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Abstract 

The electrocardiogram (ECG) is a biomedical signal used to check heart functions and diagnose some diseases. In order for these 
assessing to be made correctly, the relevant signals must be well cleared of noise. Many methods have been developed for this purpose. 
In this study we designed a new software tool by collecting many adaptive algorithms for ECG denoising. This tool was developed 
with a user-friendly graphical interface and comprises the loading of signals, their preprocessing, visualization, and single or 
comparative denoising. Some of the strengths and different aspects of the developed tool are that it contains many adaptive 
algorithms, can add different noise types with specified characteristics to the signals, can perform single or comparative denoising 
operations, can calculate and present many evaluation parameters, can recommend the most successful method in comparative 
analysis, and shows detailed spectrums of signals. Additionally, this tool provides detailed theoretical information about adaptive 
algorithms, noises and denoising processing. With its rich content, it is also useful in education of adaptive algorithms in denoising 
processes. 
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Öz 

Elektrokardiyogram (EKG), kalp fonksiyonlarını kontrol etmek ve bazı hastalıkları teşhis etmek için kullanılan biyomedikal bir 
sinyaldir. Değerlendirmelerin doğru bir şekilde yapılabilmesi için ilgili sinyallerin gürültüden iyi bir şekilde arındırılmış olması 
gerekir. Bu amaçla birçok yöntem geliştirilmiştir. Gerçekleştirilen çalışmada, EKG gürültü temizleme için birçok uyarlamalı 
algoritmayı bir araya getirerek yeni bir yazılım aracı tasarlanmıştır. Kullanıcı dostu grafiksel bir arayüze sahip bu araç, sinyal yükleme, 
ön işleme, görselleştirme ve tek veya karşılaştırmalı gürültü temizleme işlemlerini içermektedir. Geliştirilen aracın bazı güçlü ve farklı 
yönleri, birçok uyarlanabilir algoritma içermesi, sinyallere belirtilen özelliklere sahip farklı gürültü türleri ekleyebilmesi, tek veya 
karşılaştırmalı gürültü temizleme işlemleri gerçekleştirebilmesi, birçok değerlendirme parametresini hesaplayıp sunabilmesi, 
karşılaştırmalı analizde en başarılı yöntemi önerebilmesi ve sinyallerin ayrıntılı spektrumlarını göstermesidir. Ayrıca, bu araç 
uyarlamalı algoritmalar, gürültüler ve gürültü temizleme işlemleri hakkında ayrıntılı teorik bilgiler de sağlamaktadır. Bunun yanında 
zengin içeriğiyle, gürültü temizleme süreçlerinde uyarlanabilir algoritmaların eğitiminde de faydalıdır. 
Anahtar Kelimeler: EKG Gürültü Temizleme, Uyarlamalı Filtreleme, Yazılım Aracı 

1. Introduction 

Biomedical signals contain a lot of information about organs. One 
of the most important of these is ECG signals. However, different 
noise types are contaminated to the ECG signal measurements 
and cause its misrepresentation. There are mainly four types of 
noises/artifacts that have dominant characteristics and distort 
the ECG waveform during measurement. These are Power Line 
Interference (PLI) noise, Baseline Wander (BW) noise, Muscle 
Artifact (MA) noise and Electrode Motion (EM) artifacts. The 
recordings of ECG can also consist a mixed version of these noise 
types, such as a mixture of varying amounts of PLI, BW, MA and 
EM [1-4]. The PLI noise is a sinusoidal signal about 50 𝐻𝑧 (or 
60 𝐻𝑧) frequency arise from the electromagnetic field of the 
power lines. The BW noise is a signal with low frequency about 
0.15 − 0.6 𝐻𝑧. This noise occurs by the patient's breathing or 
body movements and shifts the baseline of the ECG signal. The 
MA noise or electromyogram (EMG) noise varies in the range of 
1 − 500 𝐻𝑧 and is caused by the waves generated from the 
electrical activity of muscle movements near the electrodes. The 
EM noise appears by very slow changes in the impedance of the 
skin electrode with electrode movements and therefore a 
temporary baseline shift occurs in the ECG signal at a very low 
frequency of about 1 − 10 𝐻𝑧. These undesired noises/artifacts 

make the analysis of cardiac functions and the diagnosis of some 
heart diseases more difficult by distorting the P-QRS-T waves in 
the cardiac loop of an ECG signal, or can also lead to incorrect 
analysis and diagnosis. 

ECG denoising is a noise reduction/cancellation process and is 
defined as estimating the clean ECG signal from its noisy 
measurement with lowest possible error. Several methods for 
biomedical signal processing have been proposed to overcome 
the noise problem and to obtain an acceptable ECG waveform [1-
4]. The common methods in the literature are based on linear 
filtering, optimal filtering, Bayesian filtering, adaptive filtering, 
mathematical transforms (wavelet transforms etc.), 
decomposition methods (empirical mode decomposition, 
variational mode decomposition etc.) and hybrid usage of some 
of them. Adaptive noise cancellation (ANC) which is based on the 
use of adaptive filters (AFs) is an effective noise reduction 
technique [5]. An AF contains a digital filter and an adaptive 
algorithm adjusts the filter coefficients [6]. Adaptive FIR filtering 
is widely preferred in applications to avoid the stability problem 
that arises in adaptive IIR filtering. Adaptive algorithms 
commonly used can be grouped as gradient-based and least 
squares-based. The most popular gradient-based algorithms are 
the Least Mean Squares (LMS) and the Normalized LMS (NLMS) 
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algorithms. The Recursive Least Squares (RLS) algorithm is the 
most used least squares-based algorithm in adaptive filtering 
applications. 

