ÖZET

Etkin ve yüksek verimli bitkisel üretim için önemli bir girdi olan suyun en iyi biçimde kullanılması gerekir. Bu ise, farklı yetişme koşullarında yağış ve sulama yoluya sağlanan suyun bitki gelişimi ve verimi üzerindeki etkilerinin anlaşılmasıyla mümkündür.

 Günümüze su ekonomistleri ve mühendisler, sulanan başlica bitkilerin eksiği(kısıntılı) sulama koşullarındaki verimleri ve sağlayacakları gelirleri kestirebilen su-verim(üretim) fonksiyonlarına gereksinim duymaktadırlar.

 Verim ve su kullanımı arasındaki ilişki; sulamanın ekonomik değerinin belirlenmesi, farklı sulama rejimlerinin değerlendirilmesi ve optimum sulama düzeylerinin saplanması açısından oldukça önemlidir.

 Bu makalede, bitki su-verim fonksiyonu kavramının açıklanması, günümüze de dün özellendirilen bazı su-verim fonksiyonlarının özdenden çıkarılması ve kullanılan yaklaşımların özetlenmesi amaçlanmıştır.

GİRİŞ

*Yrd.Doç.Dr., Akdeniz Üniversitesi Ziraat Fakültesi, Kültürteknik Bölümü
Planlayıcılar, su-verim fonksiyonlarından yararlanarak su dağıtımına ilişkin seçeneksel kararların ekonomik sonuçlarını kestirebilirler. Ayrıca su-verim fonksiyonları sulama sistemlerinin kapasiteleri, sulama programlaması ve sulama etkinliğinin değerlendirilmesi konularında planlayıcılarla ışık tutarlard (Sammis, 1981).

Bu makalede, bitki su-verim fonksiyonu kavramının açıklanması, bitki su ilişkilerine yönelik çalışmaların ve geliştirilen bazı su-verim fonksiyonlarının gözden geçirilmesi, kullanılan yaklaşımların özetlenmesi amaçlanmıştır.

SU-VERIM İLİŞKİLERİNİN EKONOMİK YÖNÜ

Bitki verimi ve su arasındaki ilişkiye ayırtlamayı amaçlayan çalışmalararda, istenen su kullanım düzeyini oluşturutan unsurlar konusunda değişik görüşler ileri sürülmüştür. Bu konuda üç genel yaklaşım söz konusudur (Vaux ve Pruitt, 1983):(1) Agronomistler çoğunlukla birim alandan maksimum verimi elde etme amacına yönelmişlerdir. (2) Seçeneksel bir amaç maksimum su kullanım randmanına ulaşmak, diğer bir deyişle birim su girdisinden elde edilen verimi maksimize etmektil. (3) Suyun etkin kullanımını tartışan ekonomistlerce ortaya konan diğer bir amaç, uygunlanan son birim suyun fiyatının uygunlama sonucunda elde edilecek gelire eşit olduğu noktaya dek suyun uygunlanmasıdır. Bu amaç sullanabilir nitelikli alanın, eldeki su ile sullanabilecek alanda fazla olduğu durumlar için uygundur. Hexem ve Heady (1978), marjinal ürün değeri suyun fiyatına eşit olduğu zaman suyun randmanlı uygunlandığını göstermişlerdir. Gözönümne alınan ekonomik düşünceler (örneğin; su, enerji, makina, ışığın v.b. giderlerin oransal maliyetlerine karşılık elde edilebilir gelir) her durum için özel olduğundan suyun optimal dağıtımı sorununun, universal bir çözümü yoktur (Hillel, 1987). Genellikle birbirine aykırı olan bu çeşit amaçları gerçekleştirmede basit üretim modellerinden yararlanılmaktadır.

