Strong Convergence of an explicit iteration method in uniformly convex Banach spaces

Ahmed A. Abdelhakim and R. A. Rashwan

Department of Mathematics, Assiut University, Assiut 71516, Egypt

Corresponding author E-mail: ahmed.abdelhakim@aun.edu.eg

Abstract

We obtain the necessary and sufficient conditions for the convergence of an explicit iterative procedure to a common fixed point of a finite family of non-self asymptotically quasi-nonexpansive type mappings in real Banach spaces. We also prove the strong convergence of this iterative method to a common fixed point of a finite family of non-self asymptotically quasi-nonexpansive in the intermediate sense mappings in uniformly convex Banach spaces. Our results mainly generalize and extend those obtained by Wang [L. Wang, Explicit iteration method for common fixed points of a finite family of nonself asymptotically nonexpansive mappings, Computers & Mathematics with applications, 53, (2007), 1012 - 1019.]

Keywords: common fixed point, iterative approximation, asymptotically quasi-nonexpansive in the intermediate sense, uniformly convex Banach spaces.

2010 Mathematics Subject Classification: 47H06, 47H09; 47J05; 47J25.

1. Introduction

Let K be a nonempty subset of a real normed linear space E. A self-mapping $T : K \rightarrow K$ is called nonexpansive if $\| Tx - Ty \| \leq \| x - y \|$ for every $x, y \in K$ and asymptotically nonexpansive if there exists a sequence $\{k_n\} \subset [1, \infty)$ with $k_n \rightarrow 1$ as $n \rightarrow \infty$ such that for every $n \geq 1$, $\| T^nx - T^ny \| \leq k_n \| x - y \|$ for all $x, y \in K$. If $F(T) = \{ x \in K : Tx = x \}$ is nonempty and there exists a sequence $\{k_n\} \subset [1, \infty)$ with $k_n \rightarrow 1$ as $n \rightarrow \infty$ such that $\| T^nx - y \| \leq k_n \| x - y \|$ for all $x \in K$, $y \in F(T)$ and every $n \geq 1$ then T is called asymptotically quasi-nonexpansive. The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [5] and the class forms an important generalization of that of nonexpansive mappings. It was proved in [5] that if K is a nonempty closed convex subset of a real uniformly convex Banach space and T is an asymptotically nonexpansive self-mapping on K, then T has a fixed point.

Iterative methods for approximating fixed points of nonexpansive mappings have been studied by many authors (see for example [1], [2], [3], [4], [6], [8], [12], [14] and the references therein).

In Most of these papers, the well-known Mann iteration process [7],

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n Tx_n, \quad n \geq 1,$$

has been studied and the operator T has been assumed to map K into itself. The convexity of K ensures that the sequence $\{x_n\}$ generated by (*) is well defined.

In 2001, Xu and Ori [25] introduced the following implicit iteration process for a finite family of nonexpansive self-mappings $\{T_i, i \in I\}$, where $I = \{1, 2, ..., N\}$.

For any initial point $x_0 \in K$,

$$x_n = \alpha_0x_{n-1} + (1 - \alpha_n)T_{\sigma_n}x_n, \quad n \geq 1,$$

where $\{ \alpha_n \}$ is a real sequence in $(0,1)$ and $T_{\sigma_n} = T_{\sigma_n(\text{mod}N)}$, the mod N function takes values in I. They proved weak convergence of the above process to a common fixed point of the finite family of nonexpansive self-mappings. Later on, the implicit iteration method has been used to study the common fixed point of a finite family of strictly pseudocontractive self-mappings, asymptotically nonexpansive self-mappings or asymptotically quasi-nonexpansive self-mappings by some authors (see for example [10], [16] and [26], respectively). In 1991, Schu [15] introduced a modified iteration process to approximate fixed points of asymptotically nonexpansive self-mappings in Hilbert space. More precisely, he proved the following theorem.

Email addresses: ahmed.abdelhakim@aun.edu.eg (Ahmed A. Abdelhakim), rashwan10@gmail.com (R. A. Rashwan)
Theorem 1.1. ([15]) Let H be a Hilbert space, K a nonempty closed convex and bounded subset of H. Let $T : K \to K$ be an asymptotically nonexpansive mapping with sequence $\{k_n\} \subset [1, \infty)$ for all $n \geq 1$, $\lim_{n \to \infty} k_n = 1$ and $\sum_{n=1}^{\infty} (k_n^2 - 1) = \infty$. Let $\{a_n\}$ be a real sequence in $[0, 1]$ satisfying the condition $0 < a < 1 \leq \sum_{n=1}^{\infty} b_n = 1, n \geq 1$, for some constants a and b. Then the sequence $\{x_n\}$ generated from $x_1 \in K$ by
\[x_{n+1} = (1 - a_n)x_n + a_nT^n x_n, \quad n \geq 1, \]
converges strongly to some fixed point of T.

Since then, Schu’s iteration process has been widely used to approximate fixed points of asymptotically nonexpansive self-mappings in Hilbert space or Banach space (see for example [9], [13], [12], [19]).

Recently, Wang [21] introduced the following concepts for nonself mappings:

Definition 1.2. [4] Let K be a nonempty subset of a real normed space E. Let $P : E \to K$ be a nonexpansive retraction of E onto K. A nonself mapping $T : K \to E$ is called asymptotically nonexpansive if there exists a sequence $\{k_n\} \subset [1, \infty)$ with $k_n \to 1$ as $n \to \infty$ such that for every $n \geq 1$,
\[\| T(PT)^{n-1}x - T(PT)^{n-1}y \| \leq k_n \| x - y \| \quad \text{for all } x, y \in K. \]

T is said to be uniformly L-Lipschitzian if there exists a constant $L > 0$ such that for every $n \geq 1$,
\[\| T(PT)^{n-1}x - T(PT)^{n-1}y \| \leq L \| x - y \| \quad \text{for all } x, y \in K. \]

It is easy to see that a nonself asymptotically nonexpansive mapping is uniformly L-Lipschitzian. By studying the following iteration process
\[x_1 \in K, \quad x_{n+1} = P((1 - a_n)x_n + a_nT(PT)^{n-1}x_n), \quad n \geq 1, \]

Recently, Wang [22] proved the following strong convergence theorems for common fixed points of two nonself asymptotically nonexpansive mappings as follows:

Theorem 1.3. ([22]) Let K be a nonempty subset of a uniformly convex Banach space E. Suppose that $T_1, T_2 : K \to E$ are two nonself asymptotically nonexpansive mappings with sequences $\{k_n\}, \{\ell_n\} \subset [1, \infty)$ such that $\sum_{n=1}^{\infty} (k_n - 1) < \infty, \sum_{n=1}^{\infty} (\ell_n - 1) < \infty$. From arbitrary $x_1 \in K$, let $\{x_n\}$ be defined by
\[x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T_1(PT_1)^{n-1}y_n, \quad n \geq 1, \]
where $\{\alpha_n\}$ and $\{\beta_n\}$ are two sequences in $[0, 1 - \varepsilon]$ for some $\varepsilon > 0$. If one of T_1 and T_2 is completely continuous and $F(T_1) \cap F(T_2) \neq \emptyset$ then $\{x_n\}$ converges strongly to a common fixed point of T_1 and T_2.

