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Abstract

The electrocardiogram (ECG) is a biomedical signal used to check heart functions and diagnose some diseases. In order for these
assessing to be made correctly, the relevant signals must be well cleared of noise. Many methods have been developed for this purpose.
In this study we designed a new software tool by collecting many adaptive algorithms for ECG denoising. This tool was developed
with a user-friendly graphical interface and comprises the loading of signals, their preprocessing, visualization, and single or
comparative denoising. Some of the strengths and different aspects of the developed tool are that it contains many adaptive
algorithms, can add different noise types with specified characteristics to the signals, can perform single or comparative denoising
operations, can calculate and present many evaluation parameters, can recommend the most successful method in comparative
analysis, and shows detailed spectrums of signals. Additionally, this tool provides detailed theoretical information about adaptive
algorithms, noises and denoising processing. With its rich content, it is also useful in education of adaptive algorithms in denoising
processes.
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0z

Elektrokardiyogram (EKG), kalp fonksiyonlarini kontrol etmek ve bazi hastaliklar1 teshis etmek icin kullanilan biyomedikal bir
sinyaldir. Degerlendirmelerin dogru bir sekilde yapilabilmesi i¢in ilgili sinyallerin giiriiltiiden iyi bir sekilde arindirilmis olmasi
gerekir. Bu amagla birgok yontem gelistirilmistir. Gergeklestirilen ¢alismada, EKG giiriltii temizleme igin bir¢ok uyarlamali
algoritmay bir araya getirerek yeni bir yazilim araci tasarlanmistir. Kullanic1 dostu grafiksel bir araytize sahip bu arag, sinyal yiikleme,
on isleme, gorsellestirme ve tek veya karsilagtirmali giiriiltii temizleme islemlerini icermektedir. Gelistirilen aracin baz gii¢lii ve farklh
yonleri, bir¢ok uyarlanabilir algoritma icermesi, sinyallere belirtilen 6zelliklere sahip farkl giiriiltii tiirleri ekleyebilmesi, tek veya
karsilagtirmali giiriiltii temizleme islemleri gergeklestirebilmesi, bir¢cok degerlendirme parametresini hesaplayip sunabilmesi,
karsilastirmali analizde en basarili yontemi dnerebilmesi ve sinyallerin ayrintili spektrumlarini géstermesidir. Ayrica, bu arag
uyarlamali algoritmalar, giiriiltiiler ve giirtiltii temizleme islemleri hakkinda ayrintili teorik bilgiler de saglamaktadir. Bunun yaninda
zengin icerigiyle, giiriiltii temizleme siireglerinde uyarlanabilir algoritmalarin egitiminde de faydaldir.

Anahtar Kelimeler: EKG Giirtiltii Temizleme, Uyarlamali Filtreleme, Yazilim Araci

make the analysis of cardiac functions and the diagnosis of some
heart diseases more difficult by distorting the P-QRS-T waves in
the cardiac loop of an ECG signal, or can also lead to incorrect
analysis and diagnosis.

1. Introduction

Biomedical signals contain a lot of information about organs. One
of the most important of these is ECG signals. However, different
noise types are contaminated to the ECG signal measurements

and cause its misrepresentation. There are mainly four types of
noises/artifacts that have dominant characteristics and distort
the ECG waveform during measurement. These are Power Line
Interference (PLI) noise, Baseline Wander (BW) noise, Muscle
Artifact (MA) noise and Electrode Motion (EM) artifacts. The
recordings of ECG can also consist a mixed version of these noise
types, such as a mixture of varying amounts of PLI, BW, MA and
EM [1-4]. The PLI noise is a sinusoidal signal about 50 Hz (or
60 Hz) frequency arise from the electromagnetic field of the
power lines. The BW noise is a signal with low frequency about
0.15 — 0.6 Hz. This noise occurs by the patient’s breathing or
body movements and shifts the baseline of the ECG signal. The
MA noise or electromyogram (EMG) noise varies in the range of
1—-500 Hz and is caused by the waves generated from the
electrical activity of muscle movements near the electrodes. The
EM noise appears by very slow changes in the impedance of the
skin electrode with electrode movements and therefore a
temporary baseline shift occurs in the ECG signal at a very low
frequency of about 1 — 10 Hz. These undesired noises/artifacts
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ECG denoising is a noise reduction/cancellation process and is
defined as estimating the clean ECG signal from its noisy
measurement with lowest possible error. Several methods for
biomedical signal processing have been proposed to overcome
the noise problem and to obtain an acceptable ECG waveform [1-
4]. The common methods in the literature are based on linear
filtering, optimal filtering, Bayesian filtering, adaptive filtering,
mathematical  transforms  (wavelet transforms etc),
decomposition methods (empirical mode decomposition,
variational mode decomposition etc.) and hybrid usage of some
of them. Adaptive noise cancellation (ANC) which is based on the
use of adaptive filters (AFs) is an effective noise reduction
technique [5]. An AF contains a digital filter and an adaptive
algorithm adjusts the filter coefficients [6]. Adaptive FIR filtering
is widely preferred in applications to avoid the stability problem
that arises in adaptive IIR filtering. Adaptive algorithms
commonly used can be grouped as gradient-based and least
squares-based. The most popular gradient-based algorithms are
the Least Mean Squares (LMS) and the Normalized LMS (NLMS)
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algorithms. The Recursive Least Squares (RLS) algorithm is the
most used least squares-based algorithm in adaptive filtering
applications.

