for instance 1. 
However, SSMA-based algorithms outperform PILS-SR for 
the other instances.   

 For the problem instances of VRP, PILS-based algorithms 
produce better performance than SSMA-based algorithms. 
PILS-based algorithms are significantly better than SSMA-
based algorithms for instance 1 and 2. However, there are 

no statistical differences between all approaches for 
instance 3 and 4. 

To summarize the result of the statistical comparison between 
approaches, the overall win/tie/loss counts for operator 
selection methods on six problem domains provided in HyFlex 
based on Tukey’s multi-comparison test at a 95% confidence 
level is calculated. In HyFlex, there are 30 instances, and an 
algorithm is compared to the other four algorithms for each 
problem instance. Therefore, an algorithm can achieve 120 
significance states in total over the other algorithms: win (w) 
count gives the number of cases where the corresponding 
algorithm is statistically better than the others. tie (t) count 
gives the number of cases in which the corresponding 
algorithm is not statistically different from others. loss (l) count 
gives the number of cases where the corresponding algorithm 
is statistically worse than the others. These results are 
presented in the last row of Table 2. PILS-RLT is the best-
performing approach overall. It performs significantly better 
than the others for 31 cases, especially for SAT, BP, and VRP 
problems. Besides, SSMA-SR delivers poor performance with 
the 12 best significance states.  

Figure 3 illustrates the convergence behavior of all approaches 
(SSMA-SR, SSMA-RLT, PILS-SR, and PILS, RLT) for the selected 
instances of each problem. All algorithms can converge to a 
minimum in a short time for most instances. 

The performance of local search-based methods is also 
compared with selected approaches from the literature, 
including twenty competing approaches from CHeSC 2011, 
dominance-based and relay hybridization multi-stage hyper-
heuristic (MSHH) [16], SSMA with the best parameter setting 
(SSMA-Best) [38], and a self-adaptive self-configuring steady 
state multimeme memetic algorithm (SSMMA) [15]. These 
approaches are selected since they are well-known approaches 
tested on six problem domains in HyFlex. 

 

 

Figure 3. Convergence plot of the approaches (SSMA-SR, SSMA-RLT, PILS-SR, and PILS, RLT) for the selected instances. 
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It is reported that MSHH outperforms 20 competing 
approaches from CHeSC 2011 [16]. SSMMA is based on a steady 
state memetic algorithm and RLT is used for selecting 
components. The results of MSHH and SSMMA are provided by 
the authors of the corresponding papers. We run the SSMA-
RLT, SSMA-Best (SR), PILS-SR, and PILS-RLT for all instances 
under the same termination condition used in the CHeSC 
competition. Table 3 presents the score values of each approach 
according to Formula 1 point system with respect to median 
values for each problem. MSHH ranks first among the 24 
approaches. The winner of CHeSC 2011, AdapHH, takes the 
second place overall. In addition, SSMA-RLT performs poorly 
with a score of 0 for SAT and BP problem domains; however, it 
ranks 3rd with a total score of 99.53 overall among the 26 
approaches. It also gets the highest score for the PFS problem. 
PILS-RLT and PILS-SR rank the 8th and 15th, respectively. PILS-
RLT gets the highest score for VRP. SSMA-Best outperforms the 
PILS-based algorithms but is worse than SSMA-RLT. 

Figure 4 shows the boxplots for the fitness values of the 
approaches, namely MSHH, SSMMA, SSMA-SR, SSMA-RLT, PILS-
SR, and PILS-RLT, for the selected instances. The comparison is 
done with MSHH and SSMMA since the MSHH is the best-
performing approach and SSMMA is the improved version of 
SSMA. SSMA and PILS give competitive results for these 
instances except for SAT and BP problems.  

5.2 Comparison of local search-based algorithms on 
extended HyFlex problems 

In this part, the performance of the presented algorithms is 
assessed on the extended HyFlex problems. As mentioned 

before, the extended HyFlex includes three problem domains, 
namely the Knapsack Problem (KP), Quadratic Assignment 
Problem (QAP), and MaxCut (MAC) [19]. The experiments are 
conducted on ten instances for each problem domain.  