Theorem 1.4. ([22]) Let K, E, T_1, T_2 and $\{x_n\}$ be as in Theorem 1.2. If one of T_1 and T_2 is demicompact then $\{x_n\}$ converges strongly to a common fixed point of T_1 and T_2.

Definition 1.5. ([11]) Let K be a nonempty subset of a real normed space E. Let $P : E \to K$ be a nonexpansive retraction of E onto K. A nonself mapping $T : K \to E$ is called asymptotically nonexpansive in the intermediate sense if T is uniformly continuous and
\[\limsup_{n \to \infty} \sup_{x, y \in K} \{ \| T(PT)^{n-1}x - T(PT)^{n-1}y \| - \| x - y \| \} \leq 0. \] (1.1)

In 2007, Y. X. Tian, S. S. Chang and J. L. Huang [21] introduced the following concepts for nonself mappings:

Definition 1.6. [21] Let E be a real Banach space, C a nonempty nonexpansive retract of E and P the nonexpansive retraction from E onto C. Let $T : C \to E$ be a non-self mapping.

(1) T is said to be a nonself asymptotically quasi-nonexpansive mapping if $F(T) \neq \emptyset$ and there exists a sequence $\{k_n\} \subset [1, \infty)$ with $\lim_{n \to \infty} k_n = 1$ such that for every $n \geq 1$,
\[\| T(PT)^{n-1}x - p \| \leq k_n \| x - p \| \quad \text{for all } x \in K, p \in F(T). \]

(2) T is said to be a nonself asymptotically nonexpansive type mapping if
\[\limsup_{n \to \infty} \{ \sup_{x, y \in K} \{ \| T(PT)^{n-1}x - T(PT)^{n-1}y \| - \| x - y \| \} \} \leq 0. \]

(3) T is said to be a nonself asymptotically quasi-nonexpansive type mapping if $F(T) \neq \emptyset$ and
\[\limsup_{n \to \infty} \{ \sup_{x \in K, q \in F(T)} \{ \| T(PT)^{n-1}x - q \| - \| x - q \| \} \} \leq 0. \]
Remark

(i) If \(T : C \to E \) is a nonself asymptotically nonexpansive mapping, then \(T \) is a nonself asymptotically nonexpansive type mapping.

(ii) If \(T : C \to E \) is a nonself asymptotically quasi-nonexpansive mapping, then \(T \) is a nonself asymptotically quasi-nonexpansive type mapping.

(iii) If \(F(T) \neq \emptyset \) and \(T : C \to E \) is a nonself asymptotically nonexpansive type mapping, then \(T \) is a nonself asymptotically quasi-nonexpansive type mapping.

Very recently, Lin Wang [23] constructed an explicit iteration scheme to approximate a common fixed point of a finite family of nonself asymptotically nonexpansive mappings \(\{ T_i : K \to E, i \in I \} \), where \(I \) denotes the set \(\{1, 2, \ldots, N\} \) and proved some strong convergence theorems for such mappings in uniformly convex Banach spaces as follows: From arbitrary \(x_0 \in K \),

\[
x_1 = P((1 - \alpha_1)x_0 + \alpha_1T_1(PT_1)^{m-1}x_0), \quad m \geq 1,
\]

\[
x_2 = P((1 - \alpha_2)x_1 + \alpha_2T_2(PT_2)^{m-1}x_1),
\]

\[
\vdots
\]

\[
x_N = P((1 - \alpha_N)x_{N-1} + \alpha_NT_N(PT_N)^{m-1}x_{N-1}),
\]

\[
x_{N+1} = P((1 - \alpha_{N+1})x_N + \alpha_{N+1}T_1(PT_1)^{m-1}x_N),
\]

\[
x_{N+2} = P((1 - \alpha_{N+2})x_{N+1} + \alpha_{N+2}T_2(PT_2)^{m-1}x_{N+1}),
\]

\[
\vdots
\]

\[
x_{2N} = P((1 - \alpha_{2N})x_{2N-1} + \alpha_{2N}T_N(PT_N)^{m-1}x_{2N-1}),
\]

\[
x_{2N+1} = P((1 - \alpha_{2N+1})x_{2N} + \alpha_{2N+1}T_1(PT_1)^{m-1}x_{2N}),
\]

\[
\vdots
\]

which can be rewritten in a compact form as follows

\[
x_n = P((1 - \alpha_n)x_{n-1} + \alpha_nT_n(PT_n)^{m-1}x_{n-1}), \quad n \geq 1, m \geq 1,
\] \hspace{1cm} (1.2)

where \(n = (m - 1)N + i, T_n = T_{i \mod N}, T_i, i \in I, \{ \alpha_n \} \) is a real sequence in \([0,1]\).

Motivated and inspired by the previous facts, we extend the results obtained by Lin Wang [23] to the case of nonself asymptotically quasi-nonexpansive mappings and the case of nonself asymptotically quasi-nonexpansive mappings in the intermediate sense which is slightly more general than the class nonself asymptotically nonexpansive mappings in the intermediate sense introduced by S. Plubteing and R. Wangkeeree [11] as follows:

Definition 1.7. Let \(K \) be a nonempty subset of a real normed space \(E \). Let \(P : E \to K \) be a nonexpansive retraction of \(E \) onto \(K \). A nonself mapping \(T : K \to E \) with a nonempty fixed point set is called asymptotically quasi-nonexpansive in the intermediate sense if \(T \) is uniformly continuous and

\[
\limsup_{n \to \infty} \sup_{x \in K, y \in F(T)} \{ \| T(PT)^{m-1}x - y \| - \| x - y \| \} \leq 0.
\] \hspace{1cm} (1.3)

Moreover, we discuss the necessary and sufficient condition for convergence of the explicit iterative scheme (1.1) to a common fixed point (assuming existence) of a finite family of nonself asymptotically quasi-nonexpansive type mappings in real Banach spaces.

