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Abstract—This paper proposes a fast and accurate chirp-rate 

estimation algorithm in noisy environment. The proposed method 

searches the inverse maximum magnitude of the angle-sweep 

fractional Fourier domain and finds the optimum angle, which 

provides an estimate for the chirp-rate. In order to accelerate the 

search process, we propose to use the Fibonacci search algorithm, 

which provides a sub-optimal search scheme in terms of 

computational complexity. Simulation results show the efficiency 

of the proposed algorithm.  

 

Index Terms—Fractional Fourier transform, chirp-rate, linear 

frequency modulated signals, estimation, Cramer-Rao lower 

bound.  

I. INTRODUCTION 

INEAR frequency modulated (LFM) signals are employed 

in a relatively diverse areas, such as radar [1], sonar [2], 

automotive [3], aerospace [4], ultrasound [5], and 

communications [6]. One of the most important problems when 

dealing with LFM signals is to estimate one, or all of its 

parameters. An LFM signal in a noisy environment can be 

modeled as  

𝑐(𝑡) = 𝐴 exp[𝑗𝜋(𝑚𝑡2 + 2𝑓0𝑡)] + 𝑤(𝑡), (1) 

 

where 𝑚 is the chirp rate, 𝑓0 is the frequency-shift, and 𝐴 is the 

complex amplitude. In this problem, the noise 𝑤(𝑡) is assumed 

to be a complex circular additive white Gaussian with variance 

𝜎𝑤
2 .  

Radar return signals of a moving object can be modeled by 

an LFM signal. Therefore, estimating chirp rates of the radar 

signals provide an estimate of the relative velocity of the target. 

Moreover, LFMCW radars emit LFM-type signals in order to 

estimate both velocity and the distance at the same time. 

Therefore, estimating the chirp-rate of an LFM signal play a 

critical role in many applications. The asymptotic Cramer-Rao 

lower bound for estimating the chirp rate of a single LFM signal 

can be expressed by 

var(�̂�) =
90

𝜋2𝑁5𝑇𝑠
4𝛾

, (2) 

where �̂� is the estimated chirp rate and 𝛾 is the signal-to-noise 

ratio (SNR).  
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Here, the LFM signal sampled with a sampling period 𝑇𝑠 and 

𝑁 samples are taken. The maximum likelihood estimators [7-8] 

for estimating parameters of the LFM signal requires a multi-

dimensional parameter search algorithm in the search space. 

Therefore it is computationally inefficient. Wigner distribution-

based methods [9-10] are also of high performance; however 

they also lack computational ease. Maximum amplitude method 

[11] can also be used to estimate the chirp rate of a signal.  

In this paper, we present a novel, fast and accurate chirp-rate 

estimation algorithm based on the fractional Fourier transform 

(FrFT) and the Fibonacci search. The FrFT is a very-well 

known transform and has found itself many application areas, 

when the frequency of the signal of interest varies linearly in 

time. The FrFT is a natural domain for LFM signals, since the 

kernel of the FrFT itself is constituted of LFM signals. 

Throughout the FrFT domains, there exists a special domain, in 

which the energy of the LFM signals are most concentrated [11-

13]. Using the energy preservation property of the FrFT, which 

states that the signal’s amplitude increases when the energy 

concentrates, we propose a novel method for estimating the 

optimum transformation angle of an LFM signal. Since the 

optimum transformation angle is related to the chirp rate, the 

problem of estimating the chirp rate is then reduced to a single-

dimensional search in the FrFT domains. In order to accelerate 

the search process, we propose to use the celebrated Fibonacci 

search [14], which requires far less computations. Simulation 

results show that the proposed method performs very well with 

less computational requirements.  

The rest of the paper is organized as follows, Section II 

introduces the FrFT briefly and concludes with how the 

maximum magnitude method can be used for chirp rate 

estimation. Section III discloses the proposed method for 

estimating the chirp-rate and the Fibonacci search algorithm 

that accelerates the search process. Computer simulations are 

given in Section IV. The paper concludes in Section V.   

II. PRELIMINARIES 

In this section, we first give a preliminary definition of the FrFT 

and the section is concluded after the discussion relationship 

between the chirp rate of an LFM signal and the FrFT. 