BITKİ SU-VERIM FONKSİYONU KAVRAMI

Diğer tüm değişkenlerin sabit tutulması koşuluyla, bitki verimi (Y) ve su kullanımını (X) arasındaki fonksiyonel ilişki olarak tanımlanan su-verim fonksiyonları, genellikle suyun (veya suya ilişkin diğer bir girdi parametreinin) değişken olduğu tarla denemelerinin regresyon analizleri sonucunda elde edildirler. Çoğu bitkiler için, bitkinin su stresinden etkilenliği Büyüme dönemi ve farklı büyüme dönemlerinde uygulanan
su streslerinin birbirlerine bağlılığı anılan ilişkinin belirlenmesinde etkili olan en önemli iki durumdur. Ayrıca, su verim fonksiyonunun ekonomik değerlendirmeye olanak vermesi, bunun yanında bitki-su ilişkinin fizyolojisi, su eksikliğinin ürün kalitesine etkisi, yörede ilişkin özelliklerden etkilenme v.b. konularda da değerlendirilmelere olanak vermesi istenir (Vaux ve Pruitt, 1983).

Su-verim fonksiyonunda su kullanımını (X); sulama suyu derinliği (IRR), tarlaya sağlanan toplam su (etkili yağış + IRR + toprakta depolanan su) ya da gerçek evapotranspirasyon (ETa) olarak hesaplanan bitki su tüketimi biçiminde ifade edilebilir (Rao ve ark., 1988). Stewart ve Hagan (1969), su uygulamada rastlanan farklılıklar nedeniyle su kullanımını olarak "uygulanan toplam su" yerine evapotranspirasyonun kullanılamasını önermişlerdir. Öte yandan verim (Y) bitkiye, bitkinin ekim ve pazarlama durumuna bağlı olarak farklı biçimde tanımlanabilirmektedir. Bu duruma örnek olarak yeşil bitki, kuru ot ya da tohum için yetiştirilen yonca bitkisi vertilebilir.

SU-VERİM İLİŞKİSİ ETKILEYEN ETMENLER

Birçok çalışma su-verim ilişkisinin doğrusal olabileceği gibi eğrisel içbükey veya dışbükey de olabileceği göstermiştir (Şekil 1). Bu farklılıkların nedeni seçilen parametrenin özelliği, ölçüm veya tahminin doğruluk düzeyi, yer ve üretim koşullarına ilişkin değişik etmenlerin varlığı olabilmektedir. Anılan etmenlere bağlı olarak aynı denemenin farklı yılları bile değişik verim fonksiyonları ile sonuçlanabilmektedir (Stegman ve ark., 1981).

![Şekil 1. Su-verim ilişkisinin tipik şekilleri (Hillel, 1987).](image-url)

Bitkinin tüm evapotranspirasyon (ET) gereksinmesinin sulama ile karşılanması durumunda orijinden başlayan verim fonksiyonları söz konusu olmakta ve bu çeşit fonksiyonlar ET'nin potansiyel sınırları içerisinde su kullanım randımanının sabit kaldığı varsayımına dayanmaktadır. Anılan fonksiyonlar, su kullanım randımanı birim alandan maksimum ürün alıncaya dek artış gösterdiğiinden, dışbökey fonksiyonlar gibi yorumlanmaktadır. Öte yandan; toprakta depolanan nem ve mevsim içindeki toplam yağışın bitkide verim oluşumu başlayana dek bitki su gereksinimini karşılamaya yeterli olduğu durumlarda, elde edilen fonksiyonlar orijinden başlamamakta ancak orijinden başlayan doğrusal fonksiyonlar gibi yorumlanabilmektedirler (Stewart ve Hagan, 1969).