Generally, in studies given in the literature, one or few adaptive 
filtering methods have been presented or examined and their 
performance evaluations have been made. To the best of our 
knowledge, there is no comprehensive literature review that 
combines multiple methods. In addition, comprehensive 
software tools have not been designed to implement these 

methods, use them in applications and analyze their 
performance. The basic principle is that the software tool to be 
designed should be in a structure that can easily be used in 
applications/practice by users who do not have technical 
knowledge. In addition, comprehensive multimedia-supported 
computer tools are needed to better understand and teach 
adaptive filters, which are used extensively in many fields. Based 
on this, the aims and main contributions of this study can be 
summarized as follows under two headings: theoretical 
knowledge/education and application/practice. 

 

Theoretical knowledge / Education Application/Practice 

i. Researching many adaptive filtering 
methods and collecting them in a 
comprehensive resource 

ii. Designing a user-friendly software tool 
that explains adaptive filtering 
methods with multimedia support and 
interactive applications. 

iii. Detailed numerical and graphical 
analysis of denoising process with 
adaptive filters 

i. Performing single denoising processing with adaptive filters 

ii. Performing comparative denoising processing with adaptive filters and realizing 
performance evaluations 

iii. As a result of comparative denoising processes, presenting the method with the 
highest performance to the user according to the selected criterion 

iv. By testing all methods, presenting the most appropriate method to the user 
according to the selected criteria 

v. Detailed numerical and graphical analysis of denoising process with adaptive 
filters 

vi. Providing in-depth information with powerful numerical and graphical supports 
 

In the literature, to the best of our knowledge, no studies on 

software tool design that performs denoising process with only 

a large number of adaptive algorithms have been found.  In this 
study, many adaptive algorithms have been collected and a new 
software tool was designed for ECG denoising, which can also be 
used for educational purposes. With this tool, which denoised the 
measured/recorded or synthesized (5 different types) noisy ECG 
signals with many different adaptive algorithms, single and 
multiple (comparative) results can be obtained. Also, the tool can 
scan all/selected algorithms and obtain the best one for choosing 
the performance criteria with its default parameters. In addition, 
with its detailed numerical (powers, errors, SNRs, percentages, 
cross-correlation coefficients, etc.) and graphical 
(measured/recorded data signal, noise signal, clean-noisy-
filtered ECG signals, frequency and power spectrums, 
spectrogram etc.) results and user-friendly interface, ECG 
denoising operations can be performed easily, quickly and 

effectively. Since making evaluations on noise-free data is much 
more efficient, it provides great convenience to decision makers 
in the medical field and reduces the possibility of making 
incorrect evaluations. 

This paper is organized as follows: the variants of classical 
adaptive filtering algorithms are summarized in Section 2; the 
ECG denoising process and selected adaptive algorithms are 
explained in Section 3; the designed software tool with sample 
applications and evaluations are given in Section 4 and the results 
are discussed in Section 5. 

2. Adaptive Filtering Algorithms 

There are many studies in the literature in the area of ECG 
denoising. The gradient-based algorithms are widely used for 
ECG denoising and have taken the attention of many researchers. 
The algorithms with their abbreviations used in the designed tool 
and mentioned in this section are given in Table 1 [7-38]. 

 

Table 1. Adaptive filtering algorithms 
Algorithm Abbreviation Weight Update Equations Ref. 

Least Mean Square  LMS 
𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝒙(𝑛)𝑒(𝑛)  
𝑒(𝑛) = 𝑑(𝑛) − 𝒙𝑇(𝑛)𝒘̂(𝑛)   ,   0 < 𝜇 < 2/𝜆𝑚𝑎𝑥{𝐑𝒙(𝑛)} 

[7] 

Sign-Regressor LMS SRLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑒(𝑛)  [7] 
Sign-Error LMS SELMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝒙(𝑛)𝑠𝑖𝑔𝑛{𝑒(𝑛)}  [7] 

Sign-Sign LMS SSLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑠𝑖𝑔𝑛{𝑒(𝑛)}  [7] 

Normalized LMS NLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇 

𝛼 + 𝒙𝑇(𝑛)𝒙(𝑛)
𝒙(𝑛)𝑒(𝑛) [8] 

Normalized SRLMS NSRLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇 

𝛼 + 𝒙𝑇(𝑛)𝒙(𝑛)
𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑒(𝑛) [8] 

Normalized SELMS NSELMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇 

𝛼 + 𝒙𝑇(𝑛)𝒙(𝑛)
𝒙(𝑛)𝑠𝑖𝑔𝑛{𝑒(𝑛)} [8] 

Normalized SSLMS NSSLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇 

𝛼 + 𝒙𝑇(𝑛)𝒙(𝑛)
𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑠𝑖𝑔𝑛{𝑒(𝑛)} [8] 

Modified LMS MLMS 
𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +

𝜇(𝑛) 

𝒙𝑇(𝑛)𝒙(𝑛)
𝒙(𝑛)𝑠𝑖𝑔𝑛{𝑒(𝑛)} 

𝜇(𝑛 + 1) = 𝛼𝜇(𝑛) + 𝛽𝑒2(𝑛)    ,    0 < 𝛼 < 1   ,   𝛽 > 0 
[9] 

Error Normalized LMS ENLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇 

𝛼 + 𝒆𝑇(𝑛)𝒆(𝑛)
𝒙(𝑛)𝑒(𝑛) [10] 

Error Normalized SRLMS ENSRLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇 

𝛼 + 𝒆𝑇(𝑛)𝒆(𝑛)
𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑒(𝑛) [10] 

Error Normalized SELMS ENSELMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇 

𝛼 + 𝒆𝑇(𝑛)𝒆(𝑛)
𝒙(𝑛)𝑠𝑖𝑔𝑛{𝑒(𝑛)} [10] 

