
Araştırma Makalesi 
 

   BAUN Fen Bil. Enst. Dergisi, 20(1), 412-420, (2018) 
 

DOI:  10.25092/baunfbed.418449                               J. BAUN Inst. Sci. Technol., 20(1), 412-420, (2018) 

412 

 
 
 
 
 

Some graph parameters on the strong product of 
monogenic semigroup graphs 

 
 

Nihat AKGÜNE Ş* 

 
Necmettin Erbakan University, Faculty of Science, Mathematics-Computer Sciences, Meram, 42090, 

Konya, Turkey. 
 

Geliş Tarihi (Recived Date): 02.02.2018 
Kabul Tarihi (Accepted Date): 02.04.2018 

 
 
Abstract 
 
In Das et al. (2013), it has been defined a new algebraic graph on monogenic 
semigroups. Our main scope in this study, is to extend this study over the special 
algebraic graphs to the strong product. In detail, we will determinate some important 
graph parameters (diameter, girth, radius, maximum degree, minimum degree, 
chromatic number, clique number and domination number) for the strong product of 
any two monogenic semigroup graphs. 
 
Keywords:  Monogenic semigroup graph, strong product, graph parameters. 

 
 

Monojenik yarıgrup graflarının güçlü çarpımlarının bazı graf 
parametreleri 

 
 
Özet 
 
Das ve diğ. (2013) çalışmasında monojenik yarıgruplar üzerinde yeni bir cebirsel graf 
tanımlanmıştır. Bu çalışmada ana odaklanma noktamız, bu çalışmayı verilen özel 
cebirsel grafların güçlü çarpımına genişletmektir. Detaylandıracak olursak, herhangi 
iki monojenik yarıgrup graflarının güçlü çarpımları için bazı önemli graf 
parametrelerini (çap, çevrim, yarıçap, maksimum derece, minimum derece, 
renklendirme sayısı, klik sayısı ve baskınlık sayısı) hesaplayacağız.  
 
Anahtar kelimeler: Monojenik yarıgrup grafları, güçlü çarpım, graf parametreleri. 
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1. Introduction 
 
A very huge number of studies about zero-divisor graphs have been stranded in the 
literature. First study of zero-divisor graphs started with commutative rings in the paper 
[2]. After that, many authors also studied about that graph over rings and semigroups 
(see, for instances, [3-7]). 
 
The graph ( )MSΓ  on monogenic semigroups MS (with zero) having elements 

20 nx x x   , , ,..., . The vertices of this graph are the non-zero elements 2 nx x x, ,...,  and any 

two different vertices ix  and jx  are adjacent iff 1i j n+ ≥ +  (for 1 i j n≤ , ≤ ) [1]. 
 
In this paper, we consider the strong product of monogenic semigroup graphs and we 
obtained some results for the diameter, girth, radius, maximum degrees, minimum 
degrees, clique number, chromatic number and domination number.  
 
It is known that studying the product of graphs is also an important subject (for 
instance, [8-14]) since there are so many applications in sciences. 
Firstly, we will give some information about tensor and lexicographic product of 
monogenic semigroup graphs.  
 
The lexicographic product of monogenic semigroup graphs as follows [15]; 
Let us take any two vertices ( )i jx x,  and ( )a bx x,  which are connected if and only if  
 

1

2

( ( )) 0 1

 and ( ( ))  and 1.

i a i a
m

i a j b i a
m

x x E S x x i a n

or

x x x x S x x j b m

 ∈ Γ ⇔ = ⇔ + ≥ + = ∈ Γ ⇔ = + ≥ +
                                               (1) 

 
The tensor product of monogenic semigroup graphs as follows [16]; 
Let us take any two vertices ( )i jx x,  and ( )a bx x,  which are connected if and only if  
 

1

2

( ( )) 0 1

( ( )) 0 1.

i a i a
m

j b j b
m

x x E S x x i a n

and

x x E S x x j b m

 ∈ Γ ⇔ = ⇔ + ≥ + ∈ Γ ⇔ = ⇔ + ≥ +
                                                             (2) 

 
In previous studies [15,16] some properties like diameter, girth, maximum and 
minimum degree etc. of monogenic semigroup graphs have been established. 
 
Now, we will establish these properties for strong product of monogenic semigroup 
graphs.  
 
