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Segmentation in Multispectral Remote Sensing

Arastirma Makalesi/Research Article

Irem ULKUP

!Department of Computer Engineering, Ankara University, Ankara, Tiirkiye

irem.ulku@ankara.edu.tr
(Gelis/Received:28.02.2025; Kabul/Accepted:16.04.2025)

DOI: 10.17671/gazibtd. 1648997

Abstract— The wheat yellow-rust disease poses a serious risk to global wheat production, making effective detection
methods essential. This study aims to enhance wheat yellow-rust detection accuracy by investigating the use of spatial-
channel attention gates (SCAGS) in semantic segmentation with multispectral remote sensing images. While scAGs find
applications in medical image segmentation and precision agriculture, this study extends usage for wheat yellow rust
detection. Integrated into the skip connections of the U-Net model, scAGs aim to refine feature extraction and improve
segmentation performance. Furthermore, to address a limitation in prior work that used only one upsampling method,
this study explores multiple techniques—bilinear, bicubic, nearest neighbor, and transposed convolution—optimizing
performance. According to experimental results, bicubic interpolation delivers the best performance, significantly
enhancing wheat yellow-rust disease detection accuracy.
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SCAG ile Gelistirilmis U-Net Kullanilarak Cok Banth
Uzaktan Algilamada Bugday Sar1 Pas Hastaliginin
Semantik Boliitlenmesi

Ozet— Bugday sar1 pas hastaligi, kiiresel bugday iiretimi icin ciddi bir tehdit olusturmaktadir ve etkili tespit yontemleri
biiyiikk 6nem tagimaktadir. Bu ¢alisma, ¢ok bantli uzaktan algilama goriintiilerinde semantik béliitleme i¢in mekansal-
kanal dikkat kapilar1 (SCAG'ler) kullanimini arastirarak bugday sari pas hastaliginin tespit dogrulugunu artirmayi
amaglamaktadir. SCAG'ler tibbi goriintii boliitleme ve hassas tarim alaninda kullanilmakla birlikte, bu ¢aligma bugday
sar1 pas tespiti i¢in kullanimimi genisletmektedir. U-Net modelinin atlama baglantilarina entegre edilen SCAG'ler,
ozellik ¢ikarimini iyilestirmeyi ve bdliitleme performansimi artirmayr hedeflemektedir. Ayrica, dnceki ¢aligmalar
yalnizca tek bir yukar1 6rnekleme yontemi kullanirken, bu ¢alismada bilineer, bikiibik, en yakin komsu ve transpoz
konvoliisyon gibi birden fazla teknik arastirilarak performans optimize edilmistir. Deneysel sonuglara gore, bikiibik
enterpolasyon en iyi performansi gostererek bugday sar1 pas hastaliginin tespit dogrulugunu 6nemli dlgiide artirmustir.

Anahtar Kelimeler— semantik boliitleme, yukar1 6rnekleme, mekéansal-kanal dikkat, bugday sar1 pas
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1. INTRODUCTION

Modern semantic segmentation frameworks
predominantly employ an encoder-decoder design. In this
setup, the encoder is responsible for capturing and
encoding critical features from input images, while the
decoder reconstructs and refines semantic representations
to achieve precise segmentation outcomes. However,
convolutional neural networks (CNNs) struggle to capture
long-distance dependencies inherent in images. Therefore,
one study proposes the pyramid pooling module (PPM) to
establish and fuse long-distance dependencies [1].
Meanwhile, atrous spatial pyramid pooling (ASPP) is
introduced to enhance contextual information by varying
the dilation ratios, thereby expanding the receptive field
of convolutions [2]. However, these approaches remain
inadequate for effectively extracting global contextual
information, as stacking and aggregating convolutional
layers fail to cover global receptive fields sufficiently.

