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Abstract— The wheat yellow-rust disease poses a serious risk to global wheat production, making effective detection 

methods essential. This study aims to enhance wheat yellow-rust detection accuracy by investigating the use of spatial-

channel attention gates (scAGs) in semantic segmentation with multispectral remote sensing images. While scAGs find 

applications in medical image segmentation and precision agriculture, this study extends usage for wheat yellow rust 

detection. Integrated into the skip connections of the U-Net model, scAGs aim to refine feature extraction and improve 

segmentation performance. Furthermore, to address a limitation in prior work that used only one upsampling method, 

this study explores multiple techniques—bilinear, bicubic, nearest neighbor, and transposed convolution—optimizing 

performance. According to experimental results, bicubic interpolation delivers the best performance, significantly 

enhancing wheat yellow-rust disease detection accuracy. 
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SCAG ile Geliştirilmiş U-Net Kullanılarak Çok Bantlı 

Uzaktan Algılamada Buğday Sarı Pas Hastalığının 

Semantik Bölütlenmesi 
 

 

Özet— Buğday sarı pas hastalığı, küresel buğday üretimi için ciddi bir tehdit oluşturmaktadır ve etkili tespit yöntemleri 

büyük önem taşımaktadır. Bu çalışma, çok bantlı uzaktan algılama görüntülerinde semantik bölütleme için mekânsal-

kanal dikkat kapıları (SCAG'ler) kullanımını araştırarak buğday sarı pas hastalığının tespit doğruluğunu artırmayı 

amaçlamaktadır. SCAG'ler tıbbi görüntü bölütleme ve hassas tarım alanında kullanılmakla birlikte, bu çalışma buğday 

sarı pas tespiti için kullanımını genişletmektedir. U-Net modelinin atlama bağlantılarına entegre edilen SCAG'ler, 

özellik çıkarımını iyileştirmeyi ve bölütleme performansını artırmayı hedeflemektedir. Ayrıca, önceki çalışmalar 

yalnızca tek bir yukarı örnekleme yöntemi kullanırken, bu çalışmada bilineer, bikübik, en yakın komşu ve transpoz 

konvolüsyon gibi birden fazla teknik araştırılarak performans optimize edilmiştir. Deneysel sonuçlara göre, bikübik 

enterpolasyon en iyi performansı göstererek buğday sarı pas hastalığının tespit doğruluğunu önemli ölçüde artırmıştır.  
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1. INTRODUCTION 

Modern semantic segmentation frameworks 

predominantly employ an encoder-decoder design. In this 

setup, the encoder is responsible for capturing and 

encoding critical features from input images, while the 

decoder reconstructs and refines semantic representations 

to achieve precise segmentation outcomes. However, 

convolutional neural networks (CNNs) struggle to capture 

long-distance dependencies inherent in images. Therefore, 

one study proposes the pyramid pooling module (PPM) to 

establish and fuse long-distance dependencies [1]. 

Meanwhile, atrous spatial pyramid pooling (ASPP) is 

introduced to enhance contextual information by varying 

the dilation ratios, thereby expanding the receptive field 

of convolutions [2]. However, these approaches remain 

inadequate for effectively extracting global contextual 

information, as stacking and aggregating convolutional 

layers fail to cover global receptive fields sufficiently. 

The attention mechanism is a key for utilizing contextual 

information. There are several ways to apply attention, 

where one approach is that the features are aggregated 

according to the particular attention dimension, followed 

by linear transformations and nonlinear activations to 

derive attention scores. For instance, SEBlock employs 

average pooling and a multilayer perceptron for channel 

attention [3], and the convolutional block attention 

module (CBAM) enhances SEBlock by incorporating 

max pooling for spatial attention [4]. ST-UNet further 

advances this by aggregating information in both height 

and width dimensions through soft pooling [5]. Another 

approach is similarity-based attention, which constructs 

relationships between units through matrix multiplication. 

Several studies, such as DANet [6] or MANet [7], fall 

into this category. 