Table 4 provides the average fitness values generated by 
different operator selection methods for each instance of three 
problem domains in extended HyFlex. The last row of the table 
shows the overall (w/t/l) counts for operator selection 
methods on three problem domains provided in extended 
HyFlex based on Tukey’s multi-comparison test at a 95% 
confidence level. In general, PILS-SR is the best-performing 
approach overall. It performs significantly better than the 
others for 30 cases. SMA-SR and PILS-RLT give competitive 
results. Based on the average fitness values and the statistical 
analysis results, it can be revealed that: 

 For the problem instances of KP, ILS-SR performs 
significantly better than SSMA-based algorithms in 11 
cases. The difference between PILS-SR and PILS-RLT is not 
statistically significant for all instances. In addition, there 
are no significant differences between all algorithms for the 
problem instances 0, 2, and 4 of KP. 

 ILS-SR generates better results than the others for 7 out of 
10 instances of QAP. Even though PILS-RLT is better than 
PILS-SR for 2 instances, the difference between them is not 
statistically significant for all instances. SSMA-SR performs 
slightly better than other algorithms for instance 7. Besides, 
there are no significant differences between all algorithms 
for the following problem instances of QAP: instances 5 and 
7. 

 

Table 3. The ranking and scores for each approach according to the Formula 1 point system across six problem domains in HyFlex. 

Rank Algorithm SAT BP PS PFS TSP VRP TOTAL 

1 MSHH [16] 48 36 4 24 41 0 153 
2 AdapHH [39] 23.45 43 4 25 29.2 5 129.65 
3 SSMA-RLT 0 0 34.83 29.5 32.2 3 99.53 
4 ML [27] 6.5 7 21.83 27.5 3 19 84.83 
5 VNS-TW [27] 23.45 0 26.5 23.5 6.2 2 81.65 
6 SSMA-Best (SR) 0 0 38.5 11.5 17 9 76 
7 SSMMA [15] 28.95 16 8 0 0 8 60.95 
8 PILS-RLT 0 3 4 14.75 7.5 28 57.25 
9 PHunter [40] 4.5 1 7 2.5 15.2 25 55.2 

10 NAHH 8.83 15 0 17.5 7 5 53.33 
11 EPH 0 4 3 10 24.2 11 52.2 
12 HAHA [41] 21.95 0 15.5 0.25 0 9 46.7 
13 ISEA 1.5 21 10.83 0 6 1 40.33 
14 KSATS-HH 15.2 6 1 0 0 17 39.2 
15 PILS-SR 0 4 0 3.5 1.5 16 25 
16 HAEA 0 0 0 0.25 3 18 21.25 
17 ACO-HH 0 15 0 4.25 1 0 20.25 
18 AVEG-Nep 8.5 0 0 0 0 7 15.5 
19 XCJ 2.17 10 0 0 0 3 15.17 
20 GenHive 0 8 2 1 0 3 14 
21 GISS 0 0 6 0 0 4 10 
22 DynILS 0 0 8 0 0 2 10 
23 SA-ILS 0 6 0 0 1 0 7 
24 MCHH-S 2 0 0 0 0 0 2 
25 SelfSearch 0 0 0 0 0 0 0 
26 Ant-Q 0 0 0 0 0 0 0 
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Figure 4. Boxplots of fitness values for a statistical comparison of the approaches (MSHH, SSMMA, SSMA-SR, SSMA-RLT, PILS-SR, and 
PILS, RLT) for the selected instances. 

Table 4. Average fitness values generated by different local search-based algorithms for each instance of three problem domains in 
extended HyFlex. 

Problem ID SSMA-SR  SSMA-RLT PILS-SR  PILS-RLT 

KP 0 -104022.80 -104037.20 -104045.10 -104044.70 
 1 -1217160.30 -1218397.70 -1257186.90 -1255727.00 
 2 -242198.50 -242265.70 -242279.20 -242129.50 
 3 -431356.80 -431356.10 -431353.60 -431353.60 
 4 -396166.50 -396167.00 -396167.00 -396166.50 
 5 -4263544.40 -4258581.30 -4303583.30 -4304513.20 
 6 -927956.80 -926313.90 -940832.30 -939046.70 
 7 -1574340.60 -1574067.50 -1577174.50 -1576901.40 
 8 -1530258.80 -1530366.80 -1530470.60 -1530476.70 
 9 -1467384.20 -1467372.80 -1467359.30 -1467358.70 

