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Abstract

In this paper, we define a family of distance functions in the real plane, m-generalized taxicab distance function, which includes the
generalized taxicab distance and so the taxicab distance functions as special cases, and we show that the m-generalized taxicab distance
function determines a metric. Then we give some properties of the m-generalized taxicab metric, and determine Euclidean isometries that
preserve the m-generalized taxicab metric.
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1. Introduction

The taxicab metric was given in a family of metrics of the real plane by Minkowski. Using this metric, taxicab geometry was introduced by
Menger [5], and developed by Krause [4]. In the taxicab geometry, circles are squares in which each diagonal is parallel to a coordinate axis.
In [8], Lawrance J. Wallen altered the taxicab metric by redefining in order to get rid of imperative symmetry, and called it the (slightly)
generalized taxicab metric. In the generalized taxicab geometry, circles are rhombuses in which each diagonal is also parallel to a coordinate
axis.

In this work, we define a new distance function in the real plane R2, m-generalized taxicab distance function dTg(m), which includes the
generalized taxicab distance and so the taxicab distance functions as special cases, and we show that the m-generalized taxicab distance
function determines a metric in R2. We see that the m-generalized taxicab metric can have any rhombus as a circle, instead of rhombuses
with diagonal parallel to a coordinate axis. Then we give some properties of the m-generalized taxicab metric, and determine Euclidean
isometries of the plane which also preserve m-generalized taxicab metric. We also see that there are transformations which preserve the
m-generalized taxicab distance, but not preserve the Euclidean distance for some case.

2. The m-generalized taxicab distance in R2

The m-generalized taxicab distance and the m-taxicab distance between two points in the Cartesian plane are defined as follows:

Definition 2.1. Let P1 = (x1,y1) and P2 = (x2,y2) be two points in R2. For any real number m and positive real numbers a and b, the
function dTg(m) : R2×R2→ [0,∞) defined by

dTg(m)(P1,P2)=(a|(x1−x2)+m(y1−y2)|+b|m(x1−x2)−(y1−y2)|)/(1+m2)1/2 (2.1)

is called the m-generalized taxicab distance function in R2, and the real number dTg(m)(P1,P2) is called the m- generalized taxicab distance
between points P1 and P2. As a special case, if a = b = 1, then the function dT (m) : R2×R2→ [0,∞) defined by

dT (m)(P1,P2)=(|(x1−x2)+m(y1−y2)|+|m(x1−x2)−(y1−y2)|)/(1+m2)1/2 (2.2)

is called the m-taxicab distance function in R2, and the real number dT (m)(P1,P2) is called the m-taxicab distance between points P1 and P2.
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Remark 1. We are quite familiar to the notation of dT for the taxicab distance function. In [2] and [3], dTg was used to state the generalized
taxicab distance. Here, we choose the notation dTg(m) to state the m-generalized taxicab distance function, and dT (m) to state the m-taxicab
distance function for compatibility. Clearly, there are infinitely many different distance functions in the family of distance functions dTg(m),
depending on values a, b and m. One can find the definition of dTg(m) not to be well-defined since the m-generalized taxicab distance between
two points can change also according to values a and b. To remove this confusion, we have to use values a and b in the name of the distance,
just as we use m. This can be done easily; for example by using the notation m(a,b) instead of m in phrases dTg(m) and m-generalized taxicab
distance. But we keep on using m for the sake of shortness, supposing values a and b are initially determined and fixed, unless otherwise
stated.

Remark 2. In R2, the m-generalized taxicab distance function involves the generalized taxicab distance and so the taxicab distance functions
as special cases: For points P1 = (x1,y1) and P2 = (x2,y2), if m = 0 in dTg(m), then

dTg(0)(P1,P2) = dTg(P1,P2) = a |x1− x2|+b |y1− y2| (2.3)

which is the generalized taxicab distance function dTg . And if a = b = 1 and m = 0 in dTg(m), or if m = 0 in dT (m), then

dT (0)(P1,P2) = dT (P1,P2) = |x1− x2|+ |y1− y2| (2.4)

which is the well-known taxicab distance function dT . In addition, if a = b, then dTg(m) is equal to the m-generalized absolute value distance
dm defined in [1]. But, if a 6= b, then we will see in Section 2 that the m-generalized taxicab circle is a rhombus, while the m-generalized
absolute value circle is an octagon.

Henceforth, we use equations a′ = a/(1+m2)1/2 and b′ = b/(1+m2)1/2 to shorten phrases. The following proposition shows that the
m-generalized taxicab distance function satisfies the metric properties.

Proposition 2.1. The m-generalized taxicab distance function determines a metric in R2.