Recent research has shown that attention mechanisms can 

significantly enhance the performance of feature 

differentiation and region delineation in remote sensing 

image analysis. Notably, [8] jointly modeled spatial and 

channel affinities in remote sensing image segmentation, 

improving accuracy by addressing attention bias that 

hinders the discrimination of discretely distributed 

objects. [9] proposed MCCANet, a multiscale channel-

wise cross-attention network incorporating boundary 

supervision, specifically developed to tackle challenges in 

segmenting high-spatial-resolution remote sensing 

images. This approach enhances the integration of 

multiscale features while maintaining precise boundary 

delineation. [10] proposed a multistage feature fusion 

lightweight model, LiANet, integrating enhanced spatial 

and channel attention modules to significantly reduce 

parameter count while improving semantic segmentation 

accuracy for high-resolution remote sensing images. [11] 

developed SFCRNet, leveraging contextual and 

multiscale information to enhance the semantic 

segmentation of remote sensing images using a context-

based attention embedding module and a stair-shaped 

architecture for effective feature fusion. The HMANet 

[12] improves semantic segmentation in high-resolution 

aerial images by effectively capturing global 

dependencies through a novel attention framework that 

integrates spatial, channel, and category-based 

correlations. [13] introduced LANet, which enhances 

feature representation and spatial localization in remote 

sensing image semantic segmentation by integrating the 

patch attention and attention embedding modules. 

The skip connections in encoder-decoder architectures 

like U-Net often rely on redundant low-level features and 

lack sufficient contextual information [14]. By integrating 

a spatial-channel attention gate (scAG), which 

incorporates both spatial and channel attention 

mechanisms, the U-Net model can better emphasize 

contextual information in the feature maps [15]. This 

novel approach, designed for medical image 

segmentation, can also be well-suited to remote sensing 

semantic segmentation. For instance, the csAG-HRNet 

model integrates HRNet-v2 with channel and spatial 

attention gates to effectively learn contextual information 

for building extraction from aerial images [16]. The 

GRSNet model enhances U-Net with attention gates, 

residual units, and deep supervision to effectively 

segment buildings in high-resolution satellite images [17]. 

Wheat is one of the most widely grown crops worldwide. 

However, pathogens and pests, e.g., the wheat yellow rust 

fungal disease, challenge wheat production. Infections of 

this disease appear as visible symptoms on wheat leaves 

parallel to the veins. This disease can reduce wheat 

production and threaten global food security. Wheat 

yellow rust spreads rapidly under optimal conditions, 

necessitating an automated and non-destructive mapping 

system for effective site-specific management [18]. The 

disease induces both physical and chemical alterations in 

wheat leaves, such as a decline in chlorophyll levels and 

the emergence of rust-like symptoms. Traditional 

surveillance is the current practice of disease monitoring, 

which may not be efficient for large-scale fields. Pesticide 

application is the disease management strategy that 

eventually results in land pollution. Therefore, it is 

necessary to develop intelligent disease monitoring 

methods for early diagnosis.  

The wheat yellow rust disease induces both physical and 

chemical alterations in wheat leaves, such as a decline in 

chlorophyll levels and the emergence of rust-like 

symptoms. These changes can be captured through optical 

sensing technologies, including RGB, multispectral, and 

hyperspectral imaging systems. Previous studies have 

utilized UAV-based multispectral remote sensing for 

mapping yellow rust, employing deep learning models 

like U-Net. A study investigated a five-band remote 

sensing-based multispectral camera for detecting yellow 

rust disease in winter wheat, aiming to distinguish healthy 

wheat from infected plants by utilizing spectral bands and 

vegetation indices [19]. The dynamic tracking of wheat 

affected by varying degrees of yellow rust infection is 

conducted through time-series aerial imaging with a 

multispectral camera. This approach enables the 

assessment of diverse spectral indices, aiding in the 
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precise segmentation of wheat [20]. A novel framework is 

proposed for monitoring yellow rust disease in winter 

wheat using remote sensing-based multispectral imaging, 

integrating vegetation indices and U-Net [21]. The Ir-

UNet model enhances wheat yellow rust detection in 

UAV-derived multispectral images by integrating non-

uniform encoder and decoder components, along with a 

content-aware channel re-weighting mechanism. This 

architecture significantly boosts segmentation accuracy, 

surpassing U-Net [22]. The ResLMFFNet model 

improves gradient propagation within SEM-B blocks by 

leveraging residual connections, representing the first 

application of a real-time semantic segmentation 

framework for detecting wheat yellow rust disease in 

multispectral aerial observations [23]. To further improve 

wheat yellow rust disease detection, attention 

mechanisms, such as scAG, should be investigated more 

comprehensively to enhance semantic segmentation 

accuracy. 