The attention mechanism is a key for utilizing contextual
information. There are several ways to apply attention,
where one approach is that the features are aggregated
according to the particular attention dimension, followed
by linear transformations and nonlinear activations to
derive attention scores. For instance, SEBlock employs
average pooling and a multilayer perceptron for channel
attention [3], and the convolutional block attention
module (CBAM) enhances SEBlock by incorporating
max pooling for spatial attention [4]. ST-UNet further
advances this by aggregating information in both height
and width dimensions through soft pooling [5]. Another
approach is similarity-based attention, which constructs
relationships between units through matrix multiplication.
Several studies, such as DANet [6] or MANet [7], fall
into this category.

Recent research has shown that attention mechanisms can
significantly enhance the performance of feature
differentiation and region delineation in remote sensing
image analysis. Notably, [8] jointly modeled spatial and
channel affinities in remote sensing image segmentation,
improving accuracy by addressing attention bias that
hinders the discrimination of discretely distributed
objects. [9] proposed MCCANet, a multiscale channel-
wise cross-attention network incorporating boundary
supervision, specifically developed to tackle challenges in
segmenting  high-spatial-resolution  remote  sensing
images. This approach enhances the integration of
multiscale features while maintaining precise boundary
delineation. [10] proposed a multistage feature fusion
lightweight model, LiANet, integrating enhanced spatial
and channel attention modules to significantly reduce
parameter count while improving semantic segmentation
accuracy for high-resolution remote sensing images. [11]
developed SFCRNet, leveraging contextual and
multiscale information to enhance the semantic
segmentation of remote sensing images using a context-
based attention embedding module and a stair-shaped
architecture for effective feature fusion. The HMANet
[12] improves semantic segmentation in high-resolution
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aerial images by effectively capturing global
dependencies through a novel attention framework that
integrates  spatial, channel, and category-based
correlations. [13] introduced LANet, which enhances
feature representation and spatial localization in remote
sensing image semantic segmentation by integrating the
patch attention and attention embedding modules.

The skip connections in encoder-decoder architectures
like U-Net often rely on redundant low-level features and
lack sufficient contextual information [14]. By integrating
a spatial-channel attention gate (scAG), which
incorporates both spatial and channel attention
mechanisms, the U-Net model can better emphasize
contextual information in the feature maps [15]. This
novel approach, designed for medical image
segmentation, can also be well-suited to remote sensing
semantic segmentation. For instance, the csAG-HRNet
model integrates HRNet-v2 with channel and spatial
attention gates to effectively learn contextual information
for building extraction from aerial images [16]. The
GRSNet model enhances U-Net with attention gates,
residual units, and deep supervision to effectively
segment buildings in high-resolution satellite images [17].

Wheat is one of the most widely grown crops worldwide.
However, pathogens and pests, e.g., the wheat yellow rust
fungal disease, challenge wheat production. Infections of
this disease appear as visible symptoms on wheat leaves
parallel to the veins. This disease can reduce wheat
production and threaten global food security. Wheat
yellow rust spreads rapidly under optimal conditions,
necessitating an automated and non-destructive mapping
system for effective site-specific management [18]. The
disease induces both physical and chemical alterations in
wheat leaves, such as a decline in chlorophyll levels and
the emergence of rust-like symptoms. Traditional
surveillance is the current practice of disease monitoring,
which may not be efficient for large-scale fields. Pesticide
application is the disease management strategy that
eventually results in land pollution. Therefore, it is
necessary to develop intelligent disease monitoring
methods for early diagnosis.