Doğrusal verim fonksiyonları çoğunlukla bitki su tüketimi eksikliğinin birkaç büyüme dönemi içerisinde başlamaya da sulama rejim-

SU-VERİM FONKSİYONLARINA İLİŞKİN ÇALIŞMALARDA UYGULANAN DENEME PLANLARI

İkinci tür deneme planında (Hanks ve ark., 1976) tek bir yağmurlama lateralı kullanılarak; laterale dik, üçgen bir su dağılımı deseni elde edilmektekdir. Sık yapılan sulamalarla lateralin yakınılarında stressli veya az stressli durum sürdürürlü. Boylece her sulama; bitki su tüketimi, lateral üzerinde % 100’ün, lateralden yağmurlama ıslatma deseninin uçlarına doğru uzaklaştırılmış belirli oranlarda değişen bir bölümün karşılıyabilmektedir. Uygun aralıklarla yerleştirilecek iki lateral hattı (Maurer ve ark., 1979) her iki deneme planının bir arada yürütülmesine olanak sağlar (Şekil 2-a). Bu durumda ikinci lateral (tam sulama) hattı, hemen lateral hattına bitişik sıralardaki ET derekşininimizin tama- nını gidermek üzere çalıştırılır. İkinci lateral (konu) hattı çalıştırılamadığında parsel eni doğrultusunda sulama gradienti ("W" ile gösterilir) yaratılmaktadır. Her iki lateral birlikte çalıştırıldığında ise parsel yeneksak ("I" ile gösterilir) sulanmaktadır. Su uygulaması laterale olan uzaklığın artmasıyla doğrusal biçimde azalmaktadır. Bu durumda, değişik gelişme dönemlerine göre olası konu desenleri Şekil 2-b'de gösterilmiştir.
Şekil 2. a) "Tam" ve "konu" sulama hatları ve bireysel hatların çalıĢtırılmasından elde edilen su uygulama desenleri (Toplam su uygulaması, bireysel desenlerden elde edilenlerin toplamıdır).

b) Üç gelisme devresi söz konusu ık deneme konuları (Maurer ve ark., 1979).

SU-VERİM FONKSİYONLARININ GÖZDEN GEÇİRİLMESİ

Agronomik ve Fizyolojik Verim Fonksiyonları

Su-verim illikleri üzerindeki agronomik ve fizyolojik çalışmalar; ilk çalışmalar, fizyolojik yaklaĢımlar, yarı ampirik yaklaĢımlar olmak üzere gruplandırılabilir (Vaux ve Pruitt, 1983).

ilk Çalışmalar:

Yirminci yüzyıllın başlangıcından bu yana bitkilerde verim ve su kullanımı arasındaki illikler üzerinde birçok çalışma yapılmıĢtır. Bu çalışmalarla daha çok tarla kapasitesi ve devamlı solma noktaları arasındaki nemin kullanılabılırlık düzeyleri tartıĢılmıştır.

Vaux ve Pruitt (1983)'in bildirdiğine göre ilk çalışmalarla dayanarak De Wit (1958) kurak ve yarıkurak bölgeler için kuru madde verimi (Y) ve transpirasyon (T) arasında aşağıdaki illikliyi belirlemiĢtir.

\[Y = m \left(\frac{T}{E_o} \right) \]

(1)

Burada m, bitki türü ve çesidine bağlı bir katsayı; E_0 ise açık su yüzeyinden olan buharlaşmayı göstermektedir. Anılan araştırmacı nemli bölgeler için;
Y = nT

ilişkisini önermiştir. Burada ise n, birim suyun birim alandan oluşturduğu kuru maddeyi gösteren bir katsayı olup bitkiye göre değişmektedir (Hanks, 1983).

İlk çalışmaların asıl amacı, maksimum verime ulaşmak için gerekli minimum toprak suyu içeriği veya potansiyelini belirlemek olmuştur. Anılan çalışmalar, su-verim modelleri geliştiren sonraki araştırmacılar için gerekli ön bilgileri sağlamışlardır.

Fizyolojik Yaklaşımlar:

Hsiao (1973), su eksikliğinin büyüme, fotosentez ve kritik önemi olan tozlanma ve meyve bağlama olayı üzerindeki etkilerini belirlemiş- tir. Su eksikliği ile büyüme ve verim parametreleri arasındaki ilişkilerin karmaşıklığını vurgulayan araştırmacı anılan etkileri Çizelge 1'deki biçimde özetlemiştir.