2. Preliminaries

Let \(E \) be a real normed linear space. The modulus of convexity of \(E \) is the function \(\delta_E : (0, 2] \to [0,1] \) defined by

\[
\delta_E(\varepsilon) = \inf \{ 1 - \frac{1}{2} \| x + y \| : \| x \| = \| y \| = 1, \| x - y \| = \varepsilon \}.
\]

\(E \) is uniformly convex if and only if \(\delta_E(\varepsilon) > 0 \) for every \(\varepsilon \in (0,2] \).

A subset \(K \) of \(E \) is said to be a retract of \(E \) if there exists a continuous map \(P : E \to K \) such that \(Px = x, x \in K \). Every closed convex subset of a uniformly convex Banach space is a retract. A map \(P : E \to E \) is said to be a retraction if \(P^2 = P \). It follows that if \(P \) is a retraction then \(Py = y \) for all \(y \in R(P) \), the range of \(P \).

A mapping \(T : K \to K \) is said to be semicompact if, for any bounded sequence \(\{x_n\} \) in \(K \) such that \(\| x_n - Tx_n \| \to 0 \) as \(n \to 0 \), there exists a subsequence \(\{x_{n_j}\} \), say, of \(\{x_n\} \) such that \(\{x_{n_j}\} \) converges strongly to some \(x' \) in \(K \). \(T \) is said to be completely continuous if, for any bounded sequence \(\{x_n\} \), there exists a subsequence \(\{T_{n_j}\} \), say, of \(\{Tx_n\} \) such that \(\{T_{n_j}\} \) converges strongly to some element of the range of the range of \(T \).

In what follows we shall use the following results.
Lemma 2.1. [19] Let \(\{\lambda_n\}_{n=1}^{\infty} \) and \(\{\mu_n\}_{n=1}^{\infty} \) be sequences of nonnegative real numbers such that \(\lambda_{n+1} \leq \lambda_n + \mu_n \), \(n \geq 1 \) and \(\sum_{n=1}^{\infty} \mu_n < \infty \) then \(\lim_{n \to \infty} \lambda_n \) exists. Moreover, if there exists a subsequence \(\{\lambda_{n_k}\} \) of \(\{\lambda_n\} \) such that \(\lambda_{n_k} \to 0 \) as \(j \to \infty \) then \(\lambda_n \to 0 \) as \(n \to \infty \).

Lemma 2.2. [15] Let \(E \) be a real uniformly convex Banach space and \(0 < \alpha \leq \beta < 1 \) for all positive integers \(n \geq 1 \). Suppose that \(\{x_n\} \) and \(\{y_n\} \) are two sequences of \(E \) and each of \(\{x_n\} \) and \(\{y_n\} \) are two sequences such that

\[
\limsup_{n \to \infty} \|x_n\| \leq r, \quad \limsup_{n \to \infty} \|y_n\| \leq r \quad \text{and} \quad \limsup_{n \to \infty} \|t_n x_n + (1-t_n) y_n\| = r
\]

hold for some \(r \geq 0 \), then \(\lim_{n \to \infty} \|x_n - y_n\| = 0 \).

Lemma 2.3. [4] Let \(E \) be a real uniformly convex Banach space and \(K \) a nonempty closed convex subset of \(E \) and let \(T : K \to E \) be asymptotically nonexpansive mapping with a sequence \(\{k_n\} \subset [1, \infty) \) such that \(k_n \to 1 \) as \(n \to \infty \), then \(I - T \) is demiclosed at zero.

3. Main Results

3.1. Asymptotically quasi-nonexpansive type mappings

Theorem 3.1. Let \(K \) be a nonempty closed convex subset of a real Banach space \(E \) which is also a nonexpansive retract of \(E \) with a nonexpansive retraction \(P : E \to K \). Suppose that \(T_i : K \to E \), \(i \in I \) be \(N \) nonself asymptotically quasi-nonexpansive type mappings with a nonempty closed common fixed point set \(F = \bigcap_{i=1}^{N} F(T_i) \). Let \(\{x_n\}_{n=1}^{\infty} \) be the iterative sequence defined iteratively by (1.2) with the sequence \(\{\alpha_n\}_{n=1}^{\infty} \) satisfying that \(\sum_{n=1}^{\infty} \alpha_n < \infty \). Then \(\{x_n\} \) converges strongly to a common fixed point of \(T_i \), \(i \in I \) if and only if \(\lim_{n \to \infty} d(x_n, F) = 0 \), where \(d(x_n, F) \) is the distance from \(x_n \) to the set \(F \).

Proof. Necessity of the condition is obvious. Since \(x_n \to q \) as \(n \to \infty \), \(q \in F \), then \(\lim_{n \to \infty} d(x_n, F) = d(\lim_{n \to \infty} x_n, F) = d(q, F) = 0 \). Hence, \(\liminf_{n \to \infty} d(x_n, F) = 0 \).

Next, we prove sufficiency. Since \(T_i, i \in I \) are \(N \) nonself asymptotically quasi-nonexpansive type mappings, that is, for each \(i \in I \), \(F(T_i) \neq \emptyset \) and

\[
\limsup_{n \to \infty} \left\{ \sup_{x \in K, q \in F(T_i)} \left\| T_i((PT_i)^{n-1}x - q) - \| x - q \| \right\| \right\} \leq 0.
\]

Then given any \(\varepsilon > 0 \), there exists a positive integer \(n_0 \) such that for all \(n \geq n_0 \),

\[
\sup_{x \in K, q \in F(T_i)} \left\{ \left\| T_i((PT_i)^{n-1}x - q) - \| x - q \| \right\| \right\} < \varepsilon, \quad i \in I.
\]

Since \(\{x_n\} \subset K \), then for any \(m \geq n_0 \) we have

\[
\| T_i((PT_i)^{n-1}x_n - q) - \| x_n - q \| < \varepsilon, \quad i \in I, \ n \geq 1.
\]

(3.1)

Hence for every \(x^* \in F \) and for any \(n \geq n_0 \), \(n \geq 1 \), it follows from (1.2) and (3.1) that

\[
\| x_n - x^* \| = \| P((1 - \alpha_n)x_{n-1} + \alpha_n T_n(PT_n)^{n-1}x_{n-1}) - x^* \| \leq \| (1 - \alpha_n)x_{n-1} + \alpha_n T_n(PT_n)^{n-1}x_{n-1} - x^* \| \leq (1 - \alpha_n) \| x_{n-1} - x^* \| + \alpha_n \| T_n(PT_n)^{n-1}x_{n-1} - x^* \| \leq (1 - \alpha_n) \| x_{n-1} - x^* \| + \alpha_n \| (PT_n)^{n-1}x_{n-1} - x^* \| + \alpha_n \| x_{n-1} - x^* \| \leq \| x_{n-1} - x^* \| + \alpha_n \| x_{n-1} - x^* \|.
\]