Therefore, this study focuses on the semantic 

segmentation of wheat yellow rust disease using remote 

sensing-based multispectral images by integrating scAGs 

into the skip connections of a U-Net-based architecture. 

While previously used in biomedical imaging tasks [15] 

and precision agriculture solely for comparison purposes 

[24], this study represents its first expanded 

implementation for detecting wheat yellow rust disease. 

Moreover, the original approach only utilized one 

upsampling method, leaving the potential benefits of 

alternative methods unexplored. This study addresses this 

by adopting bilinear, bicubic, nearest neighbor, and 

transposed convolution upsampling techniques to 

optimize performance and identify the best method. The 

key contributions of this study are as follows: 

- Inspired by recent developments in wheat yellow rust 

disease detection, this study explores the use of attention 

mechanism of scAGs in the U-Net model design, 

improving semantic segmentation accuracy on remote 

sensing-based multispectral data. 

- This study also investigates various upsampling 

techniques, such as bilinear, bicubic, nearest neighbor, 

and transposed convolution, and shows that bicubic 

interpolation can increase the performance of scAGAttU-

Net model. 

 

 

Figure 1. scAGAttU-Net architecture. Input image size is 224 × 224 × 3 pixels. Kernel size of the convolutional layers 

is 3 × 3 and the max pooling layer size is 2 × 2 with a stride of 2. 

 

2. MATERIALS AND METHODS 

Integrating a spatial focus mechanism (sAG) and a 

channel emphasis module (cAG) into skip connections 

yields the scAGAttU-Net architecture [15], as depicted in 

Figure 1.  

 

Figure 2. sAG illustration. 

Skip connections in the U-Net architecture carry 

redundant information from low-level features in the 

encoder at multiple scales. However, using the sAG 

module (Figure 2), which focuses only on salient spatial 

regions in low-level feature maps, enables these features 

to be utilized more efficiently. 

The architecture incorporates an extra component, cAG 

(shown in Figure 3), designed to reduce the semantic 

disparity between the feature maps generated by the 

encoder and decoder. The encoder feature map is 

multiplied with the attention values obtained from the 

sAG and cAG modules before being combined with the 

decoder feature map (as illustrated in Figure 4). Equation 

1 represents the refined encoder feature map x̂𝑙
e of the 𝑙th 

layer: 
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𝑥̂𝑙
e = 𝑥𝑙

e⨂ 𝑥𝑙
sAG(𝑥𝑙

𝑒, 𝑥𝑙
d)⨂ 𝑥𝑙

cAG(𝑥𝑙
e, 𝑥𝑙

d)                 (1) 

where 𝑥𝑙
e ∈ ℝC1×H𝑙×W𝑙 represents the feature map at the 

𝑙th layer in the encoder, 𝑥𝑙
d ∈ ℝC2×H𝑙×W𝑙   is the feature 

map of the 𝑙th layer in the decoder, 𝑥𝑙
sAG ∈ ℝ1×H𝑙×W𝑙  is 

the spatial attention map of the 𝑙th layer, and 𝑥𝑙
cAG ∈

ℝC1×1×1  is the channel attention map of the 𝑙th layer. 

Activation map height and width of layer 𝑙 are expressed 

by H𝑙 and W𝑙, respectively. C1 and C2 denote the number 

of channels in the feature maps of the encoder and 

decoder parts, respectively. The symbol ⊗ represents 

element-wise multiplication, which replicates channel-

wise emphasis scores across the spatial domain and 

distributes spatial significance weights across the channel 

dimension. 