Çizelge 1. Bazı Önemli Bitkisel Süreçlerin veya Parametrelerin Su Stresine Karşı Duyarlılıklarının Genelleştirilmesi (Hsiao, 1973'den)(a)

<table>
<thead>
<tr>
<th>Etkilenen Sürek veya Parametre</th>
<th>Strese Duyarlılık</th>
<th>Düşünceler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çok Duyarlı</td>
<td>Az Duyarlı</td>
<td></td>
</tr>
<tr>
<td>Süreci etkilenecek için gerekli</td>
<td>doku suyu potansiyeli azalması</td>
<td></td>
</tr>
<tr>
<td>0 Bar</td>
<td>10 Bar</td>
<td>20 Bar</td>
</tr>
<tr>
<td>Hürce büyümesi</td>
<td></td>
<td>Hasıla büyüyen doku</td>
</tr>
<tr>
<td>H. duvari sentezli</td>
<td></td>
<td>Hızlı büyüyen doku</td>
</tr>
<tr>
<td>Protein sentezli</td>
<td></td>
<td>Ağarmış yapraklar</td>
</tr>
<tr>
<td>Protoklorofil oluşumu</td>
<td></td>
<td>Bitki çesidine bağlı</td>
</tr>
<tr>
<td>Stoma açılması</td>
<td></td>
<td>Bitki çesidine bağlı</td>
</tr>
<tr>
<td>CO₂ özülemesi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solunum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Şeker birikimi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Yatay çizgilerin uzunluğu, sürece ilgili etkilenliğe durumda stres düzeylerinin sınırlarını göstermektedir. Kesik çizgiler daha yüzeysel verilerle dayanan sonuçları göstermektedir.

(b) Hafif buharlaşma gerekşimini koşullarında yeterli suyun bitkilerin doku suyu potansiyeli kıyas noktası olarak alınmıştır.
Bitkiniñ çevreye karşı tepkisinin kimyası ve fizği üzerinde yoğunlanan fizyolojik yaklaşım, bitki su-verim fonksiyonlarının bir yerden diğer bir yere genelleştirilerek yapılması sorununun çözümü için umit verici görülmektedir (Vaux ve Pruitt, 1983).

Yarıştımpirik Yaklaşım:

Genellikle bitki veriminin; toprak nem içerdiği veya nem tansiyonu, transpirasyon veya evapotranspirasyon yada uygulanan sulama suyu miktarlarından biri ile ilişkilendirildiği yaklaşımlandır.

Evapotranspirasyonun Fonksiyonu Olarak Bitki Verimi

Evapotranspirasyon (ET), toprak-bitki sistemlileri tarafından tüketilen suyun bir ölçüsü olup toprakta depolanın nemden olan bitki transpirasyonunu ve toprak yüzeyinden olan buharlaşmayı içerir. Gerçek ET, maksimum ET'den küçük olduğunda ET eksikliği (acığlı) oluşur ve verim maksimum verimin altına düşer.

Hanks (1974), verim ve transpirasyon arasında aşağıdaki ilişkini önermiştir.

\[
\frac{Y}{Y_p} = \frac{T}{T_p} \quad \text{(Hanks modeli)}
\]

Eşitlikte; \(Y\), verim; \(T\), mevsimsel transpirasyonu; \(T_p\) toprak neminin sınırlanmadığı koşulda potansiyel transpirasyonu; \(Y_p\) ise, \(T_p\) koşulunda ki verimi göstermektedir.

\[
1 - \frac{Y_a}{Y_m} = \beta (1 - \frac{ET_a}{ET_m}) \quad \text{(Stewart Modeli)}
\]