Error Normalized SSLMS ENSSLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇 

𝛼 + 𝒆𝑇(𝑛)𝒆(𝑛)
𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑠𝑖𝑔𝑛{𝑒(𝑛)} [10] 

Variable Step-Size LMS VSSLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇1(𝑛)𝒙(𝑛)𝑒(𝑛) , 𝜇1(𝑛) =
1−𝜇

2(1−𝜇𝑛+1)
    ,    0.5 < 𝜇 < 1 [11] 
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Sign-Regressor VSSLMS SRVSSLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇1(𝑛)𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑒(𝑛) ,    0.5 < 𝜇 < 1 [11] 
Sign-Error VSSLMS SEVSSLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇1(𝑛)𝒙(𝑛)𝑠𝑖𝑔𝑛{𝑒(𝑛)} ,    0.5 < 𝜇 < 1 [11] 

Error Normalized VSSLMS ENVSSLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇1(𝑛) 

𝛼 + 𝒆𝑇(𝑛)𝒆(𝑛)
𝒙(𝑛)𝑒(𝑛)   ,    0.5 < 𝜇 < 1 [11] 

Error Normalized Sign-Regressor 
VSSLMS 

ENSRVSSLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇1(𝑛) 

𝛼 + 𝒆𝑇(𝑛)𝒆(𝑛)
𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑒(𝑛)  ,    0.5 < 𝜇 < 1 [11] 

Data Error Normalized VSS-LMS DENVSS-LMS 
𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇2(𝑛)𝒙(𝑛)𝑒(𝑛)  

𝜇2(𝑛) =
𝜇

(1 − 𝛼)‖𝒙(𝑛)‖2 + 𝛼‖𝒆(𝑛)‖2
      ,     0 < 𝛼 < 1 [12-13] 

Data Error Normalized VSS-SRLMS DENVSS-SRLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇2(𝑛)𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑒(𝑛)  [12-13] 
Data Error Normalized VSS-SELMS DENVSS-SELMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇2(𝑛)𝒙(𝑛)𝑠𝑖𝑔𝑛{𝑒(𝑛)}  [12-13] 
Data Error Normalized VSS-SSLMS DENVSS-SSLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇2(𝑛)𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑠𝑖𝑔𝑛{𝑒(𝑛)} [12-13] 

Normalized Variable Step-Size LMS NVLMS 
𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +

𝜇𝑣(𝑛) 

𝛼 + 𝒙𝑇(𝑛)𝒙(𝑛)
𝒙(𝑛)𝑒(𝑛) 

𝜇𝑣(𝑛) = 𝜇𝑚𝑎𝑥 + (𝜇𝑚𝑖𝑛 − 𝜇𝑚𝑎𝑥)𝑒−𝛽𝜎𝑒
2(𝑛) 

[14] 

Normalized Variable Step-Size SRLMS NVSRLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇𝑣(𝑛) 

𝛼 + 𝒙𝑇(𝑛)𝒙(𝑛)
𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑒(𝑛) [14] 

Normalized Variable Step-Size SELMS NVSELMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇𝑣(𝑛) 

𝛼 + 𝒙𝑇(𝑛)𝒙(𝑛)
𝒙(𝑛)𝑠𝑖𝑔𝑛{𝑒(𝑛)} [14] 

Normalized Variable Step-Size SSLMS NVSSLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇𝑣(𝑛) 

𝛼 + 𝒙𝑇(𝑛)𝒙(𝑛)
𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑠𝑖𝑔𝑛{𝑒(𝑛)} [14] 

Leaky LMS LLMS 𝒘̂(𝑛 + 1) = (1 − 𝜇𝛾)𝒘̂(𝑛) + 𝜇 𝒙(𝑛)𝑒(𝑛)      ,     0 ≤ 𝜇𝛾 < 1 [15] 

Leaky NLMS LNLMS 𝒘̂(𝑛 + 1) = (1 − 𝜇𝛾)𝒘̂(𝑛) +
𝜇

𝛼 + 𝒙𝑇(𝑛)𝒙(𝑛)
𝒙(𝑛)𝑒(𝑛)      ,     0 ≤ 𝜇𝛾 < 1 [15] 

Least Mean Fourth  LMF 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝒙(𝑛)𝑒(𝑛)3  [16-17] 

Normalized LMF NLMF 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇 

𝛼 + 𝒙𝑇(𝑛)𝒙(𝑛)
𝒙(𝑛)𝑒(𝑛)3 [16-17] 

Error Normalized LMF ENLMF 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇 

𝛼 + 𝒆𝑇(𝑛)𝒆(𝑛)
𝒙(𝑛)𝑒(𝑛)3 [16-17] 

Leaky LMF LLMF 𝒘̂(𝑛 + 1) = (1 − 𝜇𝛾)𝒘̂(𝑛) + 𝜇 𝒙(𝑛)𝑒(𝑛)3  ,   0 ≤ 𝜇𝛾 < 1 [16] 

Normalized Leaky LMF NLLMF 𝒘̂(𝑛 + 1) = (1 − 𝜇𝛾)𝒘̂(𝑛) +
𝜇 

𝛼 + 𝒙𝑇(𝑛)𝒙(𝑛)
𝒙(𝑛)𝑒(𝑛)3 [16] 

Error Normalized Leaky LMF ENLLMF 𝒘̂(𝑛 + 1) = (1 − 𝜇𝛾)𝒘̂(𝑛) +
𝜇 

𝛼 + 𝒆𝑇(𝑛)𝒆(𝑛)
𝒙(𝑛)𝑒(𝑛)3 [16] 

Least Mean Logarithmic Square LMLS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 
𝛼𝒙(𝑛)𝑒3(𝑛)

1 + 𝛼𝑒2(𝑛)
 [18] 