That is, we have

\[
\inf_{x^* \in F} \| x_{n-1} - x^* \| \leq \| x_0 - x^* \| + \alpha_n \| x_{n-1} - x^* \|.
\]

By arbitrariness of \(x^* \in F \), we get, upon taking infimum over \(x^* \in F \),

\[
\inf_{x^* \in F} \| x_{n-1} - x^* \| \leq \inf_{x^* \in F} \| x_0 - x^* \| + \alpha_n \| x_{n-1} - x^* \|
\]

so that

\[
d(x_{n+1}, F) \leq d(x_n, F) + \alpha_n \| x_{n+1} - x^* \|
\]

i.e., \(\beta_{n+1} \leq \beta_n + \mu_n \), \(n \geq 1 \), where \(\beta_n = d(x_n, F) \) and \(\mu_n = \alpha_n \| x_{n+1} - x^* \| \), \(n \geq 1 \). Clearly, \(\sum_{n=1}^{\infty} \mu_n < \infty \) by our assumption. Then \(\lim_{n \to \infty} d(x_n, F) \) exists, by Lemma 2.1. But \(\liminf_{n \to \infty} d(x_n, F) = 0 \), then \(\lim_{n \to \infty} d(x_n, F) = 0 \).

Now, for any \(x^* \in F \),

\[
\| x_{n+1} - x_n \| \leq \| x_{n+1} - x^* \| + \| x_n - x^* \|
\]

taking infimum on both sides over \(x^* \in F \), we obtain

\[
\| x_{n+1} - x_n \| \leq d(x_{n+1}, F) + d(x_n, F),
\]

letting \(n \to \infty \) on both sides of the above inequality yields that \(\lim_{n \to \infty} d(x_{n+1}, x_n) = 0 \), which shows that \(\{x_n\} \) is a Cauchy sequence. Since \(K \) is a closed subset of the real Banach space \(E \), then \(K \) is also complete. Hence there exists \(p \in K \) such that \(x_n \to p \) as \(n \to \infty \). Finally, we prove that \(p \in F \). Since \(\lim_{n \to \infty} d(x_n, F) = d(\lim_{n \to \infty} x_n, F) = d(p, F) = 0 \). Then \(p \in F \), but \(F \) is closed, then \(p \in F \) and the proof is complete.
Theorem 3.2. Let K be a nonempty closed convex subset of a real Banach space E which is also a nonexpansive retraction of E with a nonexpansive retraction $P : E \rightarrow K$. Suppose that $T_i : K \rightarrow E$, $i \in I$ be N continuous nonself asymptotically quasi-nonexpansive type mappings with a nonempty common fixed point set $F = \bigcap_{i \in I} F(T_i)$. Let $\{x_n\}_{n=1}^{\infty}$ be the iterative sequence defined iteratively by (1.2) with the sequence $\{\alpha_n\}_{n=1}^{\infty}$ satisfying that $\sum_{n=1}^{\infty} \alpha_n < \infty$. Then $\{x_n\}$ converges strongly to a common fixed point of T_i, $i \in I$ if and only if $\lim_{n \rightarrow \infty} d(x_n, F) = 0$, where $d(x_n, F)$ is the distance from x_n to the set F.

We only need to show that F is closed so that the conclusion of Theorem 3.2 follow from the conclusion of Theorem 3.1 immediately. Let $\{p_n\}$ be a sequence of elements of F, i.e., $T_i p_n = p_n$, $n \geq 1$, $i \in I$. Assume that $p_n \rightarrow p^*$ as $n \rightarrow \infty$. We claim that $p^* \in F$. Indeed, since for each $i \in I$, we have

$$
\| T_i p^* - p^* \| \leq \| T_i p^* - p_n \| + \| p_n - p^* \|
= \| T_i p^* - T_i p_n \| + \| p_n - p^* \|.
$$

(3.2)

Since T_i is continuous, $i \in I$, then letting $n \rightarrow \infty$ on both sides of (3.2) yields that

$$
\lim_{n \rightarrow \infty} \| T_i p^* - p^* \| = 0,
$$

which implies that $T_i p^* = p^*$, $i \in I$ and hence $p^* \in F$.

3.2. Asymptotically quasi-nonexpansive mappings

Lemma 3.3. Let K be a nonempty closed convex subset of a normed linear space E which is also a nonexpansive retraction of E with a nonexpansive retraction P. Let $\{T_i : i \in I\}$ be N nonself asymptotically quasi-nonexpansive mappings from K to E with sequences $\{\alpha_n^{(i)}\}_{n=1}^{\infty}$ such that $\sum_{n=1}^{\infty} \alpha_n^{(i)} < \infty$ and $\lim_{n \rightarrow \infty} \frac{\alpha_n^{(i)}}{\alpha_n^{(i)} + 1} = 1$ for all $i \in I$, respectively. Let $\{\alpha_0\}$ be a real sequence in $[0,1)$ and let $\{x_n\}$ be the sequence defined by (1.2). If $F = \bigcap_{i \in I} F(T_i) \neq \emptyset$, then $\lim_{n \rightarrow \infty} \| x_n - x^* \|$ exists for each $x^* \in F$.

Proof. For each positive integer n, put $k_n = \max_{i \in I} k_n^{(i)} = 1 + u_n$.

Thus, $1 \leq k_n \leq \sum_{i=1}^{\infty} k_n^{(i)} - (N - 1)$. Since for each $i \in I$, $\sum_{n=1}^{\infty} k_n^{(i)} - 1$ is less than $\sum_{n=1}^{\infty} (k_n - 1) < \infty$, consequently $\sum_{n=1}^{\infty} u_n < \infty$. For any $x^* \in F$, $n = (m(n)-1)N + i(n)$, $i(n) \in I$, it follows from (1.2) that

$$
\| x_n - x^* \| = \| P \left[(1 - \alpha_n)x_{n-1} + \alpha_n T_i (x_{n-1}) \right] \| \leq \| (1 - \alpha_n)x_{n-1} + \alpha_n T_i (x_{n-1}) - x^* \|
\leq \| (1 - \alpha_n)x_{n-1} - x^* \| + \| \alpha_n T_i (x_{n-1}) - x^* \|
\leq \| (1 - \alpha_n)x_{n-1} - x^* \| + \| \alpha_n T_i (x_{n-1}) - x^* \|
\leq \| (1 - \alpha_n)x_{n-1} - x^* \| + \| \alpha_n (1 + u_n) x_{n-1} - x^* \|
\leq \| (1 + u_n) x_{n-1} - x^* \|,
$$

that is,

$$
\| x_n - x^* \| \leq \| x_{n-1} - x^* \| + u_n \| x_{n-1} - x^* \|.
$$

(3.3)