The wheat yellow rust disease induces both physical and
chemical alterations in wheat leaves, such as a decline in
chlorophyll levels and the emergence of rust-like
symptoms. These changes can be captured through optical
sensing technologies, including RGB, multispectral, and
hyperspectral imaging systems. Previous studies have
utilized UAV-based multispectral remote sensing for
mapping yellow rust, employing deep learning models
like U-Net. A study investigated a five-band remote
sensing-based multispectral camera for detecting yellow
rust disease in winter wheat, aiming to distinguish healthy
wheat from infected plants by utilizing spectral bands and
vegetation indices [19]. The dynamic tracking of wheat
affected by varying degrees of yellow rust infection is
conducted through time-series aerial imaging with a
multispectral camera. This approach enables the
assessment of diverse spectral indices, aiding in the
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precise segmentation of wheat [20]. A novel framework is
proposed for monitoring yellow rust disease in winter
wheat using remote sensing-based multispectral imaging,
integrating vegetation indices and U-Net [21]. The Ir-
UNet model enhances wheat yellow rust detection in
UAV-derived multispectral images by integrating non-
uniform encoder and decoder components, along with a
content-aware channel re-weighting mechanism. This
architecture significantly boosts segmentation accuracy,
surpassing U-Net [22]. The ResLMFFNet model
improves gradient propagation within SEM-B blocks by
leveraging residual connections, representing the first
application of a real-time semantic segmentation
framework for detecting wheat yellow rust disease in
multispectral aerial observations [23]. To further improve
wheat yellow rust disease detection, attention
mechanisms, such as scAG, should be investigated more
comprehensively to enhance semantic segmentation
accuracy.

Therefore, this study focuses on the semantic
segmentation of wheat yellow rust disease using remote
sensing-based multispectral images by integrating scCAGs
into the skip connections of a U-Net-based architecture.

Skip Connections
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While previously used in biomedical imaging tasks [15]
and precision agriculture solely for comparison purposes
[24], this study represents its first expanded
implementation for detecting wheat yellow rust disease.
Moreover, the original approach only utilized one
upsampling method, leaving the potential benefits of
alternative methods unexplored. This study addresses this
by adopting bilinear, bicubic, nearest neighbor, and
transposed convolution upsampling techniques to
optimize performance and identify the best method. The
key contributions of this study are as follows:

- Inspired by recent developments in wheat yellow rust
disease detection, this study explores the use of attention
mechanism of scAGs in the U-Net model design,
improving semantic segmentation accuracy on remote
sensing-based multispectral data.

- This study also investigates various upsampling
techniques, such as bilinear, bicubic, nearest neighbor,
and transposed convolution, and shows that bicubic
interpolation can increase the performance of SCAGALttU-
Net model.
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Figure 1. scAGAttU-Net architecture. Input image size is 224 x 224 x 3 pixels. Kernel size of the convolutional layers
is 3 x 3 and the max pooling layer size is 2 x 2 with a stride of 2.

2. MATERIALS AND METHODS

Integrating a spatial focus mechanism (SAG) and a
channel emphasis module (CAG) into skip connections
yields the sScAGAttU-Net architecture [15], as depicted in
Figure 1.
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Figure 2. SAG illustration.

Skip connections in the U-Net architecture carry
redundant information from low-level features in the
encoder at multiple scales. However, using the sAG
module (Figure 2), which focuses only on salient spatial
regions in low-level feature maps, enables these features
to be utilized more efficiently.

The architecture incorporates an extra component, cAG
(shown in Figure 3), designed to reduce the semantic
disparity between the feature maps generated by the
encoder and decoder. The encoder feature map is
multiplied with the attention values obtained from the
SAG and cAG modules before being combined with the
decoder feature map (as illustrated in Figure 4). Equation
1 represents the refined encoder feature map %¢ of the (™
layer:
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¢ = xf@ x§A%(xf, 1) ® xFAC (xf, x1) )

where xf € RCr<HxW represents the feature map at the
I™ layer in the encoder, x € RC2¥H>XWi s the feature
map of the [* layer in the decoder, x;A¢ € R™>*H*Wi js
the spatial attention map of the I™ layer, and x2S €
RC*1x1 s the channel attention map of the ™ layer.
Activation map height and width of layer [ are expressed
by H; and W, respectively. C; and C, denote the number
of channels in the feature maps of the encoder and
decoder parts, respectively. The symbol @ represents
element-wise multiplication, which replicates channel-
wise emphasis scores across the spatial domain and
distributes spatial significance weights across the channel
dimension.