With this idea, it is defined the strong product 1 2G G�  of any two simple graphs 1G  

and 2G   which has the vertex set 1 2( ) ( )V G V G×  such that any two vertices 1 2( )u u u= ,  

and 1 2( )v v v= ,  are connected to by an edge: (1 1 2 2 2 and ( )u v u v E G= ∈ ) or 

( 2 2 1 1 1 and ( )u v u v E G= ∈ ) or ( 1 1 1 2 2 2( ) and ( )u v E G u v E G∈ ∈ ) (see, for instance, 
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[9,13,14]). In here, we will replace 1G  by 1( )MSΓ  and 2G  by 2( )MSΓ  we have rules for 

monogenic semigroup graphs as follows: 
1 2( ) ( )M MS SΓ Γ� has vertex set 1 2( ) ( )M MS SΓ ×Γ  and let us take any two vertices ( )i jx x,  

and ( )a bx x,  which are connected if and only if: 
 

 and 0  and 1

0 and 1 and 

0 and 0 1 and 1.

a i b j

a i b j

a i b j

x x x x a i b j m

or

x x x x a i n b j

or

x x x x a i n b j m

 = = ⇔ = + ≥ + = = ⇔ + ≥ + = = = ⇔ + ≥ + + ≥ +

                                               (3) 

 
In this paper, by considering 1 2( ) ( )M MS SΓ Γ� , we will give some good results for the 

diameter, radius, girth, maximum degree, minimum degree, domination number, 
chromatic number, clique number.  
 
 
2.  Main Results 
 
First result is about diameter which is well-known graph parameter. 
 
The distance of a simple, connected graph G is the length of the shortest path between 
two vertices a  and b and denoted by ( )Gd a b, .  Also, the diameter of a simple, 

connected graph G  is equal to { }( ) max ( ) ( )Gdiam G d a b a b V G= , : , ∈
 
[17].  

 
2.1. Theorem   

1 2( ( ) ( )) 2M Mdiam S SΓ Γ =� . 
 
Proof.  
The vertices ( )i jx x,  and 1 2( ) ( ) ( )a b

M Mx x S S, ∈Γ Γ�   they are not adjacent. Also ( )n mx x,  

is adjacent to both of them and the case 1a =  and j b=  does not provide this condition. 

Then; there exist an adjacency ( ) ( )a b n m i jx x x x x x   , , ,∼ ∼ . 

So diameter of 1 2( ) ( )M MS SΓ Γ�  is 2. 

 
The girth of a simple, connected graph G  is the length of the shortest cycle in the 
graph. If the graph G  doesn’t contain any cycle, then the girth is taken as infinite [17].  
 
2.2. Theorem  

1 2( ( ) ( )) 3.M Mgirth S SΓ Γ =�
 

 
Proof. 
By considering strong product rule, we easily see that the equalities  

• n n=  and 2m+  > m imply 2n m nx x x x         , ,∼ ,  

• n n=  and 1m m+ −  > m imply 1n m n mx x x x −         , ,∼ ,  
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• n n=  and 2 1m+ −  > m imply 2 1n n mx x x x −         , ,∼ .  

Then we can say that;  
 

2 1n m n n m n mx x x x x x x x−                     , , , ,∼ ∼ ∼

 
 
so as desired.    
 
The eccentricity of a vertexu , shown ( )e u , in a connected graph G  is the maximum 
distance between u  and any other vertex v  of G.  It is clear that diameter of a graph is 
equal to the maximum eccentricity ofG . Also the minimum eccentricity is equal to the 

radius of G  and denoted by  { }( ) (maxminrad G d u v
G

u v

  = ,   
 [17,18].  

 
2.3. Theorem  

1 2( ( ) ( )) 1.M Mrad S SΓ Γ =�
 

 
Proof. 
We know that the vertex n mx x   ,  is adjacent to all other vertices for any vertex i jx x   , ,  

1 i n≤ ≤ ,  1 j m≤ ≤  is adjacent to n mx x   ,  so the distance is equal to1.  

 
The degree of a vertex v  of G  ( )deg ( )G v  is the number of vertices adjacent tov . 

Among all degrees, the maximum ( )G∆  (or the minimum ( )Gδ ) degrees of G  is the 

number of the largest (or smallest) degree inG  [19].  
 
