
Fırat Üniversitesi Müh. Bil. Dergisi Araştırma Makalesi
37(2), 611-621, 2025 https://doi.org/10.35234/fumbd.1646674

An Innovative Solution to the Map Coloring Problem Using the Malatya Vertex Coloring

Algorithm

Cezayir KARACA1*, Selman YAKUT2
1 Computer Engineering, Faculty of Engineering, İnönü University, Malatya, Türkiye
2 Software Engineering, Faculty of Engineering, İnönü University, Malatya, Türkiye

*1 cezayirkaraca0242@gmail.com, 2 selman.yakut@inonu.edu.tr

 (Geliş/Received: 25/02/2025; Kabul/Accepted:13/06/2025)

Abstract: The map coloring problem is a classical NP-complete problem that requires adjacent regions to be colored differently
and is encountered in many real-world applications. Numerous algorithms have been developed to solve this problem. In this
study, the Malatya Vertex Coloring (MVC) Algorithm, which presents a novel and original approach to solving the problem,
is applied. This algorithm aims to identify influential vertices to reduce the number of colors used in graphs and to complete
the coloring process more efficiently. Additionally, the applicability of the algorithm to real-world problems is also evaluated.
The MVC Algorithm calculates the Malatya Centrality value for each vertex in the graph; it selects the vertex with the highest
value, colors it with a color different from its neighbors, and then removes it from the graph. This process continues until all
vertices are colored. The algorithm has been successfully applied to maps of Asia, Europe, districts of Istanbul, Turkey, U.S.
states, and the world, and the results demonstrate the effectiveness of the algorithm. The advantages of the MVC Algorithm
include its predictability, as well as its ability to operate in polynomial time and space. In this respect, the MVC Algorithm
offers an alternative solution approach to the classical Four Color Theorem in the context of the map coloring problem.

Key words: Centrality, graph coloring, map coloring, planar graph.

Malatya Düğüm Renklendirme Algoritması Kullanılarak Harita Renklendirme Problemi için

Yenilikçi Bir Çözüm

Öz: Harita renklendirme problemi, bitişik bölgelerin farklı renklerle boyanmasını gerektiren ve birçok gerçek hayat
uygulamasında karşılaşılan klasik bir NP-tam problemdir. Bu problemin çözümü için birçok algoritma geliştirilmiştir. Bu
çalışmada, ilgili problemin çözümüne yönelik yeni ve özgün bir yaklaşım ortaya koyan Malatya Vertex Coloring (MVC)
Algoritması uygulanmıştır. Bu algoritma, graflarda kullanılan renk sayısını azaltmak için etkili düğümleri belirlemekte ve
renklendirme sürecini daha kısa sürede tamamlamayı hedeflemektedir. Ayrıca algoritmanın, gerçek hayat problemlerine
uygulanabilirliği de değerlendirilmiştir. MVC Algoritması, graf yapısındaki her düğüm için Malatya Merkezilik değerini
hesaplar; en yüksek değere sahip düğümü seçerek komşularından farklı bir renkle boyar ve ardından bu düğümü graf üzerinden
çıkarır. Bu işlem, tüm düğümler renklendirilene kadar devam etmektedir. Algoritma; Asya, Avrupa, İstanbul ilçeleri, Türkiye,
ABD eyaletleri ve Dünya haritaları üzerinde başarıyla uygulanmış ve elde edilen sonuçlar algoritmanın etkinliğini ortaya
koymuştur. MVC Algoritması’nın avantajları arasında öngörülebilir olması, polinom zamanda ve polinom uzayda çalışabilmesi
yer almaktadır. Bu yönüyle, MVC Algoritması’nın harita renklendirme problemine ilişkin olarak klasik Dört Renk Teoremi’ne
alternatif bir çözüm yaklaşımı sunduğu ortaya konulmuştur.

Anahtar kelimeler: Merkezilik, graf renklendirme, harita renklendirme, malatya coloring, düzlemsel graf.