Burada; \(Y_a\), gerçek verim; \(ET_a\) gerçek mevsimsel ET; \(Y_m\), maksimum verim; \(ET_m\) maksimum verimin elde edilmesi durumunda mevsimsel
ET ve β, verim tepki etmeni olarak adlandırılan bir katsayıdır (Vaux ve Pruitt, 1983). Eşitlik (4)'de şu stresine karşı bitki duyarlılığının bir ölçüsü olan β değeri, verimdeki oransal azalmanın ET'deki oransal azalma oranı, diğer bir deyişle doğrusal fonksiyonun eğimidir. Anılan değer deneySEL veriler kullanılarak elde edilir, bitki tür ve çeşitleri arasında farklılık gösterir, ancak verilen bir çeşit için sabittir.

Doorenbos ve Kassam (1979), verim ve su arasındaki ilişkiye ölçülemeyen bir yöntem geliştirmek için Stewart Modelini kullanarak çeşitli bitkilerin değişik gelişme dönemleri ve toplam büyüme mesvimi için β katsayılarını vermiştirler. Söz konusu çalışmadada Y_m baz do gluLama katsayıları ile değiştirilmiş De Wit yaklaşımı, ET_m ve ET_a ise Doorenbos ve Pruitt (1977)'de verilen yöntemlere göre hesaplanmıştır.

Hanks ve Stewart modellerinde bağımsız değişken olarak gerçek ET (veya T) yerine oransal ET (veya T) kullanılması öneMLidir. İklim gibi yoresel değişkenler nedeniyle aynı miktar bitki büyümesi değişik ET değerleri gerektirebileceğinden oransal ET değerlerinin kullanılması bir yerde elde edilen bir fonksiyonu başka bir yerde de kullanılabilmese de bulunmamaktadır.

Uygulanan Suyun Fonksiyonu Olarak Bitki Verimi

Stewart ve Hagan (1973), ET'nin verimle oldukça doğrudan ilişkili tarla düzeyindeki su parametreleri olmasına karşın, uygulanan sulama suyu derinliği (IRR) henüz kanızlan suyun temsil ettiği, planlayıcılar ve sulamacılar daha çok ilgilendirdiği ileri sürülmüşlerdir. Verim-ET ilişkisinin doğrusal olmasına karşın verim ile tarlaya sağlanan su (ekimde toprahta bulunan kullanılabilir nemli ve yağışı içerir)’ya ilişkını mevsemi olarak suyun ilişkili eğrisel (dışıbükü) özellikle.

Stewart ve Hagan (1973), anılan durumu verime karşı ET ve sulama derinliği (uygulanan su) ilişkilerini aynı sekill üzerinde göstererek irdelemişlerdir (Sekil 3). Burada, doğrusal $[Y = f(ET)]$ ve dışbükey $[Y = f(IRR)]$ fonksiyonlarının seklini bir noktaya dek birbiri le ile uymamı gitmekte ve sonra uygulanan suyun artması ile birbirlerinden ayrılmaktadır. İki eğri arasındaki fark, uygulanan suyun ET dış kalan kısmını göstermektedir. Diğer bir deyişle, uygulanan suyun (varsayEMALE yağış da eklenir) yalnızca bir bölüm ET’ye katkıda bulunur. Fazla gelen su; diğer terimler (azma, toprak su içeriğindeki değişim, yüzey akış v.b.) yardımıyla, su dengesi eşitliği kullanılarak hesaplanabilir.

Stewart ve Hagan (1973), sulama randimanının % 100 olması, diğer bir deyişle tüm IRR'nin ET olarak kullanılması durumunda Y = f(IRR) ve Y = f(ET) fonksiyonlarının aynı olduğunu kanıtlamışlardır. Bu nedenle, eğrisel Y = f(IRR) fonksiyonu ET_{max}'a yaklaştırılırken sulama randimanının azaldığını göstermektedir.