Normalized LMLS NLMLS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 
𝛼𝒙(𝑛)𝑒3(𝑛)

‖𝒙(𝑛)‖2[‖𝒙(𝑛)‖2 + 𝛼𝑒2(𝑛)]
 [18] 

Sign-Regressor NLMLS SRNLMLS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝑠𝑖𝑔𝑛{𝒙(𝑛)} 
𝛼𝑒3(𝑛)

‖𝒙(𝑛)‖2[‖𝒙(𝑛)‖2 + 𝛼𝑒2(𝑛)]
 [18] 

Sign-Error NLMLS SENLMLS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝑠𝑖𝑔𝑛{𝑒3(𝑛)} 
𝛼𝒙(𝑛)

‖𝒙(𝑛)‖2[‖𝒙(𝑛)‖2 + 𝛼𝑒2(𝑛)]
 [18] 

Sign-Sign NLMLS SSNLMLS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝑠𝑖𝑔𝑛{𝑒3(𝑛)} 𝑠𝑖𝑔𝑛{𝒙(𝑛)} 
𝛼

‖𝒙(𝑛)‖2[‖𝒙(𝑛)‖2 + 𝛼𝑒2(𝑛)]
 [18] 

Median LMS MLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝑚𝑒𝑑[𝐱(𝑛)𝑒(𝑛) ⋯ 𝐱(𝑛 − 𝐿 + 1)𝑒(𝑛 − 𝐿 + 1)] [19] 
Normalized MLMS NMLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇(𝑛) 𝑚𝑒𝑑[𝐱(𝑛)𝑒(𝑛) ⋯ 𝐱(𝑛 − 𝐿 + 1)𝑒(𝑛 − 𝐿 + 1)] [19] 

Sign-Regressor NMLMS SRNMLMS 
𝒘̂(𝑛 + 1)
= 𝒘̂(𝑛) + 𝜇(𝑛) 𝑚𝑒𝑑[𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑒(𝑛) ⋯ 𝑠𝑖𝑔𝑛{𝒙(𝑛 − 𝐿 + 1)}𝑒(𝑛 − 𝐿 + 1)] 

[19] 

Sign-Error NMLMS SENMLMS 
𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 

𝜇(𝑛) 𝑚𝑒𝑑[𝐱(𝑛)𝑠𝑖𝑔𝑛{𝑒(𝑛)} ⋯ 𝐱(𝑛 − 𝐿 + 1)𝑠𝑖𝑔𝑛{𝑒(𝑛 − 𝐿 + 1)}] 
[19] 

Sign-Sign NMLMS SSNMLMS 
𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +  𝜇(𝑛)𝑚𝑒𝑑[𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑠𝑖𝑔𝑛{𝑒(𝑛)}  … 

…    𝑠𝑖𝑔𝑛{𝒙(𝑛 − 𝐿 + 1)}𝑠𝑖𝑔𝑛{𝑒(𝑛 − 𝐿 + 1)}] 
[19] 

Kalman LMS KLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝒙(𝑛)𝑒(𝑛)

‖𝒙(𝑛)‖2 + 𝑞𝑣(𝑛)/𝜎𝑤
2(𝑛)

 [20] 

Kalman Sign-Regressor LMS KSRLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑒(𝑛)

‖𝒙(𝑛)‖2 + 𝑞𝑣(𝑛)/𝜎𝑤
2(𝑛)

 [20] 

Kalman Sign-Error LMS KSELMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝒙(𝑛)𝑠𝑖𝑔𝑛{𝑒(𝑛)}

‖𝒙(𝑛)‖2 + 𝑞𝑣(𝑛)/𝜎𝑤
2(𝑛)

 [20] 

Kalman Sign-Sign LMS KSSLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑠𝑖𝑔𝑛{𝑒(𝑛)}

‖𝒙(𝑛)‖2 + 𝑞𝑣(𝑛)/𝜎𝑤
2(𝑛)

 [20] 

Proportionate LMS PLMS 

𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝐆(𝑛)𝒙(𝑛)𝑒(𝑛)  

𝐆(𝑛) = 𝑑𝑖𝑎𝑔{[𝑔0(𝑛) ⋯ 𝑔𝑀−1(𝑛)]}     ,     𝑔𝑙(𝑛) =
𝛾𝑙(𝑛)

1
𝑀

∑ 𝛾𝑖(𝑛)𝑀−1
𝑖=0

 

𝛾𝑙(𝑛) = max{𝛾𝑚𝑖𝑛(𝑛), |𝑤̂𝑙(𝑛)|}    ,    𝑙 = 0 , … , 𝑀 − 1 

𝛾𝑚𝑖𝑛(𝑛) = 𝜌 max{𝛿𝑝 , |𝑤̂0(𝑛)|, … , |𝑤̂𝑀−1(𝑛)|}   ,   Typical vaues:  𝜌 = 5 𝑀⁄ ,   𝛿𝑝 = 0.01 

[21] 

Sign-Regressor PLMS SRPLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝐆(𝑛)𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑒(𝑛) [21] 
Sign-Error PLMS SEPLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝐆(𝑛)𝒙(𝑛)𝑠𝑖𝑔𝑛{𝑒(𝑛)} [21] 
Sign-Sign PLMS SSPLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝐆(𝑛)𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑠𝑖𝑔𝑛{𝑒(𝑛)} [21] 
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Proportionate Normalized LMS PNLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇 𝐆(𝑛)𝒙(𝑛)𝑒(𝑛)

𝛼 + 𝒙𝑇(𝑛)𝐆(𝑛)𝒙(𝑛)
 [22] 

Proportionate Normalized SRLMS PNSRLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇 𝐆(𝑛)𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑒(𝑛)