Proof. Clearly, dTg(m)(P1,P2) = 0 if and only if P1 = P2, and dTg(m)(P1,P2) = dTg(m)(P2,P1) for all P1 and P2 in R2. So, we only will show
that dTg(m) satisfies the triangle inequality, that is, dTg(m)(P1,P2) ≤ dTg(m)(P1,P3)+dTg(m)(P3,P2) for points Pi = (xi,yi), i = 1,2,3 in R2.
This fact can be proven as follows:

dTg(m)(P1,P2) = a′ |(x1− x2)+m(y1− y2)|+b′ |m(x1− x2)− (y1− y2)|
= a′ |(x1− x3)+m(y1− y3)+(x3− x2)+m(y3− y2)|+

b′ |m(x1− x3)− (y1− y3)+m(x3− x2)− (y3− y2)|
≤ a′ |(x1− x3)+m(y1− y3)|+b′ |m(x1− x3)− (y1− y3)|+

a′ |(x3− x2)+m(y3− y2)|+b′ |m(x3− x2)− (y3− y2)|
= dTg(m)(P1,P3)+dTg(m)P3,P1).

3. Some properties of dTg(m)

Let P1 = (x1,y1) and P2 = (x2,y2) be two points in the Cartesian coordinate plane. Let lP1 be the line through P1 with slope m, and let lP2

be the line through P2 and perpendicular to the line lP1 . Since the Euclidean distances from P1 to lP2 and from P2 to lP1 are dE(P1, lP2) =

|(x1− x2)+m(y1− y2)|/(1+m2)1/2 and dE(P2, lP1) = |m(x1− x2)− (y1− y2)|/(1+m2)1/2, the m-generalized taxicab distance between
points P1 and P2 can be given by

dTg(m)(P1,P2) = a dE(P1, lP2)+b dE(P2, lP1). (3.1)

If a ≥ b, let b
a = (secα − tanα) for α ∈ [0,π/2); and if b ≥ a, let a

b = (secβ − tanβ ) for β ∈ [0,π/2). Then we get the fact that if
a = b, then α = β = 0 and the m-generalized taxicab distance between points P1 and P2 is constant a multiple of the Euclidean length
of one of the shortest paths from P1 to P2 composed of line segments, each parallel to one of lines with slope m or −1/m; if a≥ b, then
the m-generalized taxicab distance between points P1 and P2 is constant a multiple of the Euclidean length of one of the shortest paths
from P1 to P2 composed of line segments, each parallel to one of lines with slope m, −1/m, [m(a2− b2)+ 2ab]/[(a2− b2)− 2abm] or
[m(a2−b2)−2ab]/[(a2−b2)+2abm]; if b≥ a, then the m-generalized taxicab distance between points P1 and P2 is constant b multiple of
the Euclidean length of one of the shortest paths from P1 to P2 composed of line segments, each parallel to one of lines with slope m, −1/m,
[2abm− (a2−b2)]/[m(a2−b2)+2ab] or [(a2−b2)+2abm]/[2ab−m(a2−b2)] (see Figure 1). Although there exist, in general, infinitely
many shortest paths between points P1 and P2, we prefer to use the ones in Figure 1, and call each of them a basic way. Also we call each of
lines mx− y = 0 and x+my = 0 an axis of direction.
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Figure 1: The basic ways between points P1 and P2
with respect to the m-generalized taxicab metric.

Now, we examine the minimum distance set of points P1 and P2 in R2
Tg(m). The minimum distance set of P1 and P2, M(P1,P2), is defined by

M(P1,P2) =
{

X : dTg(m)(P1,X)+dTg(m)(X ,P2) = dTg(m)(P1,P2)
}

. (3.2)

In Euclidean plane, the minimum distance set of P1 and P2 is the line segment joining points P1 and P2. It is not difficult to see that the
minimum distance set of points P1 and P2 with respect to the m-generalized taxicab metric is generally a rectangular region (or a line
segment) with diagonal P1P2 bounded by the lines through P1 and P2 being parallel to an axis of direction, which are mx− y−mxi + yi = 0
and x+my− xi−myi = 0 for i ∈ {1,2}, as shown in Figure 2.

Figure 2: Minimum distance set of P1 and P2 with
respect to the m-generalized taxicab metric.

The following two propositions follow directly from Equation (3.1) which is the geometric interpretation of the m-generalized taxicab
distance.

Proposition 3.1. Let P1, P2 and P3 be three points in R2 such that P3 ∈ M(P1,P2). Then, dTg(m)(P1,P3) ≤ dTg(m)(P1,P2). In addition,
dTg(m)(P1,P3) = dTg(m)(P1,P2) if and only if P3 = P2.
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Proposition 3.2. Let P1, P2, P3 and P4 be four points in R2 . For a = b, if M(P1,P2) and M(P3,P4) are congruent, then dTg(m)(P1,P2) =

dTg(m)(P3,P4). For a 6= b, if M(P1,P2) and M(P3,P4) are congruent and equal sides of M(P1,P2) and M(P3,P4) are parallel, then
dTg(m)(P1,P2) = dTg(m)(P3,P4).