Generally, in studies given in the literature, one or few adaptive
filtering methods have been presented or examined and their
performance evaluations have been made. To the best of our
knowledge, there is no comprehensive literature review that
combines multiple methods. In addition, comprehensive
software tools have not been designed to implement these

methods, use them in applications and analyze their
performance. The basic principle is that the software tool to be
designed should be in a structure that can easily be used in
applications/practice by users who do not have technical
knowledge. In addition, comprehensive multimedia-supported
computer tools are needed to better understand and teach
adaptive filters, which are used extensively in many fields. Based
on this, the aims and main contributions of this study can be
summarized as follows under two headings: theoretical
knowledge/education and application/practice.

Theoretical knowledge / Education

Application/Practice

1.
ii.

Researching many adaptive filtering
methods and collecting them in a
comprehensive resource

Designing a user-friendly software tool
that explains adaptive filtering
methods with multimedia support and
interactive applications.

Detailed numerical and graphical
analysis of denoising process with
adaptive filters

ii. ii.
iv.
1ii. V.

filters

Vi.

Performing single denoising processing with adaptive filters

Performing comparative denoising processing with adaptive filters and realizing
performance evaluations

As a result of comparative denoising processes, presenting the method with the
highest performance to the user according to the selected criterion

By testing all methods, presenting the most appropriate method to the user
according to the selected criteria

Detailed numerical and graphical analysis of denoising process with adaptive

Providing in-depth information with powerful numerical and graphical supports

In the literature, to the best of our knowledge, no studies on
software tool design that performs denoising process with only
a large number of adaptive algorithms have been found. In this
study, many adaptive algorithms have been collected and a new
software tool was designed for ECG denoising, which can also be
used for educational purposes. With this tool, which denoised the
measured/recorded or synthesized (5 different types) noisy ECG
signals with many different adaptive algorithms, single and
multiple (comparative) results can be obtained. Also, the tool can
scan all/selected algorithms and obtain the best one for choosing
the performance criteria with its default parameters. In addition,
with its detailed numerical (powers, errors, SNRs, percentages,
cross-correlation coefficients, etc.) and graphical
(measured/recorded data signal, noise signal, clean-noisy-
filtered ECG signals, frequency and power spectrums,
spectrogram etc.) results and user-friendly interface, ECG
denoising operations can be performed easily, quickly and

Table 1. Adaptive filtering algorithms

effectively. Since making evaluations on noise-free data is much
more efficient, it provides great convenience to decision makers
in the medical field and reduces the possibility of making
incorrect evaluations.

This paper is organized as follows: the variants of classical
adaptive filtering algorithms are summarized in Section 2; the
ECG denoising process and selected adaptive algorithms are
explained in Section 3; the designed software tool with sample
applications and evaluations are given in Section 4 and the results
are discussed in Section 5.

2. Adaptive Filtering Algorithms

There are many studies in the literature in the area of ECG
denoising. The gradient-based algorithms are widely used for
ECG denoising and have taken the attention of many researchers.
The algorithms with their abbreviations used in the designed tool
and mentioned in this section are given in Table 1 [7-38].