QAP 0 152531.30 152511.50 152356.50 152371.90 
 1 154396.30 154460.60 154257.80 154307.50 
 2 148543.30 148432.30 148173.50 148230.80 
 3 150125.20 150338.60 150025.90 150011.90 
 4 21374964.60 21390657.80 21357006.10 21375836.50 
 5 1191614554.30 1191742050.40 1189277953.10 1188300657.50 
 6 503374277.50 503424131.60 502365685.20 502540552.70 
 7 44839289.00 44844394.50 44848103.90 44847149.70 
 8 8177869.90 8181833.00 8165227.50 8170522.30 
 9 273701.00 273605.30 273465.70 273586.00 

MAC 0 -40749828.50 -40683723.90 -40865627.30 -40801985.10 
 1 -274386421.40 -273434188.10 -271117693.60 -268593670.40 
 2 -3023.60 -3024.70 -3026.50 -3023.80 
 3 -3004.20 -3003.90 -3010.30 -3004.60 
 4 -3009.60 -3009.30 -3014.50 -3009.30 
 5 -13100.00 -13087.40 -13095.90 -13088.60 
 6 -1293.70 -1290.30 -1292.10 -1280.10 
 7 -9938.80 -9923.40 -9895.70 -9865.90 
 8 -428.70 -424.80 -431.60 -427.40 
 9 -2747.40 -2734.60 -2737.00 -2718.10 

w / t / l      12 / 62 / 16 7 / 62 / 21 30 / 54 / 6 12 / 60 / 18 
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To evaluate the performance of local search-based methods on 
the extended HyFlex, they are compared with six algorithms 
presented in [17] including Adap-HH (the winner of CHeSC 
2011), the fair-share iterated local search (FS-ILS), an 
evolutionary programming hyper-heuristic with co-evolution 
(EPH), two single point selection hyper-heuristics (ANW-HH 
and AA-HH). Figure 5 presents the bar plot of the score values 
for each approach according to the Formula 1 point system 
across the three problems in the extended HyFlex. AdapHH 
ranks first with a score of 183.36. PILS-SR takes second place 
with a score of 167.03. The results show that the proposed 
PILS-based algorithms perform better than FS-ILS algorithm. 

 

Figure 5. The scores for all approaches according to Formula 1 
point system across the three problems in the extended 

HyFlex. 

6 Conclusion and future works 

In this study, we present two population-based local search 
approaches, namely a population-based iterated local search 
(PILS) and the steady state memetic algorithm (SSMA), for 
HyFlex. In both approaches, at each iteration, a single candidate 
solution is generated and replaced with the worst individual in 
the current population. To create a new solution, PILS uses a 
perturbation operator (crossover or mutation) and a local 
search operator, while SSMA applies a crossover, a mutation, 
and a local search operator, respectively. Two heuristic 
selection methods, namely Simple Random (SR) and 
Reinforcement Learning with Tournament Selection (RLT), are 
utilized to select an appropriate operator other than hill-
climbing operators. A hill-climbing operator is randomly 
selected when needed. 

For the performance evaluation of four approaches addressed 
in this study, we conduct the experiments in two parts: (1) tests 
on six problem domains in the original HyFlex; and (2) tests on 
three additional domains in the extended HyFlex. In the first 
part, all approaches are tested on a total of 30 instances used in 
CHeSC 2011. The statistical results show that PILS-RLT is the 
best-performing approach, which is significantly better than 
the others for 31 cases. Moreover, four approaches are 
compared to the selected approaches including twenty CHeSC 
competitors, a multi-stage hyper-heuristic, and a self-adaptive 
self-configuring steady state multimeme memetic algorithm 
according to the Formula 1 points system. In this system, the 
median values obtained over 31 runs are used to rank all 
approaches.  According to the results, SSMA-RLT ranks third 
among twenty-six approaches. In the second part, four 
approaches are evaluated on three additional HyFlex problem 
domains, each of which has 10 problem instances. Based on the 

statistical results, PILS-SR yields better performance, which is 
significantly better than the others for 30 cases. We also 
compare the performance of our approaches to the six methods 
presented in [17]. The median values and ranking of all 
algorithms according to the Formula 1 point system are 
presented. The results reveal that PILS-SR ranks second and 
gives competitive results. In conclusion, the presented 
approaches are applicable to a variety of combinatorial 
problems, which is the main objective for designing automated 
methodologies as hyper-heuristics. 

In future works, PILS can be applied to continuous optimization 
problems. Besides, PILS accepts the generated solution 
regardless of its quality, which corresponds to all moves as the 
acceptance criterion in the selection hyper-heuristic methods. 
Other acceptance criteria such as improving equality, only 
improving, etc. can be employed in PILS. 
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