Let us denote the real plane endowed with the m-generalized taxicab metric by R2
Tg(m). Then m-generalized taxicab unit circle in R2

Tg(m) is
the set of points (x,y) satisfying the equation

(a |x+my|+b |mx− y|)/(1+m2)1/2 = 1. (3.3)

One can see by calculation that m-generalized taxicab unit circle is a rhombus with a diagonal having slope of m, and with vertices
A1 =

( 1
ak ,

m
ak
)
, A2 =

(−m
bk , 1

bk
)
, A3 =

(−1
ak ,
−m
ak
)

and A4 =
( m

bk ,
−1
bk
)

, where k = (1+m2)1/2 (see Figure 3). If a = b, then m-generalized
taxicab unit circle is a square with vertices A1,A2,A3 and A4. In R2

Tg(m), it is easy to see that the ratio of the circumference of an m-generalized
taxicab circle to its diameter is πTg(m) = 4.

Figure 3: The m-generalized taxicab unit circle for m = 1/4, a = 1/5, b = 1/3.

Thus, the m-generalized taxicab metric has rhombuses with diagonal having slope of m, as circles, instead of rhombuses with diagonal
parallel to a coordinate axis, and the m-taxicab metric has squares with diagonal having slope of m, as circles, instead of squares with
diagonal parallel to a coordinate axis.

The following proposition gives an equation which relates the Euclidean distance to the m-generalized taxicab distance between two points
in the Cartesian coordinate plane:

Proposition 3.3. For any two points P1 and P2 in R2 that do not lie on a vertical line, if n is the slope of the line through P1 and P2, then

dE(P1,P2) = µ(n)dTg(m)(P1,P2) (3.4)

where µ(n) =(1+n2)1/2/(a′ |1+mn|+b′ |m−n|). If P1 and P2 lie on a vertical line, then

dE(P1,P2) = [1/(a′ |m|+b′)]dTg(m)(P1,P2). (3.5)

Proof. Let P1 = (x1,y1) and P2 = (x2,y2) such that x1 6= x2. Then n = (y2− y1)/(x2− x1). Clearly, dTg(m)(P1,P2) = |x1− x2|(a′ |1+mn|+
b′ |m−n|) and dE(P1,P2)=|x1− x2|(1+n2)1/2, thus we have dE(P1,P2)=µ(n)dTg(m)(P1,P2), where µ(n)=(1+n2)1/2/(a′ |1+mn|+b′ |m−n|).
If x1 = x2, then dTg(m)(P1,P2) = |x1− x2|(a′ |m|+b′) and we have Equation (3.5).

The following two corollaries follow directly from Proposition 3.2 or Proposition 3.3:

Corollary 3.1. Let P1, P2, P3 and P4 be four points in R2 . If lines P1P2 and P3P4 are coincident or parallel or symmetric about a line
parallel to an axis of direction; in addition P1P2 and P3P4 are perpendicular to each other for a = b, then

dTg(m)(P1,P2) = dTg(m)(P3,P4) if and only if dE(P1,P2) = dE(P3,P4). (3.6)

Corollary 3.2. If P1, P2 and X are three distinct collinear points in R2, then

dTg(m)(P1,X)/dTg(m)(X ,P2) = dE(P1,X)/dE(X ,P2). (3.7)

As a consequence of Corollary 3.2, it is clear that Thales, Menelaus, and Ceva theorems are true in R2
Tg(m).
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4. Isometries of R2
Tg(m)

Notice that by Proposition 3.2 and Corollary 3.1, the m-generalized taxicab distance between two points is invariant under all translations. In
addition, the m-generalized taxicab distance between two points is invariant under rotation of π radian around a point for a 6= b; and rotations
of π/2, π and 3π/2 radians around a point for a= b. Besides, if a 6= b, then the m-generalized taxicab distance between two points is invariant
under the reflections in lines parallel to mx− y = 0 or x+my = 0; if a = b, then the m-generalized taxicab distance between two points is
invariant under reflections in lines parallel to mx−y = 0, x+my = 0, (1+m)x−(1−m)y = 0, or (1−m)x+(1+m)y = 0. On the other hand,
if we denote reflection in line l by σl , and rotation about a point C through angle θ by ρC,θ , using coordinate definition of the m -generalized
taxicab distance for any points P1 and P2, one can get that dTg(m)(P1,P2) = dTg(m)(σl(P1),σl(P2)) for l ∈ {mx− y = 0,x+my = 0} and
dTg(m)(P1,P2) = dTg(m)(ρO,θ (P1),ρO,θ (P2)) for θ ∈ {0,π}; in addition if a= b then the equations holds also for l ∈ {(1+m)x−(1−m)y= 0,
(1−m)x+(1+m)y = 0} and θ ∈

{
π

2 ,
3π

2
}

.