 
2.4. Theorem  

1 2( ( ) ( )) 1M MS S n m∆ Γ Γ = . −�
 
and 1 2( ( ) ( )) 3. M MS Sδ Γ Γ =�

  
 
Proof.  
The vertex set of 1 2( ( ) ( ))M MV S SΓ Γ�  has n m.  vertices. Let us take the vertices ( )n mx x,  

because this vertex is adjacent to all other vertices. That’s why the maximum degree 

( )∆  of the graph is equal to 1n m. − .   

Now, let us take the vertex ( )x x,  because this vertex is just adjacent to vertices 

( )n mx x x x   , , ,  and n mx x   , .  then it is clear that the minimum degree ( )δ  of the graph 

is equal to 3.  
 
A subset A  of the vertex set ( )V G  of a graph is collect the domination set if every 

vertex ( )V G A−  is joined to at least one vertex of A  by an edge. The domination 

number ( )Gγ  is the number of vertices in the smallest dominating set for G  [19].   
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2.5. Theorem  

( )1 2( ) ( ) 1M MS Sγ Γ Γ =� . 

 
Proof.  
Let us take the vertex n mx x   ,  of the graph 1 2( ) ( )M MS SΓ Γ .�  This vertex is adjacent to 

all other vertices hence. We choose this vertex as a dominating set so the domination 
number of graph is equal to 1.   
 
The coloring of a graph G  is defined as an assignment of colors to the vertices of G.  
One color to each vertex so that the adjacent vertices are assigned different colors. If in 
colors are used then it is called n-coloring. The minimum number of n  is called the 
chromatic number and denoted by ( )Gχ  [19].  

 
2.6. Theorem  

( ) ( )1 2 1 1
2 2( ( ) ( )) 1 1n m

M MS Sχ − −Γ Γ = + . +      �   

 
Proof.  
Let us take the vertex n mx x   ,  and the color 1

1a  was used for this vertex. This vertex is 

adjacent to all other vertices so 1
1a  cannot be used for other vertices. After that let 

choose the vertex 1n mx x −   , , then it is obvious that this vertex is not adjacent to ( )nx x,  

so we can use same color 2
1a  for these vertices.  

 

Similary let take the vertex 2n mx x −   ,  is adjacent to all vertices except the vertices 

( )nx x,  and 2nx x   ,  so we can use same color 3
1a  for these vertices.  

If we apply the same steps to other vertices n ix x   , , 1 i m≤ ≤ .  We obtained that 

1
21 m−+     different colors.  

 

Now, let choose the vertex 1n mx x−   , .  This vertex is not adjacent to 

( ) 2 2 12, , ,...,
m m

mx x x x x x x x x x
      +                     

, , ..., , , , , .  Also, there exist adjacency between the 

vertices 2 21 2
,...,

m m
mx x x x x x

      + +                  
, , , , . 

 

Because of this the color of 12a  which is used for the vertex 1n mx x−   ,  can be used for 

the vertices( ) 22, ,
m

x x x x x x
            

, , ..., , . Then, consider the vertex 1 1n mx x− −   ,  which is not 

adjacent to the vertices ( ) 2, , mx x x x x x         , , ..., ,  and ( )1nx x− , .  The color of which is 

used for 1 1n mx x− −   ,  also can be used for the vertices 2 1m

x x
  +    
,  and ( )1nx x− , .  
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Let choose the final vertex 1 2n mx x− −   ,  which is not adjacent to the 

vertices( ) 2, , mx x x x x x         , , ..., , , ( )1nx x−

,  and 1 2nx x−   , .  As before, the color 3
2a  used 

for 1 2n mx x− −   ,  , 2 2m

x x
  +    
,  and 1 2nx x−   , .   

Finally, we can say that ( )1
21 m−+     different colors are necessary for the coloring of 

vertices in the set{ }1
21 1n j i mx x x x j m i m−         , , , : ≤ ≤ , + ≤ ≤   .  

 

Last part of the proof, let take the vertex 2n mx x−   ,  which is not adjacent to the vertices 

( ) ( )2 2 2 2 2, , ,m mx x x x x x x x x x x x                     , , ..., , , , , ,..., , .  Also these vertices 

( )2 2 2 2 mx x x x x x         , , , ,..., ,  are not adjacent to 2n mx x−   , .  So we can use the same color 
1
3a  for these vertices and 2n mx x−   , .   