Furthermore, we have

$$
\| x_n - x^* \| = \| x_{(m(n)-1)N+i(n)} - x^* \|
= \| P \left[(1 - \alpha_n)x_{n-1} + \alpha_n T_i (x_{n-1}) \right] \| \leq \| (1 - \alpha_n)x_{n-1} + \alpha_n T_i (x_{n-1}) - x^* \|
\leq \| (1 - \alpha_n)x_{n-1} - x^* \| + \| \alpha_n T_i (x_{n-1}) - x^* \|
\leq \| (1 - \alpha_n)x_{n-1} - x^* \| + \| \alpha_n T_i (x_{n-1}) - x^* \|
\leq \| (1 - \alpha_n)x_{n-1} - x^* \| + \| \alpha_n (1 + u_n) x_{n-1} - x^* \|
\leq \| (1 + u_n) x_{n-1} - x^* \|,
$$

(3.4)

In addition, since $m = 1$, while $1 \leq n \leq N$, then

$$
\| x_1 - x^* \| \leq \| (1 - \alpha_1) x_0 + \alpha_1 T_1 (x_1) - x^* \|
\leq \| (1 - \alpha_1) x_0 - x^* \| + \| \alpha_1 T_1 (x_1) - x^* \|
\leq \| (1 - \alpha_1) x_0 - x^* \| + \| \alpha_1 (1 + u_1) x_0 - x^* \|
\leq \| (1 + u_1) x_0 - x^* \|,
$$
\[\| x_2 - x^* \| \leq \| (1 - \alpha_2) x_1 + \alpha_2 T_2 (PT_2)^{m(n)-1} x_1 - x^* \| \]
\[\leq (1 - \alpha_2) \| x_1 - x^* \| + \alpha_2 \| T_2 (PT_2)^{m(n)-1} x_1 - x^* \| \]
\[\leq (1 - \alpha_2) \| x_1 - x^* \| + \alpha_2 (1 + u_1) \| x_1 - x^* \| \]
\[\leq (1 + u_1) \| x_1 - x^* \| \leq (1 + u_1)^2 \| x_0 - x^* \|. \]

hence,
\[\| x_N - x^* \| \leq (1 + u_1)^N \| x_0 - x^* \|. \]

Similarly, we have
\[\| x_{2N} - x^* \| \leq \| (1 - \alpha_{2N}) x_{2N-1} + \alpha_{2N} T_2 (PT_2)^{m(n)-1} x_{2N-1} - x^* \| \]
\[\leq (1 - \alpha_{2N}) \| x_{2N-1} - x^* \| + \alpha_{2N} \| T_2 (PT_2)^{m(n)-1} x_{2N-1} - x^* \| \]
\[\leq (1 - \alpha_{2N}) \| x_{2N-1} - x^* \| + \alpha_{2N} (1 + u_2) \| x_{2N-1} - x^* \| \]
\[\leq (1 + u_2) \| x_{2N-1} - x^* \| \leq (1 + u_2)^N \| x_N - x^* \| \]
\[\leq (1 + u_2)^N (1 + u_1)^N \| x_0 - x^* \|. \]

Therefore,
\[\| x_{(m(n)-1)N} - x^* \| \leq (1 + u_1)^N (1 + u_2)^N \| x_{(m(n)-1)N} - x^* \|. \]

Finally (3.4) together with (3.5) imply that
\[\| x_n - x^* \| \leq (1 + u_1)^{i(n)} \| x_{(m(n)-1)N} - x^* \| \]
\[\leq (1 + u_1)^N (1 + u_2)^N \| x_{(m(n)-1)N} - x^* \|. \]

\[i(n) \in I. \]

Thus
\[\| x_n - x^* \| \leq (1 + u_1)^N (1 + u_2)^N \| x_{(m(n)-1)N} - x^* \| \leq (1 + u_1)^N (1 + u_2)^N \| x_0 - x^* \|. \]

Since \(1 + x \leq e^x, x \geq 0 \), then
\[\| x_n - x^* \| \leq e^{N_1 u_1} e^{N_2 u_2} \| x_{(m(n)-1)N} - x^* \| = e^{N \sum_{j=1}^{m(n)} u_j} \| x_0 - x^* \|. \]

But \(\sum_{j=1}^{m(n)} u_j < \infty \), then \(\{ x_n \} \) is a bounded sequence and there exists a constant \(M > 0 \) such that \(\| x_0 - x^* \| M, n \geq 0. \)

It follows, from (3.3), that
\[\| x_n - x^* \| \leq \| x_{n-1} - x^* \| + u_n M. \]

Since \(n \to \infty \) is equivalent to \(m \to \infty \), it follows from Lemma 2.1 that \(\lim_{m \to \infty} \| x_n - x^* \| \) exists for any \(x^* \in E \).

The proof is complete. \(\square \)

Lemma 3.4. Let \(K \) be a nonempty closed convex subset of a real uniformly convex Banach space \(E \) which is also a nonexpansive retract of \(E \) with a nonexpansive retraction \(P \). Let \(T_i, i \in I \) be \(N \) nonself asymptotically quasi-nonexpansive mappings from \(K \) to \(E \) with sequences \(\{ k_i(n) \} \subset [1, \infty) \) such that \(\sum_{n=1}^{\infty} k_i(n) < \infty \) and \(\lim_{m \to \infty} k_i(m) = 1 \) for all \(i \in I \), respectively and suppose that \(T_i \) are uniformly \(L_i \)-Lipschitzian with the uniform Lipschitz constants \(L_i > 0, i \in I \), respectively. Let \(x_n \) be the sequence defined by (1.2) where \(\{ \alpha_n \} \) is a real sequence in \([\delta, 1 - \delta] \) for some \(\delta \in (0, 1) \). If \(F \cap \bigcap_{i \in I} F(T_i) = \emptyset \), then \(\lim_{m \to \infty} \| x_n - T_{\alpha_n} x_n \| = 0 \) for each \(i \in I \).}

Proof. Lemma 3.3 asserts that \(\lim_{m \to \infty} \| x_n - x^* \| \) exists for each \(x^* \in E \). We may assume that, for some \(x^* \in E \), \(\lim_{m \to \infty} \| x_n - x^* \| = c \) for some \(c \geq 0 \). If \(c = 0 \), we are done. So let \(c > 0 \). Set \(n = (m(n)-1)N + i(n), i(n) \in I \).