Algorithm Abbreviation Weight Update Equations Ref.
wn+1) =wh) + ux(n)e(n)
Least Mean Square LMS em) =dm) —x" (W) , 0<pu < 2/An{R, ()} 7l
Sign-Regressor LMS SRLMS w(n+1) = w) + u sign{x(n)}le(n) [7]
Sign-Error LMS SELMS wn+ 1) = w(n) + u x(n)sign{e(n)} [7]
Sign-Sign LMS SSLMS w(n + 1) = w(n) + u sign{x(n)}sign{e(n)} [7]
) N - _r
Normalized LMS NLMS whn+1)=wh) + @+ 2 (W) x(me(n) [8]
] N _A [ :
Normalized SRLMS NSRLMS wn+1) =w) + 2 2 (xm) sign{x(n)}e(n) [8]
Normalized SELMS NSELMS wh+1)=wh) + Wx(n)ﬂgn{e (m} [8]
Normalized SSLMS NSSLMS wh+1)=wh) + mﬂgn{xm)}ﬂgn{dn)} [8]
N A u(n) )
Modified LMS MLMS W+ 1) = W) + ooy Xtsigniem) [9]
un+1) =aun)+pe’n) , 0<a<l, >0
] N — [
Error Normalized LMS ENLMS wn+1) =w) + 2+ e (e x(n)e(n) [10]
. N — Kk
Error Normalized SRLMS ENSRLMS whn+1)=wh) + Zt e (e sign{x(n)}e(n) [10]
Error Normalized SELMS ENSELMS wh+1)=wh) + mx(n)ﬂgn{e’(n)} [10]
] N — [z } :
Error Normalized SSLMS ENSSLMS wn+1) =w) + Tt e sign{x(n)}sign{e(n)} [10]
Variable Step-Size LMS VSSLMS wn+1) =wm) + p(mxm)em), p(n) = ﬁ , 05<pu<1 [11]
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Sign-Regressor VSSLMS SRVSSLMS wn+1) =wh) +p,(Wsignix(nle(n), 05<pu<1 [11]
Sign-Error VSSLMS SEVSSLMS wn+1) =wh) +p,(mx(n)signfe(m)}, 05<pu<1 [11]
. ~ P m(n)
Error Normalized VSSLMS ENVSSLMS whn+1)=wh)+ a ¥ eT(me() x(n)e(n) , 05<u<1 [11]
Error Normalized Sign-Regressor N PN (1) .
VSSLMS ENSRVSSLMS wn+1)=wh) +7a T e (e sign{x(n)}e(n) , 0.5<u<1 [11]
W+ 1) = W) + 1, ()x(n)e(n)
Data Error Normalized VSS-LMS DENVSS-LMS H [12-13]
n) = , O<ax<1
#() = I + alle @I
Data Error Normalized VSS-SRLMS DENVSS-SRLMS | w(n + 1) = w(n) + p,(m)sign{x(n)}e(n) [12-13]
Data Error Normalized VSS-SELMS DENVSS-SELMS | w(n + 1) = w(n) + p,(n)x(n)signfe(n)} [12-13]
Data Error Normalized VSS-SSLMS DENVSS-SSLMS | w(n + 1) = w(n) + p,(n)sign{x(n)}sign{e(n)} [12-13]
_ N Uy ()
Normalized Variable Step-Size LMS NVLMS W+ 1) =w) + a+ xT(n)x(n) x(men) [14]
- 2
#v(n) = fmax + (Mmin — tmax)€ poem
. ) ) N N Uy(n) )
Normalized Variable Step-Size SRLMS | NVSRLMS whn+1)=wh)+ @+ 2 () sign{x(n)}e(n) [14]
) . ) . N Uy (1) )
Normalized Variable Step-Size SELMS | NVSELMS whn+1)=w(n)+ ¥ () x(n)sign{e(n)} [14]
. . . A o Hy(n) . .
Normalized Variable Step-Size SSLMS NVSSLMS whn+1)=wh)+ @ ¥ 2T ()x(n) sign{x(n)}sign{e(n)} [14]