𝛼 + 𝒙𝑇(𝑛)𝐆(𝑛)𝒙(𝑛)
 [22] 

Proportionate Normalized SELMS PNSELMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇 𝐆(𝑛)𝒙(𝑛)𝑠𝑖𝑔𝑛{𝑒(𝑛)}

𝛼 + 𝒙𝑇(𝑛)𝐆(𝑛)𝒙(𝑛)
 [22] 

Proportionate Normalized SSLMS PNSSLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇 𝐆(𝑛)𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑠𝑖𝑔𝑛{𝑒(𝑛)}

𝛼 + 𝒙𝑇(𝑛)𝐆(𝑛)𝒙(𝑛)
 [22] 

Non-Negative LMS N2LMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇𝑫(𝑛)𝒙(𝑛)𝑒(𝑛)     ,     𝑫(𝑛) = 𝑑𝑖𝑎𝑔{𝒘̂(𝑛)} [23] 

Exponential Non-Negative LMS eN2LMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇𝒙(𝑛)𝑒(𝑛)𝒘̂𝛾(𝑛)     ,     0 < 𝛾 < 1 [23] 

Sign-Regressor Exponential  
Non-Negative LMS 

SReN2LMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑒(𝑛)𝒘̂𝛾(𝑛)     ,     0 < 𝛾 < 1 [23] 

Sign-Error Exponential  
Non-Negative LMS 

SEeN2LMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇𝒙(𝑛)𝑠𝑖𝑔𝑛{𝑒(𝑛)}𝒘̂𝛾(𝑛)     ,     0 < 𝛾 < 1 [23] 

Sign-Sign Exponential  
Non-Negative LMS 

SSeN2LMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑠𝑖𝑔𝑛{𝑒(𝑛)}𝒘̂𝛾(𝑛)     ,     0 < 𝛾 < 1 [23] 

Normalized Non-Negative LMS N3LMS 
𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇(𝑛)𝑫(𝑛)𝒙(𝑛)𝑒(𝑛)  

𝑫(𝑛) = 𝑑𝑖𝑎𝑔{𝒘̂(𝑛)}    ,    𝜇(𝑛) =
𝜇 

𝛼+𝒙𝑇(𝑛)𝒙(𝑛)
 [23] 

Sign-Regressor Normalized  
Non-Negative LMS 

SRN3LMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇(𝑛)𝑫(𝑛)𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑒(𝑛) [23] 

Sign-Error Normalized  
Non-Negative LMS 

SEN3LMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇(𝑛)𝑫(𝑛)𝒙(𝑛)𝑠𝑖𝑔𝑛{𝑒(𝑛)} [23] 

Sign-Sign Normalized  
Non-Negative LMS 

SSN3LMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇(𝑛)𝑫(𝑛)𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑠𝑖𝑔𝑛{𝑒(𝑛)} [23] 

Dead-Zone LMS DZLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝑔[𝑒(𝑛)]𝒙(𝑛)  ,  𝑔(𝑒) = { 
𝑒 − 𝑡 , 𝑒 > 𝑡

0 , −𝑡 < 𝑒 < 𝑡
𝑒 + 𝑡 , 𝑒 < −𝑡

 [24] 

Sign-Regressor Dead-Zone LMS SRDZLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝑔[𝑒(𝑛)]𝑠𝑖𝑔𝑛{𝒙(𝑛)} [24] 

Normalized Dead-Zone LMS NDZLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇(𝑛)𝑔[𝑒(𝑛)]𝒙(𝑛) [25] 

Sign-Regressor Normalized  
Dead-Zone LMS  

SRNDZLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇(𝑛)𝑔[𝑒(𝑛)]𝑠𝑖𝑔𝑛{𝒙(𝑛)} [25] 

Sign-Error Normalized  
Dead-Zone LMS  

SENDZLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇(𝑛)𝑠𝑖𝑔𝑛{𝑔[𝑒(𝑛)]}𝒙(𝑛) [25] 

Sign-Sign Normalized  
Dead-Zone LMS  

SSNDZLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇(𝑛)𝑠𝑖𝑔𝑛{𝑔[𝑒(𝑛)]}𝑠𝑖𝑔𝑛{𝒙(𝑛)} [25] 

Dead-Zone Leaky LMS DZLLMS 𝒘̂(𝑛 + 1) = (1 − 𝜇𝛾)𝒘̂(𝑛) + 𝜇 𝑔[𝑒(𝑛)]𝒙(𝑛) [26] 

Sign-Regressor Dead-Zone Leaky LMS SRDZLLMS 𝒘̂(𝑛 + 1) = (1 − 𝜇𝛾)𝒘̂(𝑛) + 𝜇 𝑔[𝑒(𝑛)]𝑠𝑖𝑔𝑛{𝒙(𝑛)} [26] 
Sign-Error Dead-Zone  
Leaky LMS 

SEDZLLMS 𝒘̂(𝑛 + 1) = (1 − 𝜇𝛾)𝒘̂(𝑛) + 𝜇 𝑠𝑖𝑔𝑛{𝑔[𝑒(𝑛)]}𝒙(𝑛) [26] 

Sign-Sign Dead-Zone  
Leaky LMS 

SSDZLLMS 𝒘̂(𝑛 + 1) = (1 − 𝜇𝛾)𝒘̂(𝑛) + 𝜇 𝑠𝑖𝑔𝑛{𝑔[𝑒(𝑛)]}𝑠𝑖𝑔𝑛{𝒙(𝑛)} [26] 

Sign-Regressor Leaky LMF SRLLMF 𝒘̂(𝑛 + 1) = (1 − 𝜇𝛾)𝒘̂(𝑛) + 𝜇 𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑒(𝑛)3 [26] 