Büyüme Devresinin Etkisi

Literatür; bitkilerin, tüm büyümeye devrelerinde evapotranspirasyon potansiyel düzeyin altında düşüren nem koşullarına olumsuz tepki gösterdiklerinden yaygın olarak söz eder. Örneğin misir bitkisinde püskül ve tozlanma döneminde su eksikliği verimi oldukça düşürür. Öte yandan, pamuk, soya v.b. bitkilerde ise özellikle bazı gelişme dönemlerindeki su stresi verim ve kaliteyi olumlu yönde etkiler (Doorenbos ve Kassam, 1979).

Bir gelişme devresindeki su stresi ile stresin verim üzerinde izleyen devrelerdeki etkisi arasında bulunan ilişki, diğer bir deyişle gelişme devrelerinin arasındaki bağımlılık üzerinde iki farklı yaklaşım vardır. Bazı araştırmacılardan (Hall ve Butcher, 1968; Jensen, 1968; Hanks, 1974) iki veya daha fazla dönemdeki bitki su eksikliklerinin verimi
çarpımı (katlamalı) etki ile azalttığıını, diğerleri ise (Hiler ve Clark, 1971) ekleme etkinin söz konusu olduğunu ileri sürmülerdir.

Jensen (1968), büyüme mevsiminin devrelerde bölünmesi ve her devrede ET’nin verim üzerine tek etken sayılmasıyla aşağıdaki verim fonksiyonunu geliştirmiştir.

\[Y / Y_p = \prod_{i=1}^{n} \left(\frac{ET_a}{ET_p} \right)^{\lambda_i} \]

(5)

Burada \(\lambda_i \); \(i \)’nci gelişme devresinde bitkinin su tresine oransal duyarlılığı, \(Y_p \) ve \(ET_p \) sırasıyla potansiyel verim ve \(ET \)’dir. Burada \(ET_p \), \(ET_{\text{max}} \)’a eşit olarak yorumlanmalıdır.

Hanks ve Stewart kendi modellerininin, farklı gelişme devrelerinde oluşan stres tekrarları birleştiren ikinci düzenlemelerini geliştirmişlerdir (Vaux ve Pruitt, 1983).

Hanks’ın 2. modeli bağımsız değişken olarak ET yerine oransal mevsimlik transpirasyonun gelmesi dışında Jensen’inki ile aynıdır:

\[\frac{Y}{Y_p} = \frac{\lambda_1}{T_{P_1}} \frac{\lambda_2}{T_{P_2}} \ldots \frac{\lambda_n}{T_{P_n}} \quad \text{(Hanks’ın 2. modeli)} \]

(6)

Burada; \(\lambda_n \), \(n \)’nci devrede su tresine karşı duyarlılığı ifade eden ağırlık katsayısıdır. Yine \(T_p \) ve \(Y_p \) sırasıyla \(T_{\text{max}} \) ve \(Y_{\text{max}} \) gibi yorumlanmalıdır.

Stewart ise her devre için farklı \(\beta \) katsayıları kullanarak ekleme etkisi temel almıştır.

\[Y_a = Y_m - Y_m \left(\beta_1 ET_{D_1} + \beta_2 ET_{D_2} + \ldots + \beta_n ET_{D_n} \right) / ET_m \]

(Stewart’in 2. modeli)

(7)

Burada; \(ET_{D_i} \), i devresindeki ET eksikliğini göstermektedir. \(ET_m \) ise tüm mevsim içindedir.

Hiler ve Clark (1971), ekleme yaklaşımları temel olarak mevsim boyunca su tresini ölçümleme için "stres günü indeksi" tanımlamasını önermiştir.