By enabling focus on the salient region, the SAG module
facilitates the effective utilization of the rich location
information in encoder feature maps. Obtaining a spatial
attention map involves applying avg pooling, max
pooling, and point-wise convolution to the encoder and
corresponding decoder feature maps along the channel

dimension, as shown in Figure 2. Concatenation occurs
sAG,avg € RlXHlXWl

between the feature maps x,
xSAGMmAX ¢ RIXHXW and xSAGIXT ¢ RIXHIXW: - ghtained

via avg pooling, max pooling, and point-wise
convolution, respectively. The concatenated feature maps
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undergo convolution with a 7 x 7 kernel size to derive
spatial attention maps for the encoder and decoder,
denoted as x*%°(xf) (Equation 2) and x7A%%(xf)
(Equation 3), respectively:

SAGe(x )
)=
AG, AG AG,
COﬂV(Kl X7. [ S avge’ ls ,maxe s 1X1, e]) (2)
AGd(,.d) _
X (xz ) =
conv (K7X7, [ SAG,an.d’ xlsAG,maX,d’ xlsAG,lxl,d]) (3)

where conv(;) stands for the convolution operation,
while [] denotes concatenation. K/*7 corresponds to a
single 7 x 7 convolutional kernel. Choosing a large kernel
size allows more accurate capture of spatially important
regions thanks to the large receptive field. The final
spatial attention map, x§A%(x¢, x{), is obtained with the
equation (Equation 4):

xPA(xf,xf) = 0( ACS () + xlAGd(xld)) )

where o represents the Sigmoid function.
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Figure 3. cAG illustration.

Combining low-level and high-level feature maps with
skip connections leads to a semantic gap. This gap is
mainly due to the low-level features having rich spatial
information but inadequate semantic information. The
channel attention map is employed to mitigate the
semantic gap by enhancing the representational richness
of early-stage feature maps. Analyzing inter-channel
relationships is essential for assigning appropriate
weights, as each channel in the feature map carries
distinct information. Assigning higher weights to feature
maps containing more discriminant information enhances
their effectiveness in the final prediction. Simultaneously
utilizing global average pooling and max pooling on the
encoder and corresponding decoder feature maps, as
illustrated in Figure 3, is essential for generating a
channel attention map, as this condenses spatial
information. The resulting map of average pooling is

cAl
denoted as x*“'® € RS*1¥1, whereas that of max

pooling is xfA®™Ma € RCX1X1 Tg obtain channel-wise
dependencies, the squeezed features from the encoder and
decoder undergo C;/16 1 x 1 convolutions. The resulting

feature maps are x*“°(xf) and x/*%(x{), denoted by
Equation 5 and Equation 6, respectively:

cAG,e 1x1. cAG,avg,e
x> () = conv( ( ))

AG, g
conv (KN1X1; (o ASmax e))

()

cAGd( . d 1x1 cAG,avg,d
x A% (x1) = conv (KNX ,(xl +

A
conv (K,}I“; (xlc G'max'd))

(6)

where N is taken as C;/16 for the purpose of reducing
the parameter overhead.

Aggregating these feature maps through summation and
subsequently applying C; point-wise 1 x 1 convolution
operations to the resulting map from the element-wise
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summation is essential for obtaining the final channel
attention map.

Spatial
attention
Channel
attention
546 ¢ pixApw;  xfAG g ROx1x1 Refined
Encoder feature C L encoder feature
xf € ROLHXW; % € REUHPI

Spatial-Channel Attention Gate
Figure 4. scAG illustration.

Subsequently, the sigmoid function ¢ is applied, as shown
in the Equation 7:

(5 (xt ) = o (conv (et (xpoecepy +
xchG,d(xld)))>_ (7

The initial feature representation undergoes multiplication
with the location-based attention map x§A¢(x¢, x{!) and
spectral emphasis map xfA%(xf, x{'), as illustrated in
Figure 4. Subsequently, these refined features are
incorporated with the decoder features, constituting the
final step of the process.