A. The Fractional Fourier Transform 

The FrFT [15] is a linear and unitary transform. If 𝑓(𝑢) is a 

square integrable function, then the FrFT of this function is 

defined by 
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ℱ𝛼{𝑓}(𝑢) = √1 − 𝑗 cot(𝛼) ∫ 𝑓(𝜇) exp[𝑗𝜋(cot(𝛼)𝜇2
∞

−∞

− 2 csc(𝛼) 𝑢𝜇 + cot(𝛼) 𝑢2)] 𝑑𝜇,  

(3) 

where 𝛼 is the transformation angle. The FrFT becomes the 

conventional FT for 𝛼 = 𝜋/2 and inverse FT for 𝛼 = −𝜋/2. 

Therefore, FT is only a special case of the FrFT and for the other 

values of angles; the FrFT can be considered as an interpolation 

between the original signal, and the FT. For example, if 𝛼 = 2𝜋 

and 𝛼 = 𝜋, the transform appears to be the identity transform 

and the counter-identity transform, respectively. The FrFT is an 

energy-preserving transform as implied by the unitarity. Two 

consecutive FrFTs with angles 𝛼1 and 𝛼2 yield a single FrFT 

with the angle 𝛼1 + 𝛼2, where the FrFT transformation angle 𝛼 

is periodic with 2𝜋. 

One of the most interesting properties of the FrFT is that it 

rotates the transformed signal in the time-frequency domain, 

i.e., the Wigner distribution of the resultant signal is rotated 

with the transform angle 𝛼, in the clockwise direction. In other 

words, the FrFT rotates the time frequency axis in the counter-

clockwise direction. This property is illustrated in Fig. 1. 

From (), it can be seen that the basis functions of the FrFT 

are the chirp functions. Therefore, the FrFT is the natural 

domain for LFM-type signals. In the optimum angle, the FrFT 

converts an LFM signal into a Dirac-delta distributed signal, 

where it is well-known [12-13] that the optimum angle 𝛼𝑜𝑝𝑡 is  

𝛼𝑜𝑝𝑡 = arctan(𝑚) +
𝜋

2
+ 𝑘𝜋,  (4) 

where 𝑚 is the actual chirp rate of the LFM signal of interest 

and 𝑘 is any integer. Since the transform angle is a continuous 

function of the transform, it generally requires a search in the 

FrFT domain to find out the optimum transformation angle, 

which is generally computationally demanding.  

B. Chirp Rate Estimation in the Fractional Fourier Domains 

 It is a very well-known fact that the FrFT can be used as a 

powerful tool for estimating the chirp rate of an LFM signal. 

The most widely used algorithm for estimating the chirp rate is 

the maximum magnitude method. This method searches for the 

angle that produces the maximum magnitude throughout all the 

angles between [0, 𝜋] expressed by 

�̂�𝑜𝑝𝑡 = argmax
𝛼

𝑃(𝛼),  (5) 

where 𝑃(𝛼) is the maximum of the magnitude square FrFT at 

the angle 𝛼, given by, 

𝑃(𝛼) = max{|ℱ𝛼{𝑐}(𝑢)|2}. (6) 

The expected value of the resultant estimate �̂� is known to give 

the optimum transform angle, 𝛼𝑜𝑝𝑡. Therefore, an estimate of 

the chirp rate can be found by 

�̂� = tan (�̂�𝑜𝑝𝑡 −
𝜋

2
). (7) 

As the maximum magnitude method searches through the 

angles, the LFM signal gets more and more compact when the 

search angle gets closer to the optimum angle. As a result of the 

preservation of the energy, the magnitude increases in order to 

make the total energy constant in the transform domain. The 

magnitude attains its maximum at the optimum transform 

domain, which converts the signal into an impulse, making the 

maximum magnitude method an optimum chirp-rate estimation 

method.  

 The only limiting factor of the usage of FrFT-based methods 

for estimating the chirp rate is its relatively high computational 

cost of digital computation of the FrFT.  In the FrFT-domain, 

only a one-dimensional search is required to estimate the chirp-

rate by using the maximum magnitude method. However, 

digital calculation of a single FrFT requires 𝒪(𝑁 log 𝑁) 

complex multiplications and additions. Therefore, fast angle 

search algorithms are required. In the next section we propose 

a method that employs the FrFT to estimate the chirp-rate of an 

LFM signal based on. 