 

By applying the same process, let choose the vertex 2 1n mx x− −   , .  The color 2
3a  is used 

only for 2 12
m

x x
  +    

,  and 2 1n mx x− −   , .   

 

Also the vertex 2 2n mx x− −   ,  is not adjacent to vertices 

( ) ( )2 2 2 2 2m nx x x x x x x x−         , , , ,..., , , ,  and 2 2nx x−   ,  so the color 3
3a  can be used only for 

the vertices 2 22
m

x x
  +    

,  and 2 2nx x−   , .   

 

Now, we obtained ( )1
21 m−+     different colors for the vertices 

{ }2 2
21 1n j i mx x x x j m i m−         , , , : ≤ ≤ , + ≤ ≤ .     

 

If we apply the same process to all vertices we need to ( )1
21 n−+     steps. Then we 

obtained that 
 

( ) ( )1 2 1 1
2 2( ) ( ) 1 1n m

M MS Sχ   − −  Γ Γ = + . +      � . 

 
All complete subgraphs of a graph are called “clique”. The clique number of a graph is 
equal to the maximum vertex number of a clique. The clique number is denoted by 

( )Gω  [19]. 

 
2.7. Theorem  

( ) ( )1 2 1 1
2 2( ( ) ( )) 1 1n m

M MS Sω − −Γ Γ = + . +      �   

 
 
 
 
 



AKGÜNEŞ N. 

 418 

Proof. 
In the proof, we must .first check whether the subgraph is complete or not. Now let us 
consider definition of the graph 1 2( ) ( )M MS SΓ Γ� . Then will have a maximal complete 

subgraph with the vertex set: 
 

( )
2 2 2 2 2

2 2 2 2 2

2 2

1

1 1 1

1

, ,

, ,

,

n m n m n

n m n m n

m m

m

m

n n n

x x x x x x

V A x x x x x x

x x x x x

              +                        
              + + +                        
      +            

, , ,..., ,
= , , ,..., ,

, , ,..., , .

 

mx   

         

 

 

So ( ) ( )1 2 1 1
2 2( ( ) ( )) 1 1n m

M MS Sω − −Γ Γ = + . +      �  as desired.  

 
2.8. Remark  
 
By Theorems 2.6 and 2.7,  

 ( ) ( )1 2 1 2 1 1
2 2( ( ) ( )) ( ( ) ( )) 1 1n m

M M M MS S S Sχ ω − −Γ Γ = Γ Γ = + . +      � �  

which implies that the strong product preserves the perfectness property [19] for the 
important graphs 1( )MSΓ  and 2( )MSΓ .  

 
2.9. Example  
 

 
 

Figure 1. The graph 
3 4

1 2( ) ( )M MS SΓ Γ� . Here for 1 3 and 1 4a b≤ ≤ ≤ ≤ each label ab 

corresponds to the vertices ( ),a bx x . 
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Let us consider the semigroups  
 

3

1 2 3{ }MS x x x= , ,  and 
4

2 2 3 4{ }MS x x x x= , , ,  

 
and then let us give our attention to the graph 

3 4

1 2( ) ( )M MS SΓ Γ� as drawn in Fig. 1. 

Depend on the results presented in this study, we can state the following results: 
 

i. 
3 4

1 2( ( ) ( )) 2M Mdiam S SΓ Γ =�  (by Theorem 2.1). 

ii.  
3 4

1 2( ( ) ( )) 3M Mgirth S SΓ Γ =�
 
(by Theorem 2.2). 

iii.  
3 4

1 2( ( ) ( )) 1M Mrad S SΓ Γ =�
 
(by Theorem 2.3). 

iv. 
3 4

1 2( ( ) ( )) 11M MS S∆ Γ Γ =�  and 
3 4

1 2 ( ( ) ( )) 3M MS Sδ Γ Γ =�
 
(by Theorem 2.4). 

v. ( )
3 4

1 2( ) ( ) 1M MS Sγ Γ Γ =� (by Theorem 2.5). 

vi. 
3 4

1 2( ( ) ( )) 6M MS Sχ Γ Γ =� (by Theorem 2.6). 

vii.  1 2( ( ) ( )) 6M MS Sω Γ Γ =� (by Theorem 2.7). 
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