2.1. Upsampling Methods

This study examines the effects of bicubic interpolation,
nearest interpolation [25], and transposed convolution
[26] methods on model performance. Techniques such as
nearest neighbor interpolation, along with bilinear and
bicubic scaling, belong to a class of resampling methods
that fill gaps by leveraging local pixel information.
Transposed convolution is a method that learns spatial
correlations to extract pixel values. The following
sections describe different upsampling methods.

2.2. Nearest neighbor interpolation

This method offers a computationally efficient resampling
strategy by assigning the value of the closest pixel to fill
missing regions. The interpolation kernel s(z) is defined
as follows:

|z| > 0.5

0
s() = {1 lz| < 0.5 ®)

where z represents the measured distance between the
interpolated pixel and the nearest neighbor pixel.

2.3. Bilinear interpolation

This approach fills gaps by calculating the weighted
average of the four nearest pixels and is computationally
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more expensive than the nearest interpolation technique.
It also provides smoother transitions between pixels
compared to nearest interpolation, as this method
performs average calculations in horizontal and vertical
directions. The interpolation kernel s(z) is obtained as
follows:

lz| > 1

| Izl < 1 ©)

0
s(z) = {1 0
2.4. Bicubic interpolation

This technique fills gaps by computing a weighted
combination of the closest 16 pixels. It demands higher
computational resources compared to nearest and bilinear
interpolation methods. The interpolation kernel is as
follows:

s(z) =
2zl =21zI? + 1 0<|zl <1
21zl + 2 |zI? - 4lz] + 2 1<z <2
0 2 < |z|

(10)

2.5. Transposed convolution

Transposed  convolution, also  referred to as
deconvolution, is an upsampling approach with learnable
parameters [26]. This process swaps the forward and
backward passes of a standard convolution operation. In
standard convolution, the forward pass is computed as C
W for a given kernel W and input matrix C, where *
represents the convolution operation. The backward pass
uses the transposed input matrix CT in the gradient
calculation. In contrast, transposed convolution defines
the operation of CT x W for the forward pass, ensuring
that during the backward pass, the original input
matrix(CMT, i.e., (CT)T = C, is used.

3. RESULTS AND DISCUSSION

This section presents details on the dataset, assessment
metrics, implementation aspects, and experimental
findings. The imagery dataset for wheat yellow rust
(WYR) analysis was acquired from an agricultural
research facility in Yangling, China [21]. The selected
wheat cultivar, Xiaoyan 22, was artificially infected with
stripe rust spores in randomly designated field plots, each
measuring 2 m X 2 m.
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Figure 5. Example images and ground truth masks.

A DJI Matrice 100 (M100) drone system, outfitted with a
dual-spectrum optical sensor, is utilized to monitor stripe
rust infection. This sensor captures RGB, red-edge (RE),
and near-infrared (NIR) imagery at a spatial resolution of
1.3 cm per pixel. The infected regions are annotated at the
pixel level and used for binary semantic segmentation.
Figure 5 displays sample images alongside their
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respective ground-truth segmentation maps from the
WYR dataset.

The experiments utilize an NVIDIA Quadro RTX 5000
GPU. After preprocessing, all images are divided into 224
x 224 patches, resulting in 1,299 samples. Training
samples account for 72% of this total, test samples
represent 20%, and validation samples make up 8%. The
experiments utilize 5-fold cross-validation, with a total of
70 epochs. The mini-batch size is 8, and the momentum
value is 0.9 for the Adam optimization algorithm. The
learning rate starts at 5+ 107> and is reduced by 9%
every ten epochs.

(c)

—

|
4 |
-

(d)

(d) (€)
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Figure 6. Randomly selected semantic segmentation test results for wheat yellow-rust pixels with RGB images.

The input/output image dimensions are 224 x 224 x 3 pixels. In the outputs, light greens indicate correct
predictions, dark greens represent missed predictions, and reds denote false alarms. The rows depict the following:
(a) Image; (b) Ground-truth mask; (c) sScAGAttU-Net (Bilinear); (d) sScAGAttU-Net (Nearest neighbor); (e)

SCAGAttU-Net (Transposed conv.); and (f) sScAGAttU-Net (Bicubic).