Since
\[\| x_{n+1} - x^* \| = \| P((1 - \alpha_{n+1}) x_n + \alpha_{n+1} T_{\alpha_{n+1}} (PT_{\alpha_{n+1}})^{m(n)-1} x_n) - x^* \| \]
\[\leq \| (1 - \alpha_{n+1}) (x_n - x^*) + \alpha_{n+1} (T_{\alpha_{n+1}} (PT_{\alpha_{n+1}})^{m(n)-1} x_n - x^*) \| \]
\[\leq (1 + u_{n+1}) \| x_n - x^* \|. \]

Taking \(\liminf \) on both sides of (3.7), we obtain
\[\lim_{m \to \infty} \| (1 - \alpha_{n+1}) (x_n - x^*) + \alpha_{n+1} (T_{\alpha_{n+1}} (PT_{\alpha_{n+1}})^{m(n)-1} x_n - x^*) \| \geq c. \]

Also,
\[\| (1 - \alpha_{n+1}) (x_n - x^*) + \alpha_{n+1} (T_{\alpha_{n+1}} (PT_{\alpha_{n+1}})^{m(n)-1} x_n - x^*) \| \leq (1 + u_{n+1}) \| x_n - x^* \|, \]

which on taking \(\limsup \) on both sides yields that
\[\lim_{m \to \infty} \| (1 - \alpha_{n+1}) (x_n - x^*) + \alpha_{n+1} (T_{\alpha_{n+1}} (PT_{\alpha_{n+1}})^{m(n)-1} x_n - x^*) \| \leq \limsup_{m \to \infty} (1 + u_{n+1}) \| x_n - x^* \| = c. \]

Inequalities (3.8) and (3.9) imply
\[\lim_{m \to \infty} \| (1 - \alpha_{n+1}) (x_n - x^*) + \alpha_{n+1} (T_{\alpha_{n+1}} (PT_{\alpha_{n+1}})^{m(n)-1} x_n - x^*) \| = c. \]
Since $\lim_{n \to +\infty} \| x_n - x^* \| = c$ and $\limsup_{n \to +\infty} \| T_{n+1} (PT_{n+1})^{m(n)} x_n - x^* \| \leq c$, it follows from Lemma 2.2 that

$$\lim_{n \to +\infty} \| x_n - T_{n+1} (PT_{n+1})^{m(n)-1} x_n \| = 0. \quad (3.11)$$

Since

$$\| x_{n+1} - x_n \| \leq \alpha_{n+1} \| x_n - T_{n+1} (PT_{n+1})^{m(n)-1} x_n \|$$

then, by (3.11), we have

$$\lim_{n \to +\infty} \| x_{n+1} - x_n \| = 0.$$

By induction, we have

$$\lim_{n \to +\infty} \| x_{n+r} - x_n \| = 0 \quad (3.12)$$

for any positive integer r.

Let $L = \max_{i \in I} \{ L_i \}$. When $n > N \ (m \geq 2)$, we have

$$\| x_n - T_{n+1} x_n \| \leq \| x_n - T_{n+1} (PT_{n+1})^{m(n)-1} x_n \| + \| T_{n+1} (PT_{n+1})^{m(n)-1} x_n - T_{n+1} x_n \|$$

$$\leq \| x_n - T_{n+1} (PT_{n+1})^{m(n)-1} x_n \| + L \| T_{n+1} (PT_{n+1})^{m(n)-2} x_n - x_n \|$$

$$\leq \| x_n - T_{n+1} (PT_{n+1})^{m(n)-1} x_n \| + L \| x_n - T_{n+1} (PT_{n+1})^{m(n)-2} x_n - x_n \| +$$

$$\| T_{n+1} (PT_{n+1} - N) (PT_{n+1} - N)^{m(n)-2} x_n - N \| + \| T_{n+1} (PT_{n+1} - N)^{m(n)-2} x_n - N \|$$

Hence

$$\| x_n - T_{n+1} x_n \| \leq \| x_n - T_{n+1} (PT_{n+1})^{m(n)-1} x_n \| + L \{ (1 + L) \| x_n - x_n - N + \} \| x_n - T_{n+1} (PT_{n+1} - N)^{m(n)-2} x_n - N \| \} \quad (3.13)$$

Noticing that $n = (m(n) - 1)N + i(n), i(n) \in I$, we have $n - N = (m(n) - 1)N + i(n) - N = (m(n) - 2)N + i(n) = (m(n) - 1)N + i(n - N), \quad \text{thus } m(n - N) = m(n) - 1$ and $i(n - N) = i(n), n \geq 1$. Hence

$$\| x_n - T_{n+1 - N} (PT_{n+1 - N} - N)^{m(n)-2} x_n - N \| = \| x_n - T_{n+1 - N} (PT_{n+1 - N} - N)^{m(n)-1} x_n - N \| .$$

Using (3.11), we get

$$\lim_{n \to +\infty} \| x_n - T_{n+1 - N} (PT_{n+1 - N} - N)^{m(n)-2} x_n - N \| = 0. \quad (3.14)$$

Using (3.12) and (3.14), it follows from (3.13) that

$$\lim_{n \to +\infty} \| x_n - T_{n+1} x_n \| = 0. \quad (3.15)$$

Furthermore, for each $i \in I$

$$\| x_n - T_{n+i} x_n \| \leq \| x_n - x_{n+i-1} \| + \| x_{n+i-1} - T_{n+i} x_{n+i-1} \| + \| T_{n+i} x_{n+i-1} - T_{n+i} x_n \|$$

$$\leq (1 + L) \| x_n - x_{n+i-1} \| + \| x_{n+i-1} - T_{n+i} x_{n+i-1} \| .$$

Using (3.12) and (3.15), we obtain

$$\lim_{n \to +\infty} \| x_n - T_{n+i} x_n \| = 0, \quad i \in I.$$

Thus

$$\lim_{n \to +\infty} \| x_n - T_i x_n \| = 0, \quad i \in I.$$

This completes the proof.
3.3. Asymptotically quasi-nonexpansive in the intermediate sense mappings

Lemma 3.5. Let K be a nonempty closed convex subset of a normed linear space E which is also a nonexpansive retraction of E with a nonexpansive retraction P. Let $\{T_i: i \in I\}$ be N nonself asymptotically quasi-nonexpansive in the intermediate sense mappings from K to E with a nonempty common fixed point set $F = \bigcap_{i=1}^N F(T_i)$. For each $i \in I$, put $G_m^{(i)} = \max\{\sup_{x \in K, x' \in F} \|T_i(T_i)^m x - x'\| - \|x - x'\|, 0\}$ so that $\sum_{m=1}^{\infty} G_m^{(i)} < \infty$, $i \in I$. If $\{x_n\}$ is the sequence defined by (1.2), then $\lim_{n \to \infty} \|x_n - x^*\|$ exists for each $x^* \in F$.