1. Introduction

The Graph Coloring Problem (GCP) was first introduced in 1852 by Francis Guthrie while coloring a map of
England. Guthrie noticed that adjacent cities could be assigned different colors and that this could be achieved
using only four colors [1]. There are two fundamental principles in graph coloring. The first is the requirement
that adjacent vertices must be assigned different colors. The second is the objective of using the minimum number
of colors possible. Graph coloring has been applied in various domains, including map coloring [2], frequency
assignment [3], Sudoku [4], scheduling [5], register allocation [6], and timetable generation [7].

Map coloring refers to the process of assigning different colors to neighboring regions within bounded areas.
This method is studied as a mathematical problem and has applications in various fields. The main goal is to ensure
that adjacent regions are assigned different colors while minimizing the total number of colors used. In 1977,

* Corresponding author: cezayirkaraca0242@gmail.com. Yazarların ORCID Numarası: 1 0009-0007-9250-2612, 2 0000-0002-0649-1993

An Innovative Solution to the Map Coloring Problem Using the Malatya Vertex Coloring Algorithm

612

Kenneth Appel and Wolfgang Haken proved that any planar graph can be colored using four colors. Assigning
different colors to adjacent regions on a map while using the fewest colors has been proven to be an NP-complete
problem [8].

Although various algorithms have been developed to solve the map coloring problem, certain limitations still
persist. Most existing algorithms are optimized for specific types of maps or graph structures, resulting in limited
generalizability. Furthermore, computational cost increases significantly in large and complex datasets, leading to
longer solution times and sometimes suboptimal results. While heuristic and approximate algorithms may be
effective in practice, they cannot guarantee the minimum number of colors in every case. Additionally, there are
significant gaps in developing adaptive and real-time solutions for situations where region boundaries change
dynamically.

To facilitate the coloring of maps by algorithms, maps were transformed into planar graphs. Planar graphs
are defined as graphs in which edges intersect only at vertices—meaning no two edges cross each other when
drawn [2]. In this representation, each region on the map corresponds to a vertex, and the adjacency between
regions is represented as an edge [9]. In this context, graph coloring algorithms began to be used to solve the Map
Coloring Problem (MCP). The literature indicates that no universally effective general solution exists for GCP,
and various exact and approximate algorithms have been proposed for its resolution [10]. Methods such as Ant
Colony Optimization [11], Tabu Search [12], Genetic Algorithms [13], and Quantum Search Algorithms [14] have
been evaluated for this purpose. Each of these methods has its own strengths and weaknesses.

In this study, the MVC algorithm [15], which was previously proposed for the Graph Coloring Problem, is
applied to provide a solution to the MCP. The MVC algorithm aims to color a given map using the minimum
number of colors. During this process, the primary constraint is to prevent adjacent regions from being assigned
the same color. The algorithm identifies the most critical region and assigns colors accordingly. Thus, optimal or
near-optimal color usage is achieved between neighboring regions. The main advantages of the MVC algorithm
include the predictability of all iteration and execution steps, as well as its ability to operate with polynomial time
and space complexity. In this study, the MVC algorithm is adapted and used to solve the MCP.

The remainder of this paper is organized as follows: Section 2 presents the literature related to map and graph
coloring. Section 3 introduces the proposed method and approach. Section 4 presents the results of the map
coloring applications. Section 5 concludes the paper. According to the literature, MCP is identified as an NP-
complete problem. With the advancement of computer science, numerous approaches and algorithms have been
proposed to solve this problem.

2. Literature Review

Hong B. proposed the use of a genetic algorithm to solve the Graph Coloring Problem (GCP) [16]. Lui and

Zang conducted research on a DNA-based algorithm for graph coloring. Ruxin Zhao and colleagues proposed the
Selfish Herd Optimizer (DSHO) algorithm as an effective solution for GCP [17]. The Turbulent Particle Swarm
Optimization (MTPSO) algorithm developed by Ling-Yuan et al. was shown to outperform the PSO algorithm
developed by Cui et al. in 2008 [18]. Guangzhao Cui and colleagues developed a Modified PSO algorithm for
solving the planar GCP. Test results demonstrated that the Modified PSO outperforms the classical PSO [10].
Colin Campbell and Edward Dahl proposed the Quantum Approximate Optimization Algorithm (QAQA),
supported by application teams. In their article, they aimed to demonstrate that using higher-order terms can
significantly enhance the performance of QAQA [14]. Kui and Hitoshi introduced the Discrete Firefly Algorithm
(DFA) for GCP. Their study showed that the proposed DFA is based on similarity calculation, does not require
defining extra operators, does not need the addition of new strategies, and is a non-hybrid algorithm [19].