Table 1. Semantic segmentation test results for RGB

images.

Architectures RGB Images
loU F;

U-Net 0.521+£0.294 0.647+0.333
SegNet 0.545+0.347 0.620+0.372
InceptionU-Net 0.588+0.262 0.699+0.248
NestedU-Net 0.615+0.264 0.718+0.242
UNetFormer 0.664+0.241 0.769+0.203
DLinkNet 0.608+0.296 0.702+0.295
DeepLabV3 0.426+0.315 0.527+0.321
BiSeNet 0.435+0.318 0.535+0.319
DFANet 0.489+0.321 0.587+0.320
SCAGALttU-Net 0.584+0.285 0.686+0.261
(Bilinear)
SCAGALttU-Net 0.572+0.296 0.672+0.295
(Nearest neighbor)
SCAGALttU-Net 0.536+0.314 0.632+0.319
(Transposed conv.)
SCAGALtU-Net 0.604+0.279 0.707+0.263
(Bicubic)

Table 2. Semantic

segmentation test results for NDVI

images.

Architectures NDVI Images
loU F;

U-Net 0.502+0.355 0.582+0.353
SegNet 0.469+0.366 0.545+0.378
InceptionU-Net 0.569+0.264 0.662+0.252
NestedU-Net 0.560+0.292 0.653+£0.279
UNetFormer 0.515+0.320 0.615+0.313
DLinkNet 0.472+0.298 0.575+0.304
DeepLabV3 0.465+0.311 0.565+0.308
BiSeNet 0.497+0.297 0.605+0.299
DFANet 0.448+0.323 0.546+0.330
SCAGALttU-Net 0.596+0.259 0.710+0.331
(Bilinear)
SCAGALttU-Net 0.573+0.274 0.684+0.254
(Nearest neighbor)
SCAGALttU-Net 0.540+0.289 0.647+0.282
(Transposed conv.)
SCAGALttU-Net 0.618+0.249 0.729+0.220
(Bicubic)

The normalized difference vegetation index (NDVI) is
a popular tool for distinguishing diseased plants [23]. This
index can effectively differentiate between healthy and
infected wheat leaves by emphasizing the pixels with the
highest chlorophyll absorption. NDVI is calculated based
on the difference in the ratio of reflectance between the
red (R) and NIR bands [27], as shown in Equation 11.
From +1 to -1, a positive NDVI value indicates healthy
vegetation, while a negative value signifies unhealthy or
absent vegetation.

NDVI = (NIR — R)/(NIR+R) (11)

In this study, NDVI images, which have the potential to
be highly useful for distinguishing wheat yellow rust
disease, are utilized in addition to RGB images.

The F; score and intersection over union (loU) metrics
quantitatively evaluate semantic segmentation
performances. Equation 12 shows the calculation of the
F; score, while Equation 13 yields the loU metric:

F, = (2 * PR+ RC)/(PR + RC)

(12)
PR = TP/(TP + FP)
RC = TP /(TP + FN)
loU = TP/(TP + FP + FN) (13)

where TP, TN, FP, and FN correspond to the counts of
correctly classified positives, correctly classified
negatives, misclassified positives, and misclassified
negatives in the prediction results.

In the experiments, deep learning models for semantic
segmentation, such as U-Net [14], SegNet [28],
InceptionU-Net [29], NestedU-Net [30], UNetFormer
[31], DLinkNet [32], DeepLabV3 [33], BiSeNet [34], and
DFANet [35] are used for comparison purposes. Table 1
shows the semantic segmentation test results for RGB
images based on loU and F; score values, while Table 2
displays the results for NDVI images.