By enabling focus on the salient region, the sAG module 

facilitates the effective utilization of the rich location 

information in encoder feature maps. Obtaining a spatial 

attention map involves applying avg pooling, max 

pooling, and point-wise convolution to the encoder and 

corresponding decoder feature maps along the channel 

dimension, as shown in Figure 2. Concatenation occurs 

between the feature maps 𝑥𝑙
sAG,avg

∈ ℝ1×H𝑙×W𝑙 , 

𝑥𝑙
sAG,max ∈ ℝ1×H𝑙×W𝑙 , and 𝑥𝑙

sAG,1×1 ∈ ℝ1×H𝑙×W𝑙, obtained 

via avg pooling, max pooling, and point-wise 

convolution, respectively. The concatenated feature maps 

undergo convolution with a 7 × 7 kernel size to derive 

spatial attention maps for the encoder and decoder, 

denoted as 𝑥𝑙
sAG,e(𝑥𝑙

e) (Equation 2) and 𝑥𝑙
sAG,d(𝑥𝑙

d) 

(Equation 3), respectively: 

𝑥𝑙
sAG,e(𝑥𝑙

e) =

conv(𝐾1
7×7; [𝑥𝑙

sAG,avg,e
, 𝑥𝑙

sAG,max,e, 𝑥𝑙
sAG,1×1,e])              (2) 

 

𝑥𝑙
sAG,d(𝑥𝑙

d) =

conv (𝐾1
7×7; [𝑥𝑙

sAG,avg,d
, 𝑥𝑙

sAG,max,d, 𝑥𝑙
sAG,1×1,d])            (3)                                             

where conv(; ) stands for the convolution operation, 

while [ ] denotes concatenation. 𝐾1
7×7 corresponds to a 

single 7 × 7 convolutional kernel. Choosing a large kernel 

size allows more accurate capture of spatially important 

regions thanks to the large receptive field. The final 

spatial attention map, 𝑥𝑙
sAG(𝑥𝑙

e, 𝑥𝑙
d), is obtained with the 

equation (Equation 4): 

𝑥𝑙
sAG(𝑥𝑙

e, 𝑥𝑙
d) = 𝜎 (𝑥𝑙

sAG,e(𝑥𝑙
e) + 𝑥𝑙

sAG,d(𝑥𝑙
d))          (4) 

where 𝜎 represents the Sigmoid function. 

 

Figure 3. cAG illustration. 

Combining low-level and high-level feature maps with 

skip connections leads to a semantic gap. This gap is 

mainly due to the low-level features having rich spatial 

information but inadequate semantic information. The 

channel attention map is employed to mitigate the 

semantic gap by enhancing the representational richness 

of early-stage feature maps. Analyzing inter-channel 

relationships is essential for assigning appropriate 

weights, as each channel in the feature map carries 

distinct information. Assigning higher weights to feature 

maps containing more discriminant information enhances 

their effectiveness in the final prediction. Simultaneously 

utilizing global average pooling and max pooling on the 

encoder and corresponding decoder feature maps, as 

illustrated in Figure 3, is essential for generating a 

channel attention map, as this condenses spatial 

information. The resulting map of average pooling is 

denoted as 𝑥𝑙
cAG,avg

∈ ℝC×1×1, whereas that of max 

pooling is 𝑥𝑙
cAG,max ∈ ℝC×1×1. To obtain channel-wise 

dependencies, the squeezed features from the encoder and 

decoder undergo 𝐶1/16 1 × 1 convolutions. The resulting 

feature maps are 𝑥𝑙
cAG,e(𝑥𝑙

e)  and 𝑥𝑙
cAG,d(𝑥𝑙

d), denoted by 

Equation 5 and Equation 6, respectively:  

𝑥𝑙
cAG,e(𝑥𝑙

e) = conv (𝐾N
1×1; (𝑥𝑙

cAG,avg,e
)) +

conv (𝐾N
1×1; (𝑥𝑙

cAG,max,e))                                       (5) 

 

𝑥𝑙
cAG,d(𝑥𝑙

d) = conv (𝐾N
1×1; (𝑥𝑙

cAG,avg,d
)) +

conv (𝐾N
1×1; (𝑥𝑙

cAG,max,d))                          (6) 

where N is taken as 𝐶1/16  for the purpose of reducing 

the parameter overhead.  