Bui T.N., Nguyen T.H., and colleagues stated that the ant algorithm they proposed differs from previous ant-
based algorithms, as each ant colors only a part of the graph using local information. This individual coloring
forms a section of the graph. Despite certain limitations, the algorithm demonstrated good performance [20]. In
the same study, the author proposed a local flower pollination algorithm to solve the planar GCP. The proposed
algorithm achieved a higher success rate in coloring compared to Particle Swarm Optimization (PSO), Basic
Flower Pollination Algorithm (FPA), and Differential Evolution (DE) [21]. Surbakti N. and Ramadhani F.
addressed the map coloring problem using a greedy algorithm approach with a minimum number of colors. The
map was colored using four colors, ensuring that neighboring provinces received different colors [22]. Lingli
Zhao and colleagues applied greedy algorithms to MCP, arguing that such algorithms are suitable for many real-
world problems. Although many algorithms have been used to solve this problem, they tend to be complex; in
contrast, the greedy algorithm allowed for a simpler and more effective solution by prioritizing the provinces with
the most connections [23].

Cezayir KARACA, Selman YAKUT

613

Another study proposed an artificial neural network based on harmony theory to solve the map coloring
problem. This approach determines whether MCP can be solved with a pre-specified number of colors and
identifies the minimum number of colors required. The implementation directly encodes the problem into the
neural network and represents the solution through node actions [24]. In that study, a perturbation factor was added
to the algorithm. When the algorithm stops progressing toward a global optimum, the perturbation resets a
particle’s velocity with a certain probability, helping it escape local optima. This algorithm was applied to solve
GCP. Later, Talavan proposed a neural network method for solving GCP [25].

In this study, the MVC algorithm applied for solving the MCP offers a unique strategy based on the MC value
for node selection, aiming to minimize the number of colors used in map coloring problems. Unlike commonly
used algorithms in the literature, such as genetic algorithms, ant colony optimization, particle swarm optimization,
or classical greedy methods, MVC determines the order of color assignments based on a more systematic and
predictable criterion. Most existing algorithms incorporate randomness in the selection of the initial node or make
decisions independently of the graph’s global structure. The MVC algorithm, however, selects the central node in
each iteration and recalculates accordingly, allowing it to adapt to the dynamic structure of the graph and produce
successful results with fewer colors by minimizing conflicts. Additionally, its polynomial time and space
complexity offer advantages in both theoretical and practical applications.

3. Materials and Methods

The Graph Coloring Problem (GCP) is a significant optimization problem that has been widely studied and
has numerous practical applications. In recent years, due to the expansion of its application domains and
advancements in solution strategies, GCP has attracted considerable attention from researchers. The primary
objective of GCP is to assign different colors to adjacent nodes while minimizing the total number of colors used.

The MVC (Malatya Vertex Coloring) algorithm, proposed as a solution to the GCP, is a coloring method that
considers the centrality values of the nodes. The aim of the algorithm is to prioritize the coloring of the most
influential nodes, thereby minimizing the total number of colors used and reducing conflicts. In order to apply the
MVC algorithm to the Map Coloring Problem (MCP), the problem must first be represented in the form of a graph.
To make real-world data such as maps suitable for algorithmic processing, some preprocessing steps are required.

As an example of this process, the district map of Adıyaman, shown in Figure 1, was used. In the first stage
(Stage 1), each region or area is represented as a node, and the adjacency relationships between regions are defined
as edges. In this way, the map is transformed into a graph structure consisting of nodes and edges (Stage 2). The
MVC algorithm is then applied to the resulting graph to assign appropriate colors to each node, producing a colored
graph as seen in Stage 3. In the final stage (Stage 4), the colors assigned to each node in the graph are mapped
back to the corresponding regions on the original map, resulting in a successfully colored map.