Now, we state following three propositions as results of our observations above:

Proposition 4.1. Every translation is an isometry of R2
Tg(m).

Proposition 4.2. In R2
Tg(m), the set of isometric reflections in lines through origin is

STg(m)=

{
σmx−y=0, σx+my=0 , if a 6= b
σmx−y=0, σx+my=0, σ(1+m)x−(1−m)y=0, σ(1−m)x+(1+m)y=0 , if a = b .

Proposition 4.3. In R2
Tg(m), the set of isometric rotations about origin for θ ∈ [0,2π) is

RTg(m) =

{
ρO,0, ρO,π , if a 6= b
ρO,0, ρO, π

2
, ρO,π , ρO, 3π

2
, if a = b .

The following proposition states that there is no other Euclidean isometry preserving the m-generalized taxicab distance:

Proposition 4.4. Let φ : R2
Tg(m)→R2

Tg(m) be a Euclidean isometry preserving the m-generalized taxicab distance such that φ(O) = O. Then
φ ∈ RTg(m) or φ ∈ STg(m).

Proof. Given a Euclidean isometry φ : R2
Tg
→ R2

Tg
such that φ(O) = O. Assume that φ(A1) ∈ (A1,A2), then φ(A2) ∈ [A3,A4] since

dTg(φ(A1),φ(A2)) = 2. Then φ(A3) ∈ [A1,A2], and we have dTg(φ(A1),φ(A3))< 2, which is a contradiction since dTg(A1,A3) = 2. Thus,
φ(A1) /∈ (A1,A2). Similarly, one can see that φ(Ai) /∈ (A j,A j+1) for i, j ∈ {1,2,3,4} and (assume that A5 = A1). Now, it is clear that
φ(Ai) ∈ {A1,A2,A3,A4} for i ∈ {1,2,3,4}. For a 6= b, if φ(A1) = Ai, then φ(A2) = Ai+1 for i ∈ {1,3}, and φ is a rotation with the angle
θ =

(1−i)π
2 . If φ(A1) = Ai+1, then φ(A2) = Ai for i ∈ {2,4}, and φ is a reflection in line mx−y = 0 or x+my = 0. For a = b, if φ(A1) = Ai,

then φ(A2) = Ai+1 for i ∈ {1,2,3,4} , and φ is a rotation with the angle θ =
(1−i)π

2 . If φ(A1) = Ai+1, then φ(A2) = Ai for i ∈ {2,4}, and φ

is a reflection in line mx− y = 0, x+my = 0, (1+m)x− (1−m)y = 0 or (1−m)x+(1+m)y = 0.

Consequently, we have the orthogonal group OTg(m)(2) = RTg(m) ∪ STg(m). Note that there are four more isometries of R2
Tg(m) such that

Ψ1(A1,A2,A3,A4) = (A2,A1,A4,A3), Ψ′1(A1,A2,A3,A4) = (A4,A3,A2,A1), Ψ2(A1,A2,A3,A4) =
p(A2,A3,A4,A1), Ψ′2(A1,A2,A3,A4) = (A4,A1,A2,A3) and Ψi(O) = Ψ′i(O) = O: Ψi(x,y) = (Ui,Vi), Ψ′i(x,y) = (−Ui,−Vi), where U1=
(b2−a2m2)y−m(a2+b2)x

ab(1+m2)
, V1=

m(a2+b2)y+(a2−b2m2)x
ab(1+m2)

, U2=
(−b2−a2m2)y−m(a2−b2)x

ab(1+m2)
, V2=

m(a2−b2)y+(a2+b2m2)x
ab(1+m2)

. One can check that these trans-
formations do not preserve the Euclidean distance for a 6= b, while they preserve the m-generalized taxicab distance! If a = b, then
Ψ1 = σ(1+m)x−(1−m)y=0, Ψ′1 = σ(1−m)x+(1+m)y=0, Ψ2 = ρO, π

2
and Ψ′2 = ρO, 3π

2
.

Theorem 4.1. Let f : R2
Tg(m)→ R2

Tg(m) be a Euclidean isometry preserving the m-generalized taxicab distance. Then there exists a unique
Ta ∈ T (2) and φ ∈ OTg(m)(2) such that f = Ta ◦φ .

Proof. Suppose that f (O) = A where a = (a1,a2). Define φ = T−a ◦ f . It is clear that φ is an isometry and φ(O) = O. Thus, we get
φ ∈ OTg(m)(2) by Proposition 4.4, and f = Ta ◦φ . The proof of uniqueness is trivial.

Finally, by Theorem 4.1 we determine the group of Euclidean isometries preserving the m-generalized taxicab distance is semidirect product
of the translation group T (2) consisting of all translations and the symmetry group of the m-generalized taxicab unit circle OTg(m)(2).
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