Aggregating these feature maps through summation and 

subsequently applying 𝐶1 point-wise 1 × 1 convolution 

operations to the resulting map from the element-wise 
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summation is essential for obtaining the final channel 

attention map. 

 

Figure 4. scAG illustration. 

Subsequently, the sigmoid function 𝜎 is applied, as shown 

in the Equation 7: 

𝑥𝑙
cAG(𝑥𝑙

e, 𝑥𝑙
d) = 𝜎 (conv (𝐾𝐶1

1×1; (𝑥𝑙
cAG,e(𝑥𝑙

e) +

𝑥𝑙
cAG,d(𝑥𝑙

d)))).                                                                 (7) 

The initial feature representation undergoes multiplication 

with the location-based attention map 𝑥𝑙
sAG(𝑥𝑙

e, 𝑥𝑙
d) and 

spectral emphasis map 𝑥𝑙
cAG(𝑥𝑙

e, 𝑥𝑙
d), as illustrated in 

Figure 4. Subsequently, these refined features are 

incorporated with the decoder features, constituting the 

final step of the process. 

2.1. Upsampling Methods 

This study examines the effects of bicubic interpolation, 

nearest interpolation [25], and transposed convolution 

[26] methods on model performance. Techniques such as 

nearest neighbor interpolation, along with bilinear and 

bicubic scaling, belong to a class of resampling methods 

that fill gaps by leveraging local pixel information. 

Transposed convolution is a method that learns spatial 

correlations to extract pixel values. The following 

sections describe different upsampling methods. 

 

2.2. Nearest neighbor interpolation 

This method offers a computationally efficient resampling 

strategy by assigning the value of the closest pixel to fill 

missing regions. The interpolation kernel 𝑠(𝑧) is defined 

as follows: 

𝑠(𝑧) = {
0                    |𝑧| > 0.5
1                    |𝑧| < 0.5

                     (8) 

where 𝑧 represents the measured distance between the 

interpolated pixel and the nearest neighbor pixel. 

2.3. Bilinear interpolation 

This approach fills gaps by calculating the weighted 

average of the four nearest pixels and is computationally 

more expensive than the nearest interpolation technique. 

It also provides smoother transitions between pixels 

compared to nearest interpolation, as this method 

performs average calculations in horizontal and vertical 

directions. The interpolation kernel 𝑠(𝑧) is obtained as 

follows: 

𝑠(𝑧) = {
0                                   |𝑧| > 1
1 − |𝑧|                        |𝑧| < 1

                   (9) 

2.4. Bicubic interpolation 

This technique fills gaps by computing a weighted 

combination of the closest 16 pixels. It demands higher 

computational resources compared to nearest and bilinear 

interpolation methods. The interpolation kernel is as 

follows: 

𝑠(𝑧) =

{−

3

2
|𝑧|3 −

5

2
|𝑧|2 + 1                                  0 ≤ |𝑧| < 1

1

2
|𝑧|3 +

5

2
|𝑧|2 − 4|𝑧| + 2                     1 ≤ |𝑧| < 2

0                                                                        2 ≤ |𝑧|

         

(10) 

2.5. Transposed convolution 

Transposed convolution, also referred to as 

deconvolution, is an upsampling approach with learnable 

parameters [26]. This process swaps the forward and 

backward passes of a standard convolution operation. In 

standard convolution, the forward pass is computed as 𝐶 ∗
𝑊 for a given kernel 𝑊 and input matrix 𝐶, where ∗ 

represents the convolution operation. The backward pass 

uses the transposed input matrix 𝐶T in the gradient 

calculation. In contrast, transposed convolution defines 

the operation of 𝐶T ∗ 𝑊 for the forward pass, ensuring 

that during the backward pass, the original input 

matrix(𝐶T)T, i.e., (𝐶T)T = 𝐶, is used. 