The MVC algorithm is a graph coloring algorithm that operates in two main steps, based on the centrality
(MC) values of the nodes. In the first step, the MC values of all nodes in the graph are calculated. In the second
step, nodes are selected according to these values, and appropriate colors are assigned to complete the coloring
process. The general operation of the algorithm is as follows: First, the MC values of all nodes in the input graph
are calculated, and the node with the highest MC value is identified and assigned a color. This colored node is then
removed from the graph. Next, the MC values of the remaining nodes are recalculated, and the node with the
highest MC value is again selected. A color that does not conflict with the colors of its neighboring nodes is
assigned to this node, which is then removed from the graph. This process repeats until all nodes are colored.

The pseudocode of the algorithm is presented in detail in Algorithm 1. The MVC algorithm consists of two
main components: the Main Function and the CentralityCalculate function. The CentralityCalculate function
computes the MC value for each node, identifies the node with the highest value, and returns it. This node is then
assigned a color that does not conflict with those of its neighbors, and subsequently removed from the graph. This
cycle continues until no uncolored nodes remain in the graph. Once the loop is completed, all nodes in the copied
graph are assigned a color, and the graph is fully colored.

An Innovative Solution to the Map Coloring Problem Using the Malatya Vertex Coloring Algorithm

614

Figure 1. Coloring process of the district map of Adıyaman using the MVC Algorithm.

Algorithm 1. Pseudocode of the MVC Algorithm

MVC Algorithm

1 g ← (V, E)
2 f ← Copy(g)
3 CentralityCalculate ← function(g)
4 MaxDegree ← -∞
5 for i in V(g)
6 Centrality ← 0
7 for j in Neighbors(i)
8 Centrality ← Centrality + Degree(i) / Degree(j) // The MC value is calculated by
 //summing the ratios of the node's
 //degree to the degrees of its neighbors.
9 if Centrality > MaxDegree
10 MaxDegree ← Centrality
11 Vertex ← i
12 return Vertex
13 while VCount(g) > 0
14 vertex ← CentralityCalculate(g)
15 for i in Neighbors(f, vertex)
16 Color(f[vertex]) ← Color(f[i])
17 g ← DeleteVertex(g, vertex)
18 figure
19 Show(f)

The MC value is calculated as the sum of the ratios of the selected node’s degree to the degrees of its

neighboring nodes.

Cezayir KARACA, Selman YAKUT

615

To demonstrate the application process of the MVC algorithm, a map of the Southeastern provinces of Turkey
was used. The map was converted into a graph structure for coloring, and the adjacency table of the Southeastern
provinces was input into the system. The MC (Modular Centrality) value of each node was calculated by summing
the ratios of its degree to the degrees of its neighboring nodes. In this way, all nodes' MC values were computed.
As shown in Table 1, the province with the highest value was Mardin. Therefore, a color was assigned to Mardin
starting from the beginning of the color list, and then it was removed from the graph. After the graph was updated,
all MC values were recalculated, and in the second iteration, Gaziantep was determined to have the highest MC
value. While assigning a color to Gaziantep, care was taken to avoid using the same color as its neighboring
provinces. Since none of Gaziantep's neighbors had yet been colored, the first color in the list was assigned to this
node, and it was subsequently removed from the graph. Following the update and recalculation of MC values,
Diyarbakır emerged as the province with the highest MC value in the third iteration. Since Mardin, a neighbor of
Diyarbakır, had already been assigned a color, a different color from the list was selected for Diyarbakır, which
was then removed from the graph. In the fourth iteration, Siirt had the highest MC value among the remaining
nodes. To determine the color for Siirt, the colors of its neighboring provinces were reviewed. Since only Mardin
had been assigned a color among Siirt’s neighbors, a color different from that of Mardin was chosen. In the fifth
iteration, Adıyaman and Şanlıurfa had equal MC values. The province that comes first alphabetically, Adıyaman,
was selected, and its coloring process was carried out. Upon reviewing Adıyaman’s neighbors, it was found that
Gaziantep and Diyarbakır had already been colored; hence, a color different from these was assigned to Adıyaman.
The remaining provinces had an MC value of zero since their neighbors had been removed from the graph. Each
of these was subsequently colored using a color not used by its neighbors.