Proof. For any $x^* \in F$, we have

$$\|x_n - x^*\| = \|P'(1 - \alpha_n)x_{n-1} + \alpha_n T_n^m x_{n-1} - x^*\|
\leq \|P'(1 - \alpha_n)|x_{n-1} + \alpha_n T_n^m x_{n-1} - x^*\|
\leq (1 - \alpha_n) \|x_{n-1} - x^*\| + \alpha_n \|T_n^m x_{n-1} - x^*\|
\leq (1 - \alpha_n) \|x_{n-1} - x^*\| + \alpha_n (G_m^{(n)} + \|x_{n-1} - x^*\|).$$

Thus

$$\|x_n - x^*\| \leq \|x_{n-1} - x^*\| + G_m^{(n)}.$$

Since $\sum_{m=1}^{\infty} G_m^{(n)} < \infty$, $n \geq 1$ and $n \to \infty$ is equivalent to $m \to \infty$, then applying Lemma 2.1 implies that $\lim_{n \to \infty} \|x_n - x^*\|$ exists for each $x^* \in F$. The proof is complete.

Lemma 3.6. Let K be a nonempty closed convex subset of a real uniformly convex Banach space which is also a nonexpansive retraction of E with a nonexpansive retraction P. Let $\{T_i: i \in I\}$ be N nonself asymptotically quasi-nonexpansive in the intermediate sense mappings from K to E with a nonempty common fixed point set $F = \bigcap_{i=1}^N F(T_i)$. For each $i \in I$, put $G_m^{(i)} = \max\{\sup_{x \in K, x' \in F} \|T_i(T_i)^m x - x'\| - \|x - x'\|, 0\}$ so that $\sum_{m=1}^{\infty} G_m^{(i)} < \infty$, $i \in I$. Let $\{x_n\}$ be the sequence defined by (1.2) where $\{\alpha_n\}$ is a real sequence in $[\delta, 1 - \delta]$ for some $\delta \in (0, 1)$. Then $\lim_{n \to \infty} \|x_n - x^*\| = 0$ for each $x^* \in F$.

Proof. It follows from Lemma 3.5 that $\lim_{n \to \infty} \|x_n - x^*\|$ exists for each $x^* \in F$. Assume that $\lim_{n \to \infty} \|x_n - x^*\| = c$, $x^* \in F$ for some $c \geq 0$. If $c = 0$, we are done. So let $c > 0$. Set $n = (m(n) - 1)N + i(n), i(n) \in I$. Since

$$\|x_{n+1} - x^*\| = \|P'(1 - \alpha_{n+1})x_n + \alpha_{n+1} T_{n+1}^m x_n - x^*\|
\leq \|P'(1 - \alpha_{n+1})|x_n - x^*\| + \alpha_{n+1} \|T_{n+1}^m x_n - x^*\|
\leq (1 - \alpha_{n+1}) \|x_n - x^*\| + \alpha_{n+1} (G_m^{(n+1)} + \|x_n - x^*\|).$$

Taking lim inf on both sides of (3.16), we obtain

$$\liminf_{n \to \infty} \|(1 - \alpha_{n+1})(x_n - x^*) + \alpha_{n+1} T_{n+1}^m (x_n - x^*)\| \geq c. \quad (3.17)$$

In addition,

$$\| (1 - \alpha_{n+1})(x_n - x^*) + \alpha_{n+1} T_{n+1}^m (x_n - x^*) \| \leq \|x_n - x^*\| + \alpha_{n+1} G_m^{(n+1)}.$$

Hence

$$\| (1 - \alpha_{n+1})(x_n - x^*) + \alpha_{n+1} T_{n+1}^m (x_n - x^*) \| \leq \|x_n - x^*\| + G_m^{(n+1)}.$$

which on taking lim sup on both sides yields that

$$\limsup_{n \to \infty} \| (1 - \alpha_{n+1})(x_n - x^*) + \alpha_{n+1} T_{n+1}^m (x_n - x^*) \| \leq \limsup_{n \to \infty} \|x_n - x^*\| + \limsup_{n \to \infty} G_m^{(n+1)} = c. \quad (3.18)$$

Inequalities (3.17) and (3.18) imply

$$\lim_{n \to \infty} \| (1 - \alpha_{n+1})(x_n - x^*) + \alpha_{n+1} T_{n+1}^m (x_n - x^*) \| = c. \quad (3.19)$$

Since $\lim_{n \to \infty} \|x_n - x^*\| = c$ and $\limsup_{n \to \infty} \|T_{n+1}^m (x_n - x^*)\| \leq c$, it follows from Lemma 2.2 that

$$\lim_{n \to \infty} \|x_n - T_{n+1}^m x_n\| = 0. \quad (3.20)$$

Since

$$\|x_{n+1} - x_n\| \leq \alpha_{n+1} \|x_n - T_{n+1}^m x_n\|$$

then, by (3.20), we have

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0.$$
By induction, we have
\[
\lim_{n \to \infty} \| x_{n+r} - x_n \| = 0 \tag{3.21}
\]
for any positive integer \(r \).

Now, we have
\[
\| x_n - T_{n+1}x_n \| \leq \| x_n - x_{n+N} \| + \| x_{n+N} - T_{n+1}(PT_{n+1})^{m(n+N)-1}x_{n+N} \| + \\
\| T_{n+1}(PT_{n+1})^{m(n+N)-1}x_{n+N} - T_{n+1}(PT_{n+1})^{m(n+N)-1}x_n \| + \\
\| T_{n+1}(PT_{n+1})^{m(n+N)-1}x_n - T_{n+1}x_n \|.
\]

Since \(n = (m(n) - 1)N + i(n), i(n) \in I \), then \(n+N = (m(n) - 1)N + i(n) + N = m(n)N + i(n) = (m(n+N) - 1)N + i(n+N) \), thus \(m(n+N) = m(n) + 1, i(n+N) = i(n) \) and \(T_{n+1} = T_{n+1+N} = T_{i(n+1)} \), \(n \geq 1 \). Hence
\[
\| x_n - T_{n+1}x_n \| \leq \| x_n - x_{n+N} \| + \| x_{n+N} - T_{n+1}(PT_{n+1})^{m(n+N)-1}x_{n+N} \| + \\
\| T_{n+1}(PT_{n+1})^{m(n+N)-1}x_{n+N} - T_{n+1}(PT_{n+1})^{m(n+N)-1}x_n \| + \\
\| T_{n+1}(PT_{n+1})^{m(n+N)-1}x_n - T_{n+1}x_n \|.
\]