3. RESULTS AND DISCUSSION 

This section presents details on the dataset, assessment 

metrics, implementation aspects, and experimental 

findings. The imagery dataset for wheat yellow rust 

(WYR) analysis was acquired from an agricultural 

research facility in Yangling, China [21]. The selected 

wheat cultivar, Xiaoyan 22, was artificially infected with 

stripe rust spores in randomly designated field plots, each 

measuring 2 m × 2 m.  
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Figure 5. Example images and ground truth masks. 

  

A DJI Matrice 100 (M100) drone system, outfitted with a 

dual-spectrum optical sensor, is utilized to monitor stripe 

rust infection. This sensor captures RGB, red-edge (RE), 

and near-infrared (NIR) imagery at a spatial resolution of 

1.3 cm per pixel. The infected regions are annotated at the 

pixel level and used for binary semantic segmentation. 

Figure 5 displays sample images alongside their 

respective ground-truth segmentation maps from the 

WYR dataset. 

The experiments utilize an NVIDIA Quadro RTX 5000 

GPU. After preprocessing, all images are divided into 224 

× 224 patches, resulting in 1,299 samples. Training 

samples account for 72% of this total, test samples 

represent 20%, and validation samples make up 8%. The 

experiments utilize 5-fold cross-validation, with a total of 

70 epochs. The mini-batch size is 8, and the momentum 

value is 0.9 for the Adam optimization algorithm. The 

learning rate starts at 5 ∗ 10−5 and is reduced by 9% 

every ten epochs. 

 

 

(a) (b) (c) (d) (e) (d) 
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Figure 6.  Randomly selected semantic segmentation test results for wheat yellow-rust pixels with RGB images. 

The input/output image dimensions are 224 × 224 × 3 pixels. In the outputs, light greens indicate correct 

predictions, dark greens represent missed predictions, and reds denote false alarms. The rows depict the following: 

(a) Image; (b) Ground-truth mask; (c) scAGAttU-Net (Bilinear); (d) scAGAttU-Net (Nearest neighbor); (e) 

scAGAttU-Net (Transposed conv.); and (f) scAGAttU-Net (Bicubic).

Table  1. Semantic segmentation test results for RGB 

images. 

Architectures RGB Images 

IoU 𝐅𝟏 

U-Net 0.521±0.294 0.647±0.333 

SegNet 0.545±0.347 0.620±0.372 

InceptionU-Net 0.588±0.262 0.699±0.248 

NestedU-Net 0.615±0.264 0.718±0.242 

UNetFormer 0.664±0.241 0.769±0.203 

DLinkNet 0.608±0.296 0.702±0.295 

DeepLabV3 0.426±0.315 0.527±0.321 

BiSeNet 0.435±0.318 0.535±0.319 

DFANet 0.489±0.321 0.587±0.320 

scAGAttU-Net 

(Bilinear) 

0.584±0.285 0.686±0.261 

scAGAttU-Net 

(Nearest neighbor) 

0.572±0.296 0.672±0.295 

scAGAttU-Net 

(Transposed conv.) 

0.536±0.314 0.632±0.319 

scAGAttU-Net 

(Bicubic) 

0.604±0.279 0.707±0.263 

Table  2. Semantic segmentation test results for NDVI 

images. 

Architectures NDVI Images 

IoU 𝐅𝟏 

U-Net 0.502±0.355 0.582±0.353 

SegNet 0.469±0.366 0.545±0.378 

InceptionU-Net 0.569±0.264 0.662±0.252 

NestedU-Net 0.560±0.292 0.653±0.279 

UNetFormer 0.515±0.320 0.615±0.313 

DLinkNet 0.472±0.298 0.575±0.304 

DeepLabV3 0.465±0.311 0.565±0.308 

BiSeNet 0.497±0.297 0.605±0.299 

DFANet 0.448±0.323 0.546±0.330 

scAGAttU-Net 

(Bilinear) 

0.596±0.259 0.710±0.331 

scAGAttU-Net 

(Nearest neighbor) 

0.573±0.274 0.684±0.254 

scAGAttU-Net 

(Transposed conv.) 

0.540±0.289 0.647±0.282 

scAGAttU-Net 

(Bicubic) 

0.618±0.249 0.729±0.220 

 

The normalized difference vegetation index (NDVI) is 

a popular tool for distinguishing diseased plants [23]. This 

index can effectively differentiate between healthy and 

infected wheat leaves by emphasizing the pixels with the 

highest chlorophyll absorption. NDVI is calculated based 

on the difference in the ratio of reflectance between the 

red (R) and NIR bands [27], as shown in Equation 11. 