As a result, the Southeastern region of Turkey was successfully colored using the MVC algorithm. The
changes in MC values at each step of the algorithm are presented in Table 1.

Table 1. MC values of southeastern provinces.

. Adıyaman Şanlıurfa Gaziantep Diyarbakır Kilis Mardin Batman Siirt Şırnak
Iteration-1 2.5 4.46 4.75 4.46 0.3 8.3 2.35 3.1 1.06

Iteration-2 3.0 3.0 5.0 3.5 0.3

1.6 3.0 0.5

Iteration-3 1.6 1.6

4.5 0

1.6 3.0 0.5

Iteration-4 1.0 1.0

0

0.5 4.0 0.5

Iteration-5 1.0 1.0

0

0

0

Iteration-6

0

0

0

0

Iteration-7

0

0

0

Iteration-8

0

0

Iteration-9

0

In each step of the MVC algorithm, the coloring of the province with the highest MC value was prioritized.

Following each execution step, the map coloring process was visualized through the stages illustrated in Figure2.

An Innovative Solution to the Map Coloring Problem Using the Malatya Vertex Coloring Algorithm

616

Figure 2. Step-by-step coloring of the Southeastern provinces using the proposed method.

The algorithm was applied to the Asia Map, Europe Map, Istanbul Districts Map, Turkey Map, World Map,

and finally the US States Map for the purpose of map coloring, yielding successful results.

4. Map Application Coloring Results

In the graph modeling performed on the map, each region separated by borders was defined as a node, and
the relationships between adjacent regions were represented by edges. In the application specifically conducted on
the Asia map, 44 countries were modeled as nodes, and the 81 adjacency relationships between them were
converted into a graph structure. The MVC algorithm was applied to this graph to ensure that neighboring countries
were represented with different colors. As a result of the application, the entire map was successfully colored using
only four distinct colors. This outcome is visualized in Figure 3, where each country is represented by a different
color, and the principle that neighboring countries do not share the same color is maintained.

Cezayir KARACA, Selman YAKUT

617

Figure 3. Coloring of the Asia Map.

The Europe map was transformed into a graph structure consisting of nodes representing 40 countries and

edges depicting 72 adjacency relationships between them. The MVC algorithm was applied to this graph to ensure
that neighboring countries were represented by different colors. As a result of the coloring process, an optimal
color distribution was achieved on the map using only four colors. The obtained results are visualized in Figure 4,
demonstrating that adjacent countries do not share the same color and that the minimum number of colors was
successfully utilized.

Figure 4. Coloring of the Europe Map.

An Innovative Solution to the Map Coloring Problem Using the Malatya Vertex Coloring Algorithm

618

The map covering Istanbul’s 39 districts was transformed into a graph structure, where the districts were
represented as nodes and the 76 adjacency relationships between them as edges. By applying the MVC algorithm
to this graph, neighboring districts were assigned different colors, achieving a successful coloring using a total of
four colors. According to the results visualized in Figure 5, adjacent districts do not share the same color, and an
effective solution was obtained with minimal color usage.

Figure 5. Coloring of the Istanbul Districts Map

Figure 6. Coloring of Turkey Map

The map including the US states was modeled as a graph structure consisting of 51 nodes and 108 edges. By
applying the MVC algorithm to this graph, neighboring states were colored with different colors, and the coloring
process was completed using a total of five distinct colors. The obtained results are visualized in Figure7.

Cezayir KARACA, Selman YAKUT

619

Figure 7. Coloring of the US States Map.

Finally, the algorithm was applied to the world map. In this application, 249 countries were modeled as nodes,

and 728 adjacency relationships between the countries were represented by edges. The coloring process performed
using the MVC algorithm ensured that all adjacent countries were displayed with different colors using only five
distinct colors. The colored world map is presented in Figure 8.