Figure 6 illustrates predictions from scAGALttU-Net
(Bilinear), scAGAttU-Net (Nearest neighbor), sSCAGALttU-
Net (Transposed conv.), and scAGAttU-Net (Bicubic)
models for selected RGB image examples. The first
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column displays the raw image, while the second column oA gAnTNet
presents the corresponding ground-truth segmentation
mask. Columns (c), (d), (e), and (f) feature predictions | i)
obtained with bilinear, nearest neighbor, transposed T @;;}%*%@'ggr)
convoIL_Jtion, and bicubic upsampling  methods, (ECACARUN
respectively.
Table 3 compares efficiency using giga floating point a:% i
operations per second (GFLOPs) for computational &
complexity and frame per second (FPS) for inference
speed. For a fair comparison, 224 x 224 x 3 is the input -+
image resolution used in all experiments. The workstation
has NVIDIA Quadro RTX 5000 as the GPU. o 1 L
Table 3. Efficiency comparisons in terms of GFLOPs and : T Models i
FPS metrics.
Architectures GFLOPs FPS Figure 7. Box-plot of RGB loU results of different
U-Net 190.07 20.48 upsampling methods.
SegNet 245.80 18.44 —
InceptionU-Net 482.26 9.48 [ B
NestedU-Net 849.3 5.58 S e
UNetFormer 17.95 104.92 oezs e hahtar) t
DLinkNet 5143 | 410 1 e
DeepLabV3 133.7 18.30 E I
BiSeNet 34.82 80.60 S
DFANet 2.73 48.12 = 1
SCAGAtU-Net 101.51 21.31 g 1
(Bilinear) vszs
SCAGALttU-Net 101.03 22.57
(Nearest neighbor) v
SCAGALttU-Net 84.54 24.74 T
(Transposed conv.) ' * . Modes S )
SCAGALttU-Net 113.46 14.60
(Bicubic) Figure 8. Box-plot of NDVI loU results of different

upsampling methods.

To explore the differences among the various upsampling
methods used in the sCAGAttU-Net model with greater

precision, Figure 7 and Figure 8 visualize 5-fold cross- _

validation loU results for RGB and NDVI images as box = Blesbio)

plots. Moreover, to compare the statistical characteristics e
of the scAGAttU-Net variants with other models (U-Net, I
NestedU-Net, UNetFormer), Figure 9 visualizes the
median, interquartile range, and outliers of the 5-fold [N
cross-validation loU results.

NestedU-Net

Finally, Figure 10 shows the training and validating loss UNet UNetFormer
curves of scCAGAttU-Net architectures across different N heas)

upsampling techniques. These curves can give more i]
intuition about model performances by assessing the
stability during training, the convergence behavior, and s AGALT Nt
overfitting. (Transposed conv.)

sanep No|

! : : * Models ° °

Figure 9. Box-plot of NDVI loU results of various
models.
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As indicated in Table 1, UNetFormer, a transformer-
based hybrid model, achieves the best performance for
RGB images. When examining the sScAGAttU-Net model
with different upsampling methods, it is evident that
bicubic interpolation outperforms the other upsampling
techniques. For instance, the sCAGAttU-Net (Bicubic)
model improves the loU performance of the scAGAttU-
Net (Transposed conv.) model by up to 6.8%.

scAGATtU-Net
(Bicubic)

0.78 1 '—— T¥ain Loss

=== Validation Loss
0.76

074 4
0.72
0.70
0.68

066

064

scAGAHU-Net
(Bilinear)

0825 1 — Tain Loss

=== Validation Loss
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Table 2 shows that for NDVI images, the sSCAGAttU-Net
(Bicubic) model achieves the highest semantic
segmentation accuracy, surpassing all other advanced
models significantly. Specifically, the scAGAttU-Net
(Bicubic) model improves the loU performance of the
SCAGALttU-Net (Transposed conv.) model by up to 7.8%,
the scAGALttU-Net (Nearest neighbor) model by 4.5%,
and the scAGAttU-Net (Bilinear) model by 2.2%.
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(Transposed conv.)