Leaky LMS LLMS wn+1D)=0A—-u)wh)+ux(n)etn) , 0<uy<1 [15]
— —~ H
=(1- (N o — <
Leaky NLMS LNLMS wn+1) =1 —pywn) + P (n)x(n)x(n)e(n) , 0<suy<i1 [15]
Least Mean Fourth LMF w(n + 1) = w(n) + ux(n)e(n)® [16-17]
. o _ o H 3
Normalized LMF NLMF wn+1) =wh) + « ¥ )R x(n)e(n) [16-17]
. o PN s 3
Error Normalized LMF ENLMF wh+1)=wh)+ a+ eTme) x(n)e(n) [16-17]
Leaky LMF LLMF wn+ 1) =0A—pw)wh) +px(n)e(n)®, 0<uy<1 [16]
. ~ _ _ ~ 3
Normalized Leaky LMF NLLMF wn+1) = (1 - u)wn) +———7-~ 2 () x(n)e(n) [16]
i whn+1) =1 — py)w —— 3
Error Normalized Leaky LMF ENLLMF wn+1) =1 -uwhm) +_— T (me() x(n)e(n) [16]
3
Least Mean Logarithmic Square LMLS wn+1)=wh)+u % [18]
. ax(n)e®(n)
Normalized LMLS NLMLS whn+1)=wh)+ [18]
(nt D= RO @I + ae(m]
. ae’(n)
Sign-Regressor NLMLS SRNLMLS wn+1) = wh) + p sign{x(n 18
gn-kes (D)= + psignix(w) EOIE G tel
ax(n
Sign-Error NLMLS SENLMLS wn+ 1) = wn) + usign{e*(n 18
¢ (D= W+ e stgnle ™) o) I+ ae(o) 0l
Sign-Sign NLMLS SSNLMLS wn+ 1) = wn) + usign{e®>(n)} sign{x(n 18
ign-Sign ( ) () + u sign{e®* ()} sign{x(n)} I PIxmIE + ae ()] [18]
Median LMS MLMS wn+1) = w(n) + umed[x(n)e(n) x(n—=L+1Den—-L+1)] [19]
Normalized MLMS NMLMS wn + 1) = w(n) + u(n) med[x(n)e(n) x(n—L+1e(n—L+1)] [19]
. wn+1)
Sign-Regressor NMLMS SRNMLMS = w() + u(n) med[sign{x(n)}e(n) signfx(n — L+ D}le(n— L + 1] (191
. wn+1)=whn)+
Sign-Error NMLMS SENMLMS u(n) med[x(n)sign{e(n)} x(n — L + Dsignfe(n — L + 1)}] [19]
. . wn+ 1) = w(n) + p(n)med[sign{x(n)}sign{e(n)} ..
Sign-Sign NMLMS SSNMLMS sionxn L + D)stanieln— 1+ D] [19]
x(n)e(n)
Kalman LMS KLMS wn+1)=wh)+ 20
llx()II* + g,(n) /04 (1) 20
Kalman Sign-R LMS KSRLMS B0+ 1) = W) 4 —gnxe) [20]
alman Sign-Regressor w(n =wn
gn-teg llx(II? + q,(n) /05 (M)
) _ . x(m)sign{e(n)}
Kalman Sign-Error LMS KSELMS wn+1)=wh) + 20
g (D= WO+ P + 0, )/oam 20
o _ _ signfx(n)}signfe(m)}
Kalman Sign-Sign LMS KSSLMS wn+1)=wh)+ 20
gn-Sig I + a,(/o3(n) 1201
w(n+ 1) = w(n) + u G(n)x(n)e(n)
. yi(n)
G =d _ , -
Proportionate LMS PLMS (n) = diag{go(m) Gu- ) =15, [21]
() = max{yp (), W@}, 1=0,. ,M-1
Vmin(M) = pmax{dp Wo ()|, ..o, Wy _ (W} , Typical vaues: p = 5/M, 8, =0.01
Sign-Regressor PLMS SRPLMS wn + 1) = w(n) + u G(n)sign{x(n)}e(n) [21]
Sign-Error PLMS SEPLMS wn+1) = wh) + u G()x(n)signfe(n)} [21]
Sign-Sign PLMS SSPLMS w(n+1) = wn) + u G()sign{x(n)}sign{e(n)} [21]