Table 2 presents a comparative summary of the coloring results obtained by applying different algorithms to
various geographical maps. The MVCA algorithm produced successful outcomes by using a number of colors
equal to or comparable with those of existing classical algorithms. Notably, in the US States map, while the RLF
algorithm utilized five colors, the MVCA algorithm achieved better performance using only four colors. For the
other maps, MVCA yielded results on par with competing algorithms in terms of the number of colors used. These
findings demonstrate that the MVC algorithm offers a competitive and effective alternative for map coloring
problems.

Table 2. MC Values of Southeastern Provinces

Applied Maps Number of
Nodes

Number of
Edges

Welsh-
Powell

Greedy
Color

Dsatur RLF MVCA

Asia Map 44 81 4 4 4 4 4

Europe Map 40 72 4 4 4 4 4
Istanbul Districts
Map

39 76 4 4 4 4 4

Turkey Map 81 200 5 5 5 5 5
US States Map 51 108 4 4 4 5 4
World Map 249 320 5 5 5 5 5

An Innovative Solution to the Map Coloring Problem Using the Malatya Vertex Coloring Algorithm

620

Figure 8. Coloring of the World Map.

5. Conclusion

In this study, a novel and original approach called the Malatya Vertex Coloring (MVC) Algorithm was

developed and applied to solve the map coloring problem (MCP). Unlike classical graph coloring algorithms, the
proposed algorithm assigns colors based on the MC values of the nodes, starting from the most influential node.
This approach ensures that adjacent nodes receive different colors while minimizing the total number of colors
used.

The MVC algorithm consists of two main steps: First, the centrality values of all nodes are calculated; then,
a color is assigned to the node with the highest value in a way that does not conflict with the colors of its neighbors,
and the node is removed from the graph. This process continues until all nodes are colored.

The distinctive feature of this study compared to existing literature is the use of a systematic strategy based
on centrality values for selecting the initial node instead of randomness, making the coloring process predictable
and reproducible. Additionally, the MVC algorithm operates with polynomial time and space complexity,
demonstrating its theoretical and practical applicability.

The algorithm was tested on various maps of different scales and complexities, including Asia, Europe,
Istanbul districts, Turkey, US states, and the world. The results obtained are as follows:

* The Asia map was modeled as a graph with 44 nodes and 81 edges and colored using 4 colors.
* The Europe map, represented by 40 nodes and 72 edges, was also colored with 4 colors.
* The Istanbul districts map, composed of 39 nodes and 76 edges, was successfully colored with 4 colors.
* The Turkey map, modeled with 81 nodes and 393 edges, required 5 colors.
* The US states map, represented by 51 nodes and 108 edges, used 5 colors.

Cezayir KARACA, Selman YAKUT

621

* Finally, the world map, converted into a graph with 249 nodes and 728 edges, was colored using 5 colors.
In the specific case study of Southeastern Anatolian provinces, the algorithm selected the most influential

node in each iteration, resulting in an effective color distribution.
As demonstrated in the comparative tables, the MVC algorithm provides efficient solutions using the same

or fewer colors compared to classical algorithms. Notably, in certain maps (e.g., the US states map), it achieved
near-optimal results using fewer colors than other methods.

In conclusion, the MVC algorithm stands out as a method with strong theoretical foundations and successful
practical applications, offering an effective and alternative solution to the map coloring problem. Future work may
focus on applying this algorithm to different problem types or enhancing its structure through hybrid systems.

Acknowledgments

I would like to express my sincere gratitude to my advisor, Dr. Selman Yakut, for his valuable contributions
and guidance throughout every stage of this study, and to my family for their unwavering support.

References

[1] Fritsch R, Fritsch G. Four-Color Theorem. New York, NY, USA: Springer-Verlag; 1998.
[2] Zhou Y, Zheng H, Luo Q, Wu J. An improved Cuckoo Search Algorithm for Solving Planar Graph Coloring Problem.