Bitki büyüme devrelerindeki duyarlılığın tanımlanmasına yönelik yaklaşımlarda esaslı farklılar vardır. Stewart ve ark. (1975), ET eksikliğinin şiddeti ve oluşma zamanının özellikle duyarlı bir devre olup olmadığını

Ekonomik Verim Fonksiyonları

Su-verim fonksiyonlarına ilişkin ekonomik çalışmalar ampirik ve teorik olmak üzere iki gruba ayrılabilir (Vaux ve Pruitt, 1983). Birinci gruptağı çalışmaları, çoğunlukla ampirik verilerden verim fonksiyonları geliştirmek için istatistiksel yöntemlerin kullanılmasını içerirler. İkinci grup çalışmalar ise, bitki su-verim ilişkisinin ekonomik yönünü ortaya koymayı amaçlarlar, ve su eksikliğinin zamanlanmasına ilişkin deneysel verilerin azılıği nedeniyle teorik ağırlıklıdırlar.

Ampirik Çalışmalar:

Ampirik ekonomik çalışmaların ana eksikliği sulama uygulamasının zamanlanmasındaki değişimlere sistematik bir yaklaşım sağlayamamalarıdır. Teorik çalışmalar bu konuya daha uygun bir yaklaşım sağlamaktadır.

Teorik Çalışmalar:

Bitki su-verim fonksiyonlarına ilişkin ekonomik literatür özellikile büyüme mevsimi süresince suyun optimal uygulanması sorunu üzerinde odaklanmıştır (Vaux ve Pruitt, 1983). Bu çalışmaları; eğer sulama programlaması sorununun doğru biçimde modellendirilmiş İstenirse, sulama zamanlanması ve miktarını, birlikte içeren zamanlanmış (tartılı) veya çok devrelli verim fonksiyonlarının gerekliğini vurgulamaktadır. Gerçekte, sulama programlamasına ilişkin ekonomik çalışmalar, suyun optimal dağıtımını belirlemekte dinamik programlamayı gerektirirler. Dinamik programlama, suyun farklı büyüme devreleri arasında optimal dağıtımını analiz etme olanağını verir.
Hall ve Butcher (1968), n bitki büyüme devresinde sulama suyunun dağıtımını için bir dinamik programlama modeli sunmuşlardır. Onlar, herhangi bir devresinde toprak neminin tarla kapasitesinin altına düşmesi durumunda, toprak neminin bir fonksiyonu olan \(a_i \) katsayısına bağlı olarak verimin azalacağını varsaymışlardır. Verim fonksiyonu aşağıdaki gibi yazılmıştır.

\[
Y = (a_1 a_2 \ldots a_n) \ Y_{\text{max}}
\]

(8)

Dudley ve ark. (1971); toprak nemi ve kalın sulama suyuna bağlı, iki durum değişkenli stokastik bir yaklaşım önermişler ve modellerinin çözümünde dinamik programlama tekniklerini kullanarak üretici gelirini maksimize etmeyle amaçlamışlardır.

Dinamik programlama, sulama programlaması sorunlarının analizi oldukça uygun gözükümlütedir. Ancak yöntem, uygulanmasında kullanılabilecek verilerin elde edilmesinden daha hızlı gelişim göstermiştir. Bu konuda özellikle çok devreli ve zamanlanmış verim fonksiyonlarına gerek duyulmaktadır.

Vaux ve Prullt (1983), zamanlanmış verim fonksiyonları üzerindeki en önemli çalışmanın Minhas ve ark. tarafından verilen aşağıdaki model olduğunu bildirmişlerdir.

\[
Y = a \left[1 - (1-X_i)^2 \right]^{b_i} \left[1 - (1-X_2)^2 \right]^{b_2} \ldots \left[1 - (1-X_n)^2 \right]^{b_n}
\]

(9)

Burada; \(Y \), verim; \(X_i \), \(j \) dönemindeki oransal ET; \(a \) ve \(b_i \) ise deneySEL verilerin regresyon analizlerinden elde edilen parametrelerdir. Anılan model kavrumsal açıdan uygun olmakla birlikte kullanımını çok sayıda deneySEL veri ve deneyIM gerektirmektedir.