From +1 to -1, a positive NDVI value indicates healthy 

vegetation, while a negative value signifies unhealthy or 

absent vegetation. 

NDVI = (𝑁𝐼𝑅 − 𝑅) (NIR+R)⁄                   (11) 

In this study, NDVI images, which have the potential to 

be highly useful for distinguishing wheat yellow rust 

disease, are utilized in addition to RGB images. 

The F1 score and intersection over union (IoU) metrics 

quantitatively evaluate semantic segmentation 

performances. Equation 12 shows the calculation of the 

F1 score, while Equation 13 yields the IoU metric: 

F1 = (2 ∗ PR ∗ RC) (PR + RC⁄ )                                                                                                               

(12) 

PR = 𝑇𝑃 (TP + FP)⁄  

 RC = 𝑇𝑃 (TP + FN)                              ⁄            

IoU = 𝑇𝑃 (TP + 𝐹𝑃 + FN)⁄                    (13) 

where TP, TN, FP, and FN correspond to the counts of 

correctly classified positives, correctly classified 

negatives, misclassified positives, and misclassified 

negatives in the prediction results. 

In the experiments, deep learning models for semantic 

segmentation, such as U-Net [14], SegNet [28], 

InceptionU-Net [29], NestedU-Net [30], UNetFormer 

[31], DLinkNet [32], DeepLabV3 [33], BiSeNet [34], and 

DFANet [35] are used for comparison purposes. Table 1 

shows the semantic segmentation test results for RGB 

images based on IoU and F1 score values, while Table 2 

displays the results for NDVI images. 

Figure 6 illustrates predictions from scAGAttU-Net 

(Bilinear), scAGAttU-Net (Nearest neighbor), scAGAttU-

Net (Transposed conv.), and scAGAttU-Net (Bicubic) 

models for selected RGB image examples. The first 
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column displays the raw image, while the second column 

presents the corresponding ground-truth segmentation 

mask. Columns (c), (d), (e), and (f) feature predictions 

obtained with bilinear, nearest neighbor, transposed 

convolution, and bicubic upsampling methods, 

respectively.  

Table 3 compares efficiency using giga floating point 

operations per second (GFLOPs) for computational 

complexity and frame per second (FPS) for inference 

speed. For a fair comparison, 224 × 224 × 3 is the input 

image resolution used in all experiments. The workstation 

has NVIDIA Quadro RTX 5000 as the GPU. 

Table  3. Efficiency comparisons in terms of GFLOPs and 

FPS metrics. 

Architectures GFLOPs FPS 

U-Net 190.07 20.48 

SegNet 245.80 18.44 

InceptionU-Net 482.26 9.48 

NestedU-Net 849.3 5.58 

UNetFormer 17.95 104.92 

DLinkNet 51.43 47.90 

DeepLabV3 133.7 18.30 

BiSeNet 34.82 80.60 

DFANet 2.73 48.12 

scAGAttU-Net 

(Bilinear) 

101.51 21.31 

scAGAttU-Net 

(Nearest neighbor) 

101.03 22.57 

scAGAttU-Net 

(Transposed conv.) 

84.54 24.74 

scAGAttU-Net 

(Bicubic) 

113.46 14.60 

To explore the differences among the various upsampling 

methods used in the scAGAttU-Net model with greater 

precision, Figure 7 and Figure 8 visualize 5-fold cross-

validation IoU results for RGB and NDVI images as box 

plots. Moreover, to compare the statistical characteristics 

of the scAGAttU‐Net variants with other models (U-Net, 

NestedU-Net, UNetFormer), Figure 9 visualizes the 

median, interquartile range, and outliers of the 5-fold 

cross-validation IoU results.  

Finally, Figure 10 shows the training and validating loss 

curves of scAGAttU‐Net architectures across different 

upsampling techniques. These curves can give more 

intuition about model performances by assessing the 

stability during training, the convergence behavior, and 

overfitting. 