Sign-Error Leaky LMF SELLMF 𝒘̂(𝑛 + 1) = (1 − 𝜇𝛾)𝒘̂(𝑛) + 𝜇 𝒙(𝑛)𝑠𝑖𝑔𝑛{𝑒(𝑛)3} [26] 

Sign-Sign Leaky LMF SSLLMF 𝒘̂(𝑛 + 1) = (1 − 𝜇𝛾)𝒘̂(𝑛) + 𝜇 𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑠𝑖𝑔𝑛{𝑒(𝑛)3} [26] 

Median Leaky LMS MLLMS 𝒘̂(𝑛 + 1) = (1 − 𝜇𝛾)𝒘̂(𝑛) + 𝜇 𝑚𝑒𝑑[𝐱(𝑛)𝑒(𝑛) ⋯ 𝐱(𝑛 − 𝑀 + 1)𝑒(𝑛 − 𝑀 + 1)] [26] 

Sign-Regressor Median Leaky LMS SRMLLMS 
𝒘̂(𝑛 + 1) = (1 − 𝜇𝛾)𝒘̂(𝑛) + 

𝜇 𝑚𝑒𝑑[𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑒(𝑛) ⋯ 𝑠𝑖𝑔𝑛{𝒙(𝑛 − 𝑀 + 1)}𝑒(𝑛 − 𝑀 + 1)] 
[26] 

Sign-Error Median Leaky LMS SEMLLMS 
𝒘̂(𝑛 + 1) = (1 − 𝜇𝛾)𝒘̂(𝑛) + 

𝜇 𝑚𝑒𝑑[𝐱(𝑛)𝑠𝑖𝑔𝑛{𝑒(𝑛)} ⋯ 𝐱(𝑛 − 𝑀 + 1)𝑠𝑖𝑔𝑛{𝑒(𝑛 − 𝑀 + 1)}] 
[26] 

Sign-Sign Median Leaky LMS SSMLLMS 
𝒘̂(𝑛 + 1) = (1 − 𝜇𝛾)𝒘̂(𝑛) +  𝜇 𝑚𝑒𝑑[𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑠𝑖𝑔𝑛{𝑒(𝑛)}  … 

…    𝑠𝑖𝑔𝑛{𝒙(𝑛 − 𝑀 + 1)}𝑠𝑖𝑔𝑛{𝑒(𝑛 − 𝑀 + 1)}] 
[26] 

Sign-Regressor LMF SRLMF 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑒(𝑛)3  [27] 

Least Mean Mixed-Norm  LMMN 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝒙(𝑛)𝑒(𝑛)[𝜆 + (1 − 𝜆)𝑒2(𝑛)]   ,  0 < 𝜆 < 1 [27] 
Sign-Regressor LMMN  SRLMMN 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝑠𝑖𝑔𝑛{𝒙(𝑛)}𝑒(𝑛)[𝜆 + (1 − 𝜆)𝑒2(𝑛)] [27] 

Delayed LMS DLMS 
𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝒙(𝑛 − 𝐷)𝑒(𝑛 − 𝐷)    ,     𝐷: 𝐷 step delay  
𝑒(𝑛 − 𝐷) = 𝑑(𝑛 − 𝐷) − 𝑦(𝑛 − 𝐷)  , 𝑦(𝑛 − 𝐷) = 𝒙𝑇(𝑛 − 𝐷)𝒘̂(𝑛 − 𝐷)  

[28] 

Variable Step-Size DLMS VSS-DLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇(𝑛)𝒙(𝑛 − 𝐷)𝑒(𝑛 − 𝐷) [28] 

Delayed Normalized LMS DNLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇 

𝛼 + 𝒙𝑇(𝑛 − 𝐷)𝒙(𝑛 − 𝐷)
𝒙(𝑛 − 𝐷)𝑒(𝑛 − 𝐷) [29] 

Delayed Error Normalized LMS DENLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇 

𝛼 + 𝒆𝑇(𝑛 − 𝐷)𝒆(𝑛 − 𝐷)
𝒙(𝑛 − 𝐷)𝑒(𝑛 − 𝐷) [29] 

Log-LMS Log-LMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝑄[𝑒(𝑛)]𝒙(𝑛)     ,     𝑄[𝑧] = 2𝑙𝑜𝑔2 (𝑧)𝑠𝑖𝑔𝑛(𝑧) [30] 

Modified Log-LMS MLMS 

𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝑄[𝑒(𝑛)]𝒙(𝑛)    
𝑄[𝑧] = 𝛼2𝜃(𝑧)𝑠𝑖𝑔𝑛(𝑧), 𝛼 is a small power − of − two value and less than 1 

𝜃(𝑧) = {
0 𝑤ℎ𝑒𝑛 |𝑧/𝛼| < 1

𝑙𝑜𝑔2(𝑧/𝛼) 𝑎𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒
−𝑙𝑜𝑔2(𝑧/𝛼) 𝑎𝑡 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒

 

These stages are switched when two consecutive error values satisfy 
 |𝑒(𝑛) − 𝑒(𝑛 − 1)| < 𝜀 , where 𝜀 > 0 is a threshold value and 𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) 

[30] 

Modified Normalized Log-LMS MNLMS 𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) +
𝜇 

𝒙𝑇(𝑛)𝒙(𝑛)
 𝑄[𝑒(𝑛)]𝒙(𝑛) [31] 
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Constrained Stability LMS CSLMS 
𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 [ 

𝛿𝒙(𝑛)𝛿𝑒(𝑛)

𝛼 + ‖𝛿𝒙(𝑛)‖2
] 

𝛿𝒙(𝑛) = 𝒙(𝑛) − 𝒙(𝑛 − 1)  ,  𝛿𝑒(𝑛) = 𝑒(𝑛) − 𝑒(𝑛 − 1) , 0 < 𝜇 < 2/𝜆𝑚𝑎𝑥{𝐑𝛿𝒙(𝑛)}   ,   
𝛼 > 0 