DEU FMD 28(82) (2026) 135-147

1 GM)x(m)e(n)

Proportionate Normalized LMS PNLMS whn+1)=w(n) + 2+ TG [22]
i . _ A 1 Gm)sign{x(n)le(n)
Proportionate Normalized SRLMS PNSRLMS wn+1)=whn)+ @+ 2T () G()x(n) [22]
i . _ A 1 G(m)x(n)sign{e(n)}
Proportionate Normalized SELMS PNSELMS wn+1)=whn)+ @ + 2 (M G(x(n) [22]
i . _ A 1 Gm)sign{x(n)}sign{e(n)}
Proportionate Normalized SSLMS PNSSLMS wn+1)=whn)+ @+ A (G()x(n) [22]
Non-Negative LMS N2LMS wn+ 1) =w(n) + uD(m)x(n)e(n) , D) = diag{w(n)} [23]
Exponential Non-Negative LMS eN2LMS whn+1)=wh) +ux(memw’(n) , 0<y<1 [23]
Sign-Regressor Exponential 2 by N . oy
Non-Negative LMS SReN2LMS wn+1) = w) + usignfx(m)}e(m)w’(n) , 0<y<1 [23]
Sign-Error Exponential 2 . PN . oy
Non-Negative LMS SEeN2LMS wn+ 1) = wh) + ux(n)signfe(m)}w’(n) , 0<y<1 [23]
Sign-Sign Exponential 2 N PN . . oy
Non-Negative LMS SSeN2LMS w(n + 1) = wn) + usign{x(n)}signfe(m)w*(n) , 0<y<1 [23]
wn+1) = wh) + u(n)D(m)x(n)e(n)
. ~ - 3 . =
Normalized Non-Negative LMS N3LMS D(n) = diagiw(n)} , u) = prve e [23]
Sign-Regressor Normalized 3 Py PN .
Non-Negative LMS SRN3LMS wn + 1) = w(n) + u(m)D()sign{x(n)}e(n) [23]
Sign-Error Normalized 3 N PN .
Non-Negative LMS SEN’LMS wn+ 1) = w(n) + p(mD@x(n)signfe(n)} [23]
Sign-Sign Normalized 3 Py PN . .
Non-Negative LMS SSN3LMS w(n + 1) = w(n) + u(n)D(n)sign{x(n)}sign{e(n)} [23]
e—t , e>t
Dead-Zone LMS DZLMS whn+ 1D =wrn) +ugle@lx(n) , gle)=y 0 , —t<e<t [24]
e+t , e<-—t
Sign-Regressor Dead-Zone LMS SRDZLMS wn+ 1) = wn) + u gle(n)]sign{x(n)} [24]
Normalized Dead-Zone LMS NDZLMS wn+ 1) = w(n) + u(m)gle(m)]x(n) [25]
Sign-Regressor Normalized Py PN .
Dead-Zone LMS SRNDZLMS wn +1) = wn) + p(m)gle(m]sign{x(n)} [25]
Sign-Error Normalized Py PN .
Dead-Zone LMS SENDZLMS w(n + 1) = w(n) + u()sign{gle(n)}x(n) [25]
Sign-Sign Normalized N PN . .
Dead-Zone LMS SSNDZLMS w(n+1) = w(n) + p(n)sign{gle(m)sign{x(n)} [25]
Dead-Zone Leaky LMS DZLLMS whn+1) =1 —uy)wh) + u gle(m)]x(n) [26]
Sign-Regressor Dead-Zone Leaky LMS | SRDZLLMS wn+1) =0 —py)wh) + u glem)]sign{x(n)} [26]
Sign-Error Dead-Zone — 1 N .
Leaky LMS SEDZLLMS W+ 1) = (1 — )W) + u sign{glem)Px(n) [26]
ifai;lﬁg&]s) cacone SSDZLLMS wn+1) = (1 — py)W(n) + u sign{gle(m)sign{x(n)} [26]
Sign-Regressor Leaky LMF SRLLMF wn+1) =1 —uy)wn) + usign{x(n)}le(n)? [26]
Sign-Error Leaky LMF SELLMF wn+1) = (1 —uy)wn) + u x(n)sign{e(n)’} [26]
Sign-Sign Leaky LMF SSLLMF wn+1) = (1 —py)wn) + p sign{x(n)}sign{e(n)*} [26]
Median Leaky LMS MLLMS whn+1) =1 —puy)wn) + pmed[x(me(®m) - x(n—M+ De(n—M +1)] [26]
. . wn+1)=0—-uywkh) +
Sign-Regressor Median Leaky LMS SRMLLMS umed[signfx(n)}e(n) - signfx(n—M + 1)je(n— M + 1)] [26]
. . wn+1) =0 —u)wh) +
Sign-Error Median Leaky LMS SEMLLMS 4 med[x(W)sign{e(n)} -~ x(n—M + 1signfe(n — M + 1)}] [26]
- . wn+1) = (1 —py)wh) + pmed[sign{x(n)}sign{e(n)} ...
Sign-Sign Median Leaky LMS SSMLLMS signix(n — M + 1)}sign{e(n — M + 1)}] [26]
Sign-Regressor LMF SRLMF w(n+ 1) = w(n) + p sign{x(n)}e(n)? [27]
Least Mean Mixed-Norm LMMN wn+ 1D =wh)+uxmemA+ 1 —-De*!(n)] ,0<1<1 [27]
Sign-Regressor LMMN SRLMMN wn+1) = whn) + usign{x(n)le[A+ (1 — De?(n)] [27]
wn+1)=wn)+ux(n—D)e(n—D) , D:D step delay
Delayed LMS DLMS e(n—D)=dn—-D)—y(n—-D) , y(n—D) = x"(n— DYw(n— D) 28]
Variable Step-Size DLMS VSS-DLMS wn+1) =w(n) + u(m)x(n — D)e(n— D) [28]
. W 1) =w -D -D
Delayed Normalized LMS DNLMS wn+1) =wn) +—— X (n — DYx(n = D)x(n Je(n — D) [29]
Delayed Error Normalized LMS DENLMS whn+1)=wh) + 2t e (n-D)e(n—D) x(n—D)e(n—D) [29]
Log-LMS Log-LMS wn+1) =wh) +uQlemM]x(m) , Q[z] = 292 @sign(z) [30]
wn+1) = wn) + p Qle(m)]x(n)
Q[z] = a2°@sign(z), a is a small power — of — two value and less than 1
0 when |z/a] <1
Modified Log-LMS MLMS 0(z) =1 log,(z/a) at converging state [30]
—log,(z/a) at extracting state
These stages are switched when two consecutive error values satisfy
le(n) —e(n—1)| < &, where € > 0 is a threshold value and e(n) = d(n) — y(n)
~ ~ H
Modified Normalized Log-LMS MNLMS wn+1) =wh) + () Qe(m)]x(n) [31]