—— Tain Loss
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Figure 10. Training and validating loss curves of sSCAGAttU-Net architectures across different upsampling techniques.
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The results from Tables 1 and 2 demonstrate that using
bicubic interpolation with scAGALttU-Net yields the best
performance across all cases, while bilinear interpolation
provides the second-best performance. Moreover, the
transposed convolution, which adaptively learns the
upsampling process during training, yields the worst
performance for RGB and NDVI images on the WYR
image set. Within the framework of the scAGALttU-Net
model applied to multispectral remote sensing images for
wheat yellow-rust disease, bicubic interpolation offers
more consistent results than transposed convolution,
which may introduce undesirable artifacts despite its
ability to learn spatial features.

Figure 6 presents qualitative results from several example
predictions on the WYR image set, complementing the
quantitative results and allowing for a more detailed
analysis of the differences between the upsampling
methods. The visualization highlights false alarm pixels in
red and shows pixels belonging to correct predictions in
light green. Example predictions from the scAGAttU-Net
(Bicubic) model shown in the last column demonstrate a
decrease in false alarms and an increase in correct
predictions. For instance, in the third row, sSCAGAttU-Net
(Bicubic) accurately predicts wheat yellow rust disease
pixels. In the fourth row, it is noticeable that using
SCAGALttU-Net (Bicubic) results in fewer false alarm
pixels.

As shown in Table 3, among the scAGAttU-Net model
variations, SCAGAttU-Net (Transposed conv.) attains
superior efficiency with 24.74 FPS and 84.54 GFLOPs. In
contrast, SCAGAttU-Net (Bicubic) is about 1.69 times
slower in inference speed (16.40 FPS) while having 1.34
times more computational cost (113.26 GFLOPs). In
Table 1 and Table 2, it is evident that scCAGALttU-Net
(Bicubic) consistently produces high loU compared to
other scAGALttU-Net models while being the worst
performer in terms of efficiency. This fact reveals the
efficiency versus accuracy trade-off involved in achieving
optimized segmentation performance with various
upsampling techniques.

Figure 7 illustrates the distributions of the cross-
validation loU results for RGB images to conduct a
comparative analysis among the SscAGALttU-Net
(Bicubic), scAGAttU-Net (Nearest neighbor), sCAGALttU-
Net (Bilinear), and scAGAttU-Net (Transposed conv.)
models. The box plot indicates that the scAGAttU-Net
(Bicubic) model is superior to the others.

Similarly, the distributions presented in Figure 8 for the
NDVI images reveal that the scAGALttU-Net (Bicubic)
model outperforms the others. The box-plot results further
confirm that employing the bicubic interpolation method
for upsampling has a statistically significant impact on
performance compared to the other methods.

Figure 9 visually demonstrates that the median loU of the
SCAGALttU-Net (Bicubic) model is higher than those of U-
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Net, NestedU-Net, and UNetFormer. Moreover,
SCAGALttU-Net (Bicubic) has the highest third quartile
with a relatively narrow interquartile range, indicating
that performance is consistently high across different
folds.

In Figure 10, the validation loss of scAGAttU-Net
(Bilinear) follows the training loss more closely with
minimal fluctuations than other models. Therefore, by
allowing more stable training, sSCAGALttU-Net (Bilinear)
has a strong generalization capability while converging
relatively faster.

5. CONCLUSION

To summarize, this research effectively showcases the
effectiveness of incorporating spatial-channel attention
gates (scAGs) into the U-Net model for segmenting wheat
yellow-rust disease in multispectral remote sensing
imagery. By focusing on different upsampling techniques,
the research highlights the superiority of bicubic
interpolation, which consistently outperforms other
methods, including bilinear, nearest neighbor, and
transposed convolution. Specifically, the scAGAttU-Net
(Bicubic) model improves the loU performance by up to
6.8% for RGB images and up to 7.8% for NDVI images
compared to the SCAGAttU-Net (Transposed conv.)
model. Additionally, bicubic interpolation reduces false
alarms and increases correct predictions, achieving
superior performance across all cases. This study proves
that optimizing the scAGAttU-Net model with bicubic
interpolation upsampling for wheat yellow-rust disease
semantic segmentation using multispectral remote sensing
images yields promising results, showing great potential
for highly accurate disease detection.
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