[32-33] 

Modified Constrained Stability LMS  MCSLMS 
𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇3(𝑛) [ 

𝛿𝒙(𝑛)𝛿𝑒(𝑛)

𝛼 + ‖𝛿𝒙(𝑛)‖2
] 

𝛿𝒙(𝑛) = 𝒙(𝑛) − 𝒙(𝑛 − 1) , 𝛿𝑒(𝑛) = 𝑒(𝑛) − 𝑒(𝑛 − 1) , 𝜇3(𝑛) = 𝑏(1 −
𝑒𝑥𝑝(−𝑎|𝑒(𝑛)|2)) 

[34] 

Recursive Least Squares RLS 
𝒒(𝑛) = 𝐏(𝑛)𝒙(𝑛)   ,   𝐤(𝑛) =

𝒒(𝑛)

𝜆+𝒙𝑇(𝑛)𝒒(𝑛)
   ,   𝑒(𝑛) = 𝑑(𝑛) − 𝒙𝑇(𝑛)𝒘̂(𝑛) 

𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝐤(𝑛)𝑒(𝑛)   ,   𝐏(𝑛 + 1) =
1

𝜆
[𝐏(𝑛) − 𝐤(𝑛)𝒒𝑇(𝑛)] 

[6, 35] 

Affine Projection Algorithm  
(𝑃-th order) 

APA  
(𝑃-th order) 

𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 𝜇 𝐗(𝑛)[𝜖𝐈 + 𝐗𝑇(𝑛)𝐗(𝑛)]−1𝒆(𝑛) 
𝒆(𝑛) = 𝒅(𝑛) − 𝐗𝑇(𝑛)𝒘̂(𝑛)     ,     0 < 𝜇 ≤ 1     ,    𝜖 > 0 (small constant) 
𝒅(𝑛) = [𝑑(𝑛) 𝑑(𝑛 − 1) ⋯ 𝑑(𝑛 − 𝑃 + 1)]𝑇 
𝐗(𝑛) = [𝒙𝑇(𝑛) 𝒙𝑇(𝑛 − 1) ⋯ 𝒙𝑇(𝑛 − 𝑃 + 1)] 

[36-37] 

Affine Projection Sign Algorithm 
(𝑃-th order) 

APSA  
(𝑃-th order) 

𝒘̂(𝑛 + 1) = 𝒘̂(𝑛) + 
𝛿 𝐗(𝑛)𝑠𝑖𝑔𝑛{𝒆(𝑛)}

√𝑠𝑖𝑔𝑛{𝒆(𝑛)}𝐗𝑇(𝑛)𝐗(𝑛)𝑠𝑖𝑔𝑛{𝒆(𝑛)}
  , 0 < 𝛿 < 1 [37] 

 

3. ECG Denoising 

The adaptive filters, which have self-adjusting characteristics, 
can be implemented as analog, digital or hybrid. The fundamental 
application classes of these filters can be summarized as 
identification (modeling), inverse modeling, interference 
canceling and prediction. Many different algorithms can be used 
in adaptive filter applications [38]. 

 

Figure 1. The block diagram of adaptive noise cancellation. 

Adaptive noise cancellation, whose block diagram is given in 
Figure 1, is used to reduce/cancel noise from a 
corrupted/distorted signal. The fundamental mission of this 
process is to cancel the undesired disturbances from a signal 
adaptively to improve the SNR. The system output in Figure 1 is 
written by Eq. (1) [5-6]: 

𝑧 = 𝑠 + 𝑣 − 𝑦                                                                  (1) 

If both sides of Eq. (1) are squared, Eq. (2) is obtained. 

𝑧2 = 𝑠2 + 2𝑠(𝑣 − 𝑦) + (𝑣 − 𝑦)2

𝐸{𝑧2} = 𝐸{𝑠2} + 𝐸{(𝑣 − 𝑦)2}
}                                        (2) 

The minimum output power of system is 

𝑚𝑖𝑛[𝐸{𝑧2}] = 𝐸{𝑠2} + 𝑚𝑖𝑛[𝐸{(𝑣 − 𝑦)2}]                              (3) 

In order to provide 𝐸{𝑧2} to be minimum, 𝐸{(𝑣 − 𝑦)2} must also 
be minimum in Eq. (3), hence 

𝑧 − 𝑠 = 𝑣 − 𝑦                                                                  (4) 

The implementation steps of the adaptive noise cancellation 
process using the adaptive algorithm can be summarized as 
follows:  

i. Set adaptive filter initial parameters 
ii. Collect the samples 𝑑(𝑛) and 𝑥(𝑛) 

iii. Update the filter parameters  
iv. Estimate the noise signal 𝑦(𝑛) ≅ 𝑣(𝑛) by using updated 

filter parameters 

v. Obtain the clean ECG signal 𝑒(𝑛)  =  𝑑(𝑛)  −  𝑦(𝑛) 
vi. Go to step ii and repeat the same steps of adaptive noise 

cancellation process from step ii to vi. 

4. Designed Software Tool and Applications 

The new software tool, which can perform adaptive filtering with 
algorithms given in Table 1, was designed using MATLAB App 
Designer [39]. All adaptive algorithms in the program are coded 
without using built-in functions. The general equations in Table 
2 can be used for the performance evaluations as a result of the 
denoising process. 