 

III. PROPOSED METHOD 

A. Minimum Inverse Magnitude  

We propose that, instead of using the maximum magnitude 

method, minimum inverse magnitude method can also be used 

as a substitute. In the minimum inverse magnitude, an estimate 

of the optimum angle is found by, 

 

�̂�𝑜𝑝𝑡  = min
𝛼

𝐽(𝛼),  (8) 

where, 

𝐽(𝛼) =
1

𝑃(𝛼)
,  (9) 

 

which simply finds the minimum of the inverse of the 

maximum magnitude. However, calculating each point in the 

search space requires 𝒪(𝑁 log 𝑁) complex multiplications and 

additions to calculate the FrFT. Therefore, instead of employing 

a brute-search algorithm, we propose to use the Fibonacci 

search. 

B. Fibonacci Search 

Fibonacci search is one of the well-known near-optimum 

search methods. In this method, a local search for the minimum 

of a cost function is evaluated cost-effective. The Fibonacci 

search algorithm finds a minimum of a cost function 𝑓(𝑥) in the 

interval of [𝑎, 𝑏].  
In the Fibonacci algorithm, we select two points 𝑥1 and 𝑥2 in 

the range [𝑎, 𝑏] and evaluate the function at these two points 

 
 
Fig. 1. Illustration of the rotation property of the FrFT in the time-

frequency domain.  
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𝑓(𝑥1) and 𝑓(𝑥2), where 𝑥1 < 𝑥2 and (𝑥1 − 𝑎) = (𝑏 − 𝑥2). 

Here, we assume that 𝑓(𝑎) and 𝑓(𝑏) are already known. If 

𝑓(𝑥1) < 𝑓(𝑥2), then we confine the new search interval to 

[𝑎, 𝑥2]. Otherwise, the new search interval is [𝑥1, 𝑏]. After 

updating the new interval, only a new point 𝑥3 is selected inside 

the new interval and the other two points can be used. For 

example, if the new interval is [𝑎, 𝑥2], the new point is selected 

such that 𝑎 < 𝑥3 < 𝑥2. Then, 𝑓(𝑥3) is evaluated. If 𝑓(𝑥3) <
𝑓(𝑥1), then we confine the new interval as [𝑎, 𝑥1]. Otherwise, 

the new search interval is set to [𝑥3, 𝑥2]. The beauty of the 

Fibonacci search method comes from the way of selecting 

internal points. The search points are selected such that only a 

single evaluation of the cost function is required at each 

iteration, except for the first iteration, which requires two 

evaluations. The algorithm stops when the search interval is 

smaller than a tolerance value 𝜖. The proposed Fibonacci search 

algorithm for finding the minimum of inverse maximum 

magnitude is summarized in Algorithm 1, where 𝐹𝑘 = 𝐹𝑘−1 +
𝐹𝑘−2 is the 𝑘-th Fibonacci number of the order 𝑘 > 1.   

In our realizations, we choose 𝑎 = 0 and 𝑏 = 2𝜋, so that the 

whole FrFT domain is our search domain. The number of 

required iterations is determined by the tolerance value 𝜖. It is 

a well-kown fact that a Fibonacci number can be approximated 

by 𝐹𝑘 ≈
√5

2
𝑟𝑘+1 for 𝑘 ≥ 3, where 𝑟 ≈ 1.618 is the golden ratio. 

Therefore, the required number of FrFTs can be found as, 

𝑁𝐹𝑟𝐹𝑇 = ⌈log𝑟 (
2

√5

𝑏 − 𝑎

𝜖
 ) − 2⌉,  (10) 

where ⌈⋅⌉ denotes the ceil operator. For a setting of 𝜖 = 10−5, 

𝑏 = 𝜋, and 𝑎 = 0, the number of required FrFTs is only 26. As 

the computational complexity of digital computation of the 

FrFT is of 𝒪(𝑁 log 𝑁) [16], our proposed algorithm is of 

𝒪(𝑁𝐹𝑟𝐹𝑇𝑁 log 𝑁) computational cost.  

The next section discusses the estimation performance of the 

proposed chirp-rate estimator. 