138
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6. 8
Constrained Stability LMS CSLMS 5x(n) = x(n) —x(n—1) , Se(n) = e(n) —e(n—1), 0 < < 2/Aue{Rox(M} [32-33]
a>0
6. o
| N i+ 1 = 900 4109 | 5]
Modified Constrained Stability LMS MCSLMS sx(n) = x(n) — x(n — 1) Se(n) = e(n) — e(n — 1) ' pa(m) = b(1 — [34]
exp(—ale(m)|*)) -
=P , k(n) = —2= , =d(n) — xT ()W
Recursive Least Squares RLS @) (m)x(m) @) A+l (ma(n) e(nl) (n) = 2" (m¥ () [6,35]
wn+1)=wh) +k(n)e(n) , Pn+1) = ;[P(n) —k(n)q"(n)]
w(n+ 1) = w(n) + u X(n)[el + XT(M)X()] te(n)
Affine Projection Algorithm APA en)=dn)-X"m)w(n) , 0<u<1 , €>0(smallconstant) 36-37
(P-th order) (P-th order) dn) = [d(n) d(n-1) dn—P+ D]’ 36-37]
X)) =[x"(n) x"(n—-1 x'(n—P+1)]
Affine Projection Sign Algorithm APSA . D= 3 X(n)sign{e(n)} 0<s
(P-th order) (P-th order) ) = )t e S o siante) ! (371

3. ECG Denoising

The adaptive filters, which have self-adjusting characteristics,
can be implemented as analog, digital or hybrid. The fundamental
application classes of these filters can be summarized as
identification (modeling), inverse modeling, interference
canceling and prediction. Many different algorithms can be used
in adaptive filter applications [38].

Signal > Primary : d(n) = s(n) + v(n) :
source input : I
]
1
. / !
Noise Reference 'x(n)  Adaptive Y(m) — . W
source noise | filter i
: y A e(n) I Iz(n) System
e ] | output
I Adaptive noise canceller (ANC) :
| s:Cleansignal  v:Noise uncorelated with s (Additve noise) |

i x: Noise uncorrelated with s but correlated with v (Reference noise) :
i d: Noisy signal y: Filter output e: Error z: System output

Figure 1. The block diagram of adaptive noise cancellation.

Adaptive noise cancellation, whose block diagram is given in
Figure 1, is used to reduce/cancel noise from a
corrupted/distorted signal. The fundamental mission of this
process is to cancel the undesired disturbances from a signal
adaptively to improve the SNR. The system output in Figure 1 is
written by Eq. (1) [5-6]:

z=s+v—y (D
If both sides of Eq. (1) are squared, Eq. (2) is obtained.
z2=524+2s(w—y)+ W —-y)?

) = s 4 £ 7)) @
The minimum output power of system is
min[E{z*}] = E{s?} + min[E{(v — y)*}] 3)

In order to provide E{z%} to be minimum, E{(v — y)?} must also
be minimum in Eq. (3), hence

Z—S=v-—-Yy

(4)
The implementation steps of the adaptive noise cancellation
process using the adaptive algorithm can be summarized as
follows:

.
il.
ii.
iv.

Set adaptive filter initial parameters

Collect the samples d(n) and x(n)

Update the filter parameters

Estimate the noise signal y(n) = v(n) by using updated
filter parameters
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v. Obtain the clean ECG signale(n) = d(n) — y(n)
vi. Go to step ii and repeat the same steps of adaptive noise
cancellation process from step ii to vi.

4. Designed Software Tool and Applications

The new software tool, which can perform adaptive filtering with
algorithms given in Table 1, was designed using MATLAB App
Designer [39]. All adaptive algorithms in the program are coded
without using built-in functions. The general equations in Table
2 can be used for the performance evaluations as a result of the
denoising process.

The general flowchart of filtering process and login screen of the
designed software tool are given in Figure 2 and 3, respectively.
After entering the valid username and password, one can select
the "Filtering" or "Topic descriptions” modules (Figure 4). When
the "Topic descriptions” button is clicked, the topic selection
screen comes (Figure 5) and the relevant topic is selected from
here, and its explanation is presented in the style of a web page
(Figure 6). When the "Filtering" button is clicked, the ECG signal
loading and editing screen appears (Figure 7). This loading can
be done in two ways: loading a noisy ECG signal or loading a clean
ECG signal by adding noise. On this screen, if desired, the ECG
signal can be cropped in terms of time or samples number. After
the noisy ECG signal is loaded or created, the filtering process is
started with selection of denoising method.

For the first application, the "105m.mat" [40] ECG signal is
loaded, its length is reduced to 1800 samples and PLI noise with
0.5 VV amplitude and 50 Hz frequency is added to it (Figure 8a).
After clicking "Single method" button the screen for single
analysis is opened (Figure 8b). Clean and noisy ECG signals are
automatically transferred to this screen. After the algorithm is
selected, a dialog box opens to enter the appropriate parameters
(Figure 8b). By clicking the OK button, the analysis (denoising) is
concluded (Figure 8c). The result screen in Figure 8c allows
evaluating the denoising performance of a selected algorithm for
both time and frequency domains graphically. The performance
parameters in Table 2 are also included in this screen. These
parameters allow evaluating the denoising performance of the
selected algorithm numerically. In addition to the clean, noisy
and filtered ECG signal graphics and frequency spectrums, the
user can also display the power spectrums and spectrograms
optionally (Figure 8d-e). The power spectrums in Figure 8d show
the power contents versus frequency of clean, noisy, and
denoised signals. The spectrogram plots in Figure 8e allow also
to analyzing how the frequency content of these signals varies
over time.
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Table 2. The parameters used for performance evaluations.