 

Figure 7. Box-plot of RGB IoU results of different 

upsampling methods. 

 

Figure 8. Box-plot of NDVI IoU results of different 

upsampling methods. 

 

 

Figure 9. Box-plot of NDVI IoU results of various 

models. 
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As indicated in Table 1, UNetFormer, a transformer-

based hybrid model, achieves the best performance for 

RGB images. When examining the scAGAttU-Net model 

with different upsampling methods, it is evident that 

bicubic interpolation outperforms the other upsampling 

techniques. For instance, the scAGAttU-Net (Bicubic) 

model improves the IoU performance of the scAGAttU-

Net (Transposed conv.) model by up to 6.8%.  

Table 2 shows that for NDVI images, the scAGAttU-Net 

(Bicubic) model achieves the highest semantic 

segmentation accuracy, surpassing all other advanced 

models significantly. Specifically, the scAGAttU-Net 

(Bicubic) model improves the IoU performance of the 

scAGAttU-Net (Transposed conv.) model by up to 7.8%, 

the scAGAttU-Net (Nearest neighbor) model by 4.5%, 

and the scAGAttU-Net (Bilinear) model by 2.2%.  

 

Figure 10. Training and validating loss curves of scAGAttU‐Net architectures across different upsampling techniques.
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The results from Tables 1 and 2 demonstrate that using 

bicubic interpolation with scAGAttU-Net yields the best 

performance across all cases, while bilinear interpolation 

provides the second-best performance. Moreover, the 

transposed convolution, which adaptively learns the 

upsampling process during training, yields the worst 

performance for RGB and NDVI images on the WYR 

image set. Within the framework of the scAGAttU-Net 

model applied to multispectral remote sensing images for 

wheat yellow-rust disease, bicubic interpolation offers 

more consistent results than transposed convolution, 

which may introduce undesirable artifacts despite its 

ability to learn spatial features. 

Figure 6 presents qualitative results from several example 

predictions on the WYR image set, complementing the 

quantitative results and allowing for a more detailed 

analysis of the differences between the upsampling 

methods. The visualization highlights false alarm pixels in 

red and shows pixels belonging to correct predictions in 

light green. Example predictions from the scAGAttU-Net 

(Bicubic) model shown in the last column demonstrate a 

decrease in false alarms and an increase in correct 

predictions. For instance, in the third row, scAGAttU-Net 

(Bicubic) accurately predicts wheat yellow rust disease 

pixels. In the fourth row, it is noticeable that using 

scAGAttU-Net (Bicubic) results in fewer false alarm 

pixels. 

As shown in Table 3, among the scAGAttU‐Net model 

variations, scAGAttU-Net (Transposed conv.) attains 

superior efficiency with 24.74 FPS and 84.54 GFLOPs. In 

contrast, scAGAttU-Net (Bicubic) is about 1.69 times 

slower in inference speed (16.40 FPS) while having 1.34 

times more computational cost (113.26 GFLOPs). In 

Table 1 and Table 2, it is evident that scAGAttU-Net 

(Bicubic) consistently produces high IoU compared to 

other scAGAttU‐Net models while being the worst 

performer in terms of efficiency. This fact reveals the 

efficiency versus accuracy trade-off involved in achieving 

optimized segmentation performance with various 

upsampling techniques. 

Figure 7 illustrates the distributions of the cross-

validation IoU results for RGB images to conduct a 

comparative analysis among the scAGAttU-Net 

(Bicubic), scAGAttU-Net (Nearest neighbor), scAGAttU-

Net (Bilinear), and scAGAttU-Net (Transposed conv.) 

models. The box plot indicates that the scAGAttU-Net 

(Bicubic) model is superior to the others.  

Similarly, the distributions presented in Figure 8 for the 

NDVI images reveal that the scAGAttU-Net (Bicubic) 

model outperforms the others. The box-plot results further 

confirm that employing the bicubic interpolation method 

for upsampling has a statistically significant impact on 

performance compared to the other methods. 

Figure 9 visually demonstrates that the median IoU of the 

scAGAttU‐Net (Bicubic) model is higher than