But (3.20) implies that
\[
\| PT_{n+1}(PT_{n+1})^{m(n)-1}x_n - x_n \| \leq \| PT_{n+1}(PT_{n+1})^{m(n)-1}x_n - x_n \| \to 0, \quad n \to \infty,
\]
since \(T_{n+1} \) are uniformly continuous, then
\[
\| T_{n+1}(PT_{n+1})^{m(n)-1}x_n - T_{n+1}x_n \| = \| T_{n+1}PT_{n+1}(PT_{n+1})^{m(n)-1}x_n - T_{n+1}x_n \| \to 0, \quad n \to \infty.
\]

Also, uniform continuity of \(T_{n+1} \) and (3.21) yield
\[
\| T_{n+1}(PT_{n+1})^{m(n+N)-1}x_{n+N} - T_{n+1}(PT_{n+1})^{m(n+N)-1}x_n \| \to 0, \quad n \to \infty.
\]

Finally, using (3.20), (3.21), (3.23) and (3.24), it follows from (3.22) that
\[
\lim_{n \to \infty} \| x_n - T_{n+1}x_n \| = 0.
\]

Furthermore, for each \(i \in I \)
\[
\| x_n - T_{i+1}x_n \| \leq \| x_n - x_{i+1} \| + \| x_{i+1} - T_{i+1}x_{i+1} \| + \| T_{i+1}x_{i+1} - T_{i+1}x_n \|,
\]
using (3.21), (3.25) and uniform continuity of \(T_{i+1} \), we get
\[
\lim_{n \to \infty} \| x_n - T_{i+1}x_n \| = 0, \quad i \in I.
\]

Thus
\[
\lim_{n \to \infty} \| x_n - T_{i}x_n \| = 0, \quad i \in I.
\]

The proof is complete. \(\square \)

Now, we are in a position to state our main theorems

Theorem 3.7. Let \(K \) be a nonempty closed convex subset of a real uniformly convex Banach space \(E \) which is also a nonexpansive retract of \(E \) with a nonexpansive retraction \(P \). Let \(T_i, i \in I \) be \(N \) nonexpansive asymptotically quasi-nonexpansive mappings from \(K \) to \(E \) with sequences \(\{k^{(i)}_n\} \subset [1, \infty) \) such that \(\sum_{n=1}^{\infty} (k^{(i)}_n - 1) < \infty \) and \(\lim_{n \to \infty} k^{(i)}_n = 1 \) for all \(i \in I \), respectively. Suppose that \(T_i \) are uniformly \(L_i \)-Lipschitzian with the uniform Lipschitz constants \(L_i > 0, i \in I \), respectively. Let \(\{x_n\} \) be the sequence defined by (1.2) where \(\{a_n\} \) is a real sequence in \([\delta, 1 - \delta] \) for some \(\delta \in (0, 1) \). If \(F = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset \) and if one of the mappings \(T_i, i \in I \) is completely continuous, then \(\{x_n\} \) converges strongly to a common fixed point of the mappings \(T_i, i \in I \).

Theorem 3.8. Let \(K \) be a nonempty closed convex subset of a real uniformly convex Banach space \(E \) which is also a nonexpansive retract of \(E \) with a nonexpansive retraction \(P \). Let \(\{T_i : i \in I\} \) be \(N \) nonexpansive asymptotically quasi-nonexpansive in the intermediate sense mappings from \(K \) to \(E \) with a nonexpansive common fixed point set \(F = \bigcap_{i=1}^{N} F(T_i) \). For each \(i \in I \), let \(G_m^{(i)} = \max_{x \in K, x \neq F} \{ \| T_i(PT_i)^{m-1}x - x^* \| - \| x - x^* \| \} \}
so that \(\sum_{m=1}^{\infty} G_m^{(i)} < \infty, i \in I \). Let \(\{x_n\} \) be the sequence defined by (1.2) where \(\{a_n\} \) is a real sequence in \([\delta, 1 - \delta] \) for some \(\delta \in (0, 1) \). If one of the mappings \(T_i, i \in I \) is completely continuous, then \(\{x_n\} \) converges strongly to a common fixed point of the mappings \(T_i, i \in I \).

Proof. The proof of theorems 3.7 and 3.8 follows from the proof of Theorem 3.4 in [23]. \(\square \)

Theorem 3.9. Let \(K \) be a nonempty closed convex subset of a real uniformly convex Banach space \(E \) which is also a nonexpansive retract of \(E \) with a nonexpansive retraction \(P \). Let \(T_i, i \in I \) be \(N \) nonexpansive asymptotically quasi-nonexpansive mappings from \(K \) to \(E \) with sequences \(\{k^{(i)}_n\} \subset [1, \infty) \) such that \(\sum_{n=1}^{\infty} (k^{(i)}_n - 1) < \infty \) and \(\lim_{n \to \infty} k^{(i)}_n = 1 \) for all \(i \in I \), respectively. Suppose that \(T_i \) are uniformly \(L_i \)-Lipschitzian with the uniform Lipschitz constants \(L_i > 0, i \in I \), respectively. Let \(\{x_n\} \) be the sequence defined by (1.2) where \(\{a_n\} \) is a real sequence in \([\delta, 1 - \delta] \) for some \(\delta \in (0, 1) \). If \(F = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset \) and one of the mappings \(T_i, i \in I \) is demicoercive then \(\{x_n\} \) converges strongly to a common fixed point of the mappings \(T_i, i \in I \).
Theorem 3.10. Let K be a nonempty closed convex subset of a real uniformly convex Banach space E which is also a nonexpansive retract of E with a nonexpansive retraction P. Let $\{T_i : i \in I\}$ be N nonself asymptotically quasi-nonexpansive in the intermediate sense mappings from K to E with a nonempty common fixed point set $F = \bigcap_{i=1}^{N} F(T_i)$. For each $i \in I$, put $G_m(i) = \max\{\sup_{x \in K} \{\| T_i(P(T_i)x - x\| - \| x - x^* \|\}\}, 0\}$ so that $\sum_{m=1}^{\infty} G_m(i) < \infty$, $i \in I$. Let $\{x_n\}$ be the sequence defined by (1.2) where $\{\alpha_n\}$ is a real sequence in $[\delta, 1 - \delta]$ for some $\delta \in (0, 1)$. If one of the mappings T_i, $i \in I$ is demicompact then $\{x_n\}$ converges strongly to a common fixed point of the mappings T_i, $i \in I$.

Proof. The proof of theorems 3.9 and 3.10 follows from the proof of Theorem 3.5 in [23].

References