Parameters Expression
Clean signal Noisy signal Filtered signal
P "dB) N N N
ower Y
B, = 1ologm{2|s(n)|-} B,, = 10log,, {Zld(ﬂ)IZ} Pry = 10|ugm{Z|e(n)|2}
=1 =1 =1
Mean Absolute Error (MAE) Mean Square Error (MSE) Root Mean Sgquare Error (RMSE)
1 N 1 !
Error (%) MAE = EZ'S(H) — e(n)| MSE = EZ'S(?O —e(m)|? RMSE =
n=1 n=1

SNR (dB) Input SNR Quiput SNR SNR improvement

Z}"\“:l[s(n)]z Z‘r‘l\:‘:l[e(")]S

SNR;, = 10log,, {m SNR,,., = 10log,, T [s(n) — eGOT SNRymp = SNRoye — SNRyy,

RMS Difference Noise Retenfion

Percentage [ 2
—1[s(n) — e(n)] |p!s — P
(%) PRp = [T 0 % 100 PNR=-1"_"""1x 100
=i ls()]? s
Between clean signal and noisy signal Between clean signal and filtered signal

Cross- =V [s(o) — F1[d0n) — d ] - - -
correlation /L= s = n=1ls(n) — Flle(n) — 2]
cosfficient JELJ“@—EFELJﬂ@fJF VEI_ [s(n) =512 Zi_ [e(n) — 1

/Load ECG aigna%

Formatting ECG signal |

Generate or load noise |

¥

Add noise to ECG signal |

Select algorithm/4-| Set algorithm parameters |——| Denoise ECG signal

Select algorithms 4 Set parameters of
to compare algorithms to compare with each algorithm

|_,.| Denocise ECG signal

/ Select performance /[ Denoise ECG signal with all
criteria algorithms using default values

Determine the
best algorithm ?

|jhow numerical and graphical results

v

Figure 2. The flowchart of filtering process in the designed software tool.
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Figure 3. The login window of tool. Figure 4. The

window of tool.
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ing for ECG D

| Topics | Least Mean Square (LMS) | . T [ e S]

LEAST MEAN SQUARE ALGORITHM

Least Mean Square (LMS). one of the most used algorithms in adaptive filter applications, was developed in 1960 by
Prof Bernard Widrow and his Ph D. student Ted Hoff. The main properties of this algorithm. of which many variants

have been developed. can be listed as simplicity. ease

of 1 . low r/cost,

robustness etc.

[ Uni celsy

signat
x[k]—l—°o

wa Adaptve [wy

i

I wegs I‘

Adaptation algorithm

v ol Wtet i

gain |

Ermor signat elk] = dlk] — y[k]

Figure 1: Adaptive linear combiner (ALC) in transversal form

The adaptive linear combiner (adaptive EIR filter, adaptive transversal filter. ADAIINE) as shown in Fig. 1.

Xo x[x] Wo
x= "f —|| =1 L ow=| " @
[x — M + 1]
The output of the filter is written by Eq. (2). \wth x filter input and w tap-weight (coeﬁicnents) vector.
yIK] = Z w [idxlle — i = wTox = xTw @
=

The error signal, its square and the mean square (

d) error (

by Eq. (3-5).

P of the error power or energy) are defined

elk] = dlx]l —y[k]l = dlk] —wTx = d[k] —xTw 3)
e?[k] = (dlk]l — xTw)2 = d?[k] — 2d[KklxTw + (xTw)?2 )
WT T =
[ & |
Figure 6. The sample topic description page from tool.
" Adaptive filtering for ECG denoising ... | ECG signal | — s
File Help
Clean ECG Noisy ECG
L Start Stop |K7 Noise type \ M | o
crop - ya
Load o \ o | 7‘/— Amount(® | 100 /] Add
\ \ %
Determination of ECG \ None Selection the noise type
9% Loading of signal length (optional) oo Determination of noise amount Baseine wander (BW) Adding noise io ECG
ECG signal ) }
sl sl Electromyographic noise (EM)
Muscle artefact (MA)
arf ar| Pawer line interference (PLI)
Mixed
0EF &
gg_i L gg L Graphic of noisy ECG
£ £
o4 s
oaf- a3l
oz ozl
o Single method Comparative evalliation™'[” Auto testing
[:] o1 02 03 o 05 08 09 o o1 02 03 4 05 06 o7 o0& a 1
/ Time () \ Time (3} \
- + ) = L}
| IK;\\ Single mathod | | \/;l Comparative evaluation |/;\w Auto testing

Figure 7. The ECG loading and editing screen of tool.