Rao ve ark. (1938), Doorenbos ve Kassam (1979) tarafından verilen bitki büyüme dönemi verim tepki etmenlerinden turettikleri üç zamanlanmış su-verim fonksiyon modelini karşılaştırmışlar ve bunlardan aşağıda verilen basit çarpımsal biçimde olanın geniş stres koşulları sınırlarında uygulanabilir olduğu sonucuna varmışlardır.

\[
Y / Y_m = \prod_{i=1}^{n} \left[1 - \beta_i \left(1 - \text{ET}_a / \text{ET}_p \right) \right]
\]

(10)

Modelde, \(\text{ET}_p \), potansiyel ET'yi ifade etmektedir.
SONUÇLAR

Bu inceleme, sulu tarımda bitki ve su arasındaki etkileşimlerin birçok bilimsel ve uygulamalı disiplini ilgilendiren çok sayıda karmaşık olayı içerdigiini ortaya koymaktadır. Bitki-su ilişkileri üzerinde önemli bilimsel ve ekonomik bilgi olmakla birlikte bu bilgi henüz kesin bir bütünlüğe ve ayrıntıya ulaşmış değildir.

Bitki su-verim ilişkileri üzerinde belirlenen önemli noktalar şöyle özetlenebilir:

- Su eksikliğinin zamanlaması ve gelişme devrelerini arasındaki bağımlılık tam olarak aynılanlatılamaamıştır. Bu konuların araştırılması gerekmektedir.

- Deneysel su-verim fonksiyonları genellikle bir yöredeki bir bitkid içindir. Bağımsız değişken olarak oransal ET'yi kullanan verim fonksiyonları genelleştirilmiş fonksiyonlar için bir aşamadır. Ancak, oransal ET'yi kullanan ve serum değişken içerikleyen özel fonksiyonların geliştirilmesi bir yerden diğer bir yere aktarım için uygun bir yaklaşım olmaktadır.

- Fonksiyonlarda, bitki verimi ile birlikte kalitesinin de içermesi için gerekli veriler araştırılmaldır.

- Bitki su-verim fonksiyonlarında genellikle uygulan su, toprak nemi ve ET olmak üzere üç bağımsız değişken kullanılmıştır. Anılan değişkenlerin ölçümünün farklılıklar göstermesi su-verim fonksiyonları üzerinde çalışan disiplinlerin tümüne yararlı olabilecek bir değişkenin bulunamama nedenini açıklamaktadır.

- Bitkisel üretimin riskli bir yatırım olması nedeniyle su-verim fonksiyonlarının bu risk veya belirsizliği de içermesi istenir.

- Deneysel çalışmalarında; ET-verim iliskisinin doğrusal, uygulanan su-verim ilişkisinin eğrisel olduğuna ilişkin kanıtlar elde edilmiştir. İkinci ilişki, denetleyebildikleri için sulamacalar açısından daha büyük önemdedir. Ancak ET ve uygulanan su ilişkisi lyi anlaşlamadığından tarla koşullarında nem stresi kesin olmayın bir etkiye sahiptir. Bu nedenle su fiyatı düşük ve nem stresinin verim üzerindeki eksi̇si̇ kesin belirlenmiş değişse sulamacalar, suyu ekonomik kullanmak için fazla özenn göstermeyecekleridir.

46

SUMMARY

CROP WATER-PRODUCTION FUNCTIONS

For high-yielded crop production, as an important input, water must be used effectively. This is possible, when we learn the effects of the water supplied by means of rainfall and irrigation, on the crop growth and yield, under different cropping conditions.

Today, water economists and engineers require methods for developing water-production functions useful in estimating yield and profits, for main irrigated crops under water-deficit conditions.

Crop yield vs. water use relationships can provide a basis for assessing the economic value of irrigation, the relative performance of alternate scheduling methods, the optimum levels of irrigation.

The purpose of this article were to describe the concept of the water-production function, to review some of the water-production functions which developed until now and to summarize the main approaches.

KAYNAKLAR