The general flowchart of filtering process and login screen of the 
designed software tool are given in Figure 2 and 3, respectively. 
After entering the valid username and password, one can select 
the "Filtering" or "Topic descriptions" modules (Figure 4). When 
the "Topic descriptions" button is clicked, the topic selection 
screen comes (Figure 5) and the relevant topic is selected from 
here, and its explanation is presented in the style of a web page 
(Figure 6). When the "Filtering" button is clicked, the ECG signal 
loading and editing screen appears (Figure 7). This loading can 
be done in two ways: loading a noisy ECG signal or loading a clean 
ECG signal by adding noise. On this screen, if desired, the ECG 
signal can be cropped in terms of time or samples number. After 
the noisy ECG signal is loaded or created, the filtering process is 
started with selection of denoising method. 

For the first application, the "105m.mat" [40] ECG signal is 
loaded, its length is reduced to 1800 samples and PLI noise with 
0.5 𝑉 amplitude and 50 𝐻𝑧 frequency is added to it (Figure 8a). 
After clicking "Single method" button the screen for single 
analysis is opened (Figure 8b). Clean and noisy ECG signals are 
automatically transferred to this screen. After the algorithm is 
selected, a dialog box opens to enter the appropriate parameters 
(Figure 8b). By clicking the OK button, the analysis (denoising) is 
concluded (Figure 8c). The result screen in Figure 8c allows 
evaluating the denoising performance of a selected algorithm for 
both time and frequency domains graphically. The performance 
parameters in Table 2 are also included in this screen. These 
parameters allow evaluating the denoising performance of the 
selected algorithm numerically. In addition to the clean, noisy 
and filtered ECG signal graphics and frequency spectrums, the 
user can also display the power spectrums and spectrograms 
optionally (Figure 8d-e). The power spectrums in Figure 8d show 
the power contents versus frequency of clean, noisy, and 
denoised signals. The spectrogram plots in Figure 8e allow also 
to analyzing how the frequency content of these signals varies 
over time.
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Table 2. The parameters used for performance evaluations. 

 

 

Figure 2. The flowchart of filtering process in the designed software tool. 

 

 

Figure 3. The login window of tool. 

 

Figure 4. The module selection 
window of tool. 

 

Figure 5. The topic selection window of 
tool. 
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Figure 6. The sample topic description page from tool. 

 

 

Figure 7. The ECG loading and editing screen of tool. 
 

For the second application, the "103m.mat" [40] ECG signal is 
loaded, its length is reduced to 6 s and is mixed with noise (%30 
Baseline wander [41], %40 Electromyographic noise [41], %25 
Muscle artefact [41] and %50 Power line interference with 1 𝑉 
amplitude and 50 𝐻𝑧 frequency is added to it (Figure 9a). The 
comparative results for LMS, NLMS, ENLMS and RLS algorithms 
are given in Figure 9b. In all algorithms, the filter length and the 
step-size are 𝑀 = 16 and 𝜇 = 0.05, respectively in the LMS, NLMS 
and ENLMS. In RLS algorithm forgetting factor is 𝜆 = 0.9995 and 
𝛽 = 1. The clean, noisy and filtered ECG signal graphics, 
frequency spectrums, power spectrums and spectrograms for 
each method are displayed optionally. Also, the performance 

parameters obtained for each method are given in the 
comparative table and the most successful method(s) are 
highlighted. According to the comparative denoising results in 
this simulation, it is seen that the RLS algorithm is more 
successful than the others selected. This window allows to 
comparing the 4 selected algorithms both graphically and 
numerically in the time domain, frequency domain, power 
spectra and spectrograms, respectively. 

Similarly, by clicking the "Auto testing" button, the screen where 
automatic denoising options are set is displayed (Figure 10). On 
this screen, the performance criteria and the methods to be 
scanned are selected, and the method with the best results is 
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obtained. Although the processing time is long, it can determine 
the most appropriate adaptive filter to clean the noise in the 
loaded signal because it scans selected or all methods.

 

(a) Loading and cutting the ECG signal and adding noise to it. 

 

 

(b) The “single method” screen of tool. 



DEU FMD 28(82) (2026) 135-147 

 143 

 

(c) The result screen with frequency spectrums. 

 

(d) The result screen with power spectrums. 
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(e) The result screen with spectrograms. 

Figure 8. The screenshots for first application. 

 

(a) The creating/adjusting mixed noise and adding to ECG signal. 
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(b) The comparative result screen in time domain. 

Figure 9. The screenshots for second application. 

 

 

Figure 10. The auto testing options screen. 

5. Conclusions 

One of the most important steps of signal preprocessing is noise 
cancellation/reduction (denoising). After removing or reducing 
unwanted noise from the signals, they present more accurate 
information about their source. There are many denoising 
methods in the field of signal processing. The most important of 
these are adaptive filtering techniques. In the field of medicine, it 
is necessary to reduce the noises from the relevant signals at high 
rates in the correct evaluation of the functions of the organs and 
in the correct diagnosis of the diseases. Computer aided software 
tools are widely used in recent years and very helpful in many 
application areas that especially require heavy theoretical 
information, practical applications, concepts, mathematical 
operations, examples, problem solving etc. In this study, a new 
software tool with a user-friendly graphical user interface and 

rich contains was designed using MATLAB to ECG denoising area 
with many adaptive algorithms. This tool, which is convenient for 
adding new algorithms, contains a signal loading/editing module 
to be used for denoising the ECG signal corrupted by five different 
noise types, their visualization and preprocessing. It contains 
basically single, comparative and automatic denoising modules, 
which can be used to obtain an acceptable ECG waveform from 
the noisy ECG signal with many adaptive algorithms. 
Furthermore, this tool produces more numerical and graphical 
results about the denoising processes performed by using many 
adaptive filtering algorithms for analysis and comparison 
purposes. It can also scan all or selected algorithms and suggest 
the most successful one according to the selected performance 
criteria. In addition, with its rich content, it can be used effectively 
in the education of subjects in this field. 
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