IV. SIMULATIONS AND RESULTS 

In order to evaluate the performance of the proposed method, 

we generate a discrete-chirp signal,  

𝑐[𝑛]  = 𝐴 exp{𝑗𝜋[𝑚 × (𝑛𝑇𝑠)2 + 2𝑓0(𝑛𝑇𝑠)]} + 𝑤[𝑛],
𝑛 = 0,1 ⋯ , 𝑁 − 1,  

(11) 

where we take the sampling rate 𝑇𝑠 = 1/√𝑁, chirp rate 𝑚 =
0.2, frequency shift  𝑓0 = 0.1, and amplitude 𝐴 = 1, and the 

number of the samples 𝑁 = 1024. 𝑤[𝑛] is the additive white 

Gaussian noise with variance 𝜎𝑤
2 .  

 In the noiseless case, the cost function 𝐽(𝛼) for the LFM 

signal is plotted in Figure 2. It is clear that the cost function is 

an almost unimodal function attaining its minimum at the 

optimum angle 𝛼𝑜𝑝𝑡 = arctan(𝑚) + 𝜋/2.  

 In the noisy case, estimation performance is compared to the 

CRLB in Figure 3. Performance criteria is taken as the MSE of 

the chirp-rate estimation, given by 

𝑀𝑆𝐸 =
1

𝑀
∑(�̂� − 𝑚)

𝑀

𝑘=1

,  (12) 

where �̂� is the estimated chirp rate and 𝑚 is the actual chirp 

rate of the signal. 𝑀 is the number of Monte-Carlo simulations, 

which we take as 104. 

 

 
Figure 2. Inverse maximum magnitude cost function of a chirp 

signal. 

 

Estimation performance of a the LFM chirp rate is plotted in 

Figure 3, which shows that MSE gets closer to the CRLB after 

a specific value of SNR. For the SNR values below the 

ssssssssssssssssssssss  

Algorithm 1: The employed Fibonacci search method that finds an 

estimate of the chirp-rate, where the search is performed in the 

FrFT angles between 0 and 2𝜋. 

𝑛 ← argmin
𝑛

{𝐹𝑛 ≤
(𝑏 − 𝑎)

𝜖
} 

𝛼1 ← 𝑎 +
𝐹𝑛−2

𝐹𝑛

(𝑏 − 𝑎) 

𝛼2 ← 𝑎 +
𝐹𝑛−1

𝐹𝑛

(𝑏 − 𝑎) 

while 𝑘 < 𝑛 − 1 

if 𝐽(𝛼1) > 𝐽(𝛼2) 
𝑎 ← 𝛼1 ; 
𝛼1 ← 𝛼2; 

𝛼2 ←  𝑎 +
𝐹𝑛−𝑘−1

𝐹𝑛−𝑘

(𝑏 − 𝑎); 

else 

𝑏 ← 𝛼2 ; 
𝛼2 ← 𝛼1; 

𝛼1 ←  𝑎 +
𝐹𝑛−𝑘−2

𝐹𝑛−𝑘

(𝑏 − 𝑎); 

end 

𝑘 ← 𝑘 + 1; 
end 

�̂�𝑜𝑝𝑡 ←
𝛼1 + 𝛼2

2
; 

�̂� = tan (�̂�𝑜𝑝𝑡 −
𝜋

2
) 
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threshold, estimation performance is highly degraded, which is 

also known as the maximum likelihood threshold. For this 

simulation we choose the Fibonacci parameter as 𝜖 =
10−5

𝜋
. For 

this value of 𝜖, only 26 iterations are required to estimate the 

chirp-rate. Therefore, the computational cost of our proposed 

estimator is only in the order of 𝒪(26𝑁 log 𝑁). 

 

 
Figure 3. Estimation performance of the chirp rate �̂�. 

 

Figure 3 also shows that, for SNR values greater than 7dB, 

MSE of the estimation are very low. For most of the 

applications, this kind of estimation accuracy is highly 

satisfactory.     

V. CONCLUSIONS 

In this work, we have presented a fast and accurate way to 

estimate the chirp-rate of an LFM signal. The problem of 

estimating the chirp-rate is reduced to finding the minimum of 

a cost function, 𝐽(𝛼). Taking the advantage of the relationship 

between the index that minimizes 𝐽(𝛼) and the chirp rate, chirp-

rate of the LFM signal is estimated. Instead of a brute-search, 

we propose to use the celebrated Fibonacci search in order to 

accelerate the search process. Simulation results show that the 

proposed method produces highly accurate estimation results.  
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