For the second application, the "103m.mat" [40] ECG signal is
loaded, its length is reduced to 6 s and is mixed with noise (%30
Baseline wander [41], %40 Electromyographic noise [41], %25
Muscle artefact [41] and %50 Power line interference with 1V
amplitude and 50 Hz frequency is added to it (Figure 9a). The
comparative results for LMS, NLMS, ENLMS and RLS algorithms
are given in Figure 9b. In all algorithms, the filter length and the
step-sizeare M = 16 and u = 0.05, respectively in the LMS, NLMS
and ENLMS. In RLS algorithm forgetting factor is 1 = 0.9995 and
B =1. The clean, noisy and filtered ECG signal graphics,
frequency spectrums, power spectrums and spectrograms for
each method are displayed optionally. Also, the performance

parameters obtained for each method are given in the
comparative table and the most successful method(s) are
highlighted. According to the comparative denoising results in
this simulation, it is seen that the RLS algorithm is more
successful than the others selected. This window allows to
comparing the 4 selected algorithms both graphically and
numerically in the time domain, frequency domain, power
spectra and spectrograms, respectively.

Similarly, by clicking the "Auto testing" button, the screen where
automatic denoising options are set is displayed (Figure 10). On
this screen, the performance criteria and the methods to be
scanned are selected, and the method with the best results is
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obtained. Although the processing time is long, it can determine
the most appropriate adaptive filter to clean the noise in the
loaded signal because it scans selected or all methods.

. Adaptive filkering for ECG denoising .. | ECG signal | - X
File Help
Clean ECG Noisy ECG
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3
= O Tima (2) start Stop - Noise type [ Power ine imerterenee (PL) v o
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& EETea
Ui o [4] Input parameters of PLn..,  — ®
oy £CB
CosnECs
1z Amplitude:
al s \
1L
Fraquency (Hz):
L S0
0B B | ‘
Phase (degree)
LS |D ‘
%‘ %‘ a5
2 2
E E [ (i 1
: & bl . .
e R o R e
o o Ve A i LA e i (i
Q2]
1
a4
o L L . . L L L . I ) - L L . . L L L . I
o 0s 1 s 25 3 35 s as 5 o 0s 1 s 2 25 35 s a5
Time {s) Time (s)
[ @ Singie method ] [ @ Comparative evaluation [ @ Auto testing ]
(a) Loading and cutting the ECG signal and adding noise to it.
.2z Adaptive filtering for ECG denoising ... | Single method | - O X
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Ddde % B
Clean ECG signal (@) Frequency sp [@] P [@] Power (dB)
e = Clean ECG signal
12
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Noisy EGG signal
& 03]
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o = Root Mean Squara Error (RMSE)
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£ 3025
2 2
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25| g
| a SNR Improvement
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o
[Normatized LS (NLms) Select the algorithm and enter its parameters v | ( [CE |
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T T
s (4] Parameters of the algorith.. / a3 Cross Correlation Coefficient
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(b) The “single method” screen of tool.
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(d) The result screen with power spectrums.
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Figure 8. The screenshots for first application.
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(a) The creating/adjusting mixed noise and adding to ECG signal.
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(b) The comparative result screen in time domain.
Figure 9. The screenshots for second application.
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Figure 10. The auto testing options screen.

5. Conclusions

One of the most important steps of signal preprocessing is noise
cancellation/reduction (denoising). After removing or reducing
unwanted noise from the signals, they present more accurate
information about their source. There are many denoising
methods in the field of signal processing. The most important of
these are adaptive filtering techniques. In the field of medicine, it
is necessary to reduce the noises from the relevant signals at high
rates in the correct evaluation of the functions of the organs and
in the correct diagnosis of the diseases. Computer aided software
tools are widely used in recent years and very helpful in many
application areas that especially require heavy theoretical
information, practical applications, concepts, mathematical
operations, examples, problem solving etc. In this study, a new
software tool with a user-friendly graphical user interface and

rich contains was designed using MATLAB to ECG denoising area
with many adaptive algorithms. This tool, which is convenient for
adding new algorithms, contains a signal loading/editing module
to be used for denoising the ECG signal corrupted by five different
noise types, their visualization and preprocessing. It contains
basically single, comparative and automatic denoising modules,
which can be used to obtain an acceptable ECG waveform from
the noisy ECG signal with many adaptive algorithms.
Furthermore, this tool produces more numerical and graphical
results about the denoising processes performed by using many
adaptive filtering algorithms for analysis and comparison
purposes. It can also scan all or selected algorithms and suggest
the most successful one according to the selected performance
criteria. In addition, with its rich content, it can be used effectively
in the education of subjects in this field.
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