Appl Math Inf Sci 2013; 7(2): 785-792.
[3] Hale WK. Frequency assignment: Theory and applications. Proc IEEE 1980; 68(12): 1497-1514.
[4] Ono S, Miyamoto R, Nakayama S, Mizuno K. Difficulty estimation of number place puzzle and its problem generation

support. In: 2009 ICCAS-SICE; August 2009; Fukuoka, Japan. New York, NY, USA: IEEE. pp. 4542-4547.
[5] Chmeit N. Using simulated annealing and ant-colony optimization algorithms to solve the scheduling problem. PhD

Thesis, Notre Dame University-Louaize, Lebanon, 2012.
[6] Chaitin GJ, Auslander MA, Chandra AK, Cocke J, Hopkins ME, Markstein PW. Register allocation via coloring. Comput

Lang 1981; 6(1): 47-57.
[7] Altunay H, Eren T. A literature review for course scheduling problem. Pamukkale Univ J Eng Sci 2017; 23(1): 55-70.
[8] Appel K, Haken W. Every planar map is four colorable. In: Mathematical Solitaires and Games. New York, NY, USA:

Routledge; 2019. pp. 145-152.
[9] Saxena S, Thapar A, Bansal R. Total fuzzy graph coloring. J Hyperstructures 2022; 11(1): 84-108.
[10] Cui G, Qin L, Liu S, Wang Y, Zhang X, Cao X. Modified PSO algorithm for solving planar graph coloring problem. Prog

Nat Sci 2008; 18(3): 353-357.
[11] Ahn S, Lee S, Chung TC. Modified ant colony system for coloring graphs. In: Fourth Int Conf Information,

Communications and Signal Processing; 2003; Singapore. New York, NY, USA: IEEE.
[12] Marappan R, Sethumadhavan G. Solution to graph coloring using genetic and tabu search procedures. Arab J Sci Eng

2018; 43(2): 525-542.
[13] Ardelean SM, Udrescu M. Graph coloring using the reduced quantum genetic algorithm. PeerJ Comput Sci 2022; 8: e836.
[14] Campbell C, Dahl E. QAOA of the highest order. In: 2022 IEEE 19th Int Conf Software Architecture Companion (ICSA-

C); 2022; Montréal, Canada. New York, NY, USA: IEEE. pp. 141-146.
[15] Karcı A, Yakut S, Öztemiz F. A new approach based on centrality value in solving the minimum vertex cover problem:

Malatya centrality algorithm. Computer Science 2022.
[16] Hong B. Generic algorithm of color planar graph. J Guizhou Univ (Nat Sci) 1999; 11(16): 232-297.
[17] Zhao R ve diğerleri. Discrete selfish herd optimizer for solving graph coloring problem. Appl Intell 2020; 50(5): 1633-

1656.
[18] Hsu LY, Horng SJ, Fan P, Khan MK, Wang YR, Run RS, Chen RJ ve diğerleri. MTPSO algorithm for solving planar

graph coloring problem. Expert Syst Appl 2011; 38(5): 5525-5531.
[19] Zhao R, Wang Y, Liu C, Hu P, Jelodar H, Rabbani M, Li H. Discrete selfish herd optimizer for solving graph coloring

problem. Appl Intell 2020; 50(5): 1633-1656.
[20] Bui TN, Nguyen TH, Patel CM, Phan KAT. An ant-based algorithm for coloring graphs. Discrete Appl Math 2008; 156(2):

190-200.
[21] Wang R, Zhou Y, Zhou Y, Bao Z. Local greedy flower pollination algorithm for solving planar graph coloring problem.

J Comput Theor Nanosci 2015; 12(11): 4087-4096.
[22] Surbakti NM, Ramadhani F. Implementation of the greedy algorithm for coloring graph based on four-color theorem.

Sudo J Tek Inf 2022; 1(4): 178-182.
[23] Luo Q. The 2nd Conference on Environmental Science and Information Application Technology: ESIAT 2010; July 17-

18, 2010; Wuhan, China. New York, NY, USA: IEEE; 2010.
[24] Tambouratzis T. A consensus-function artificial neural network for map-coloring. IEEE Trans Syst Man Cybern B Cybern

1998; 28(5): 721-728.
[25] Talaván PM, Yáñez J. The graph coloring problem: A neuronal network approach. Eur J Oper Res 2008; 191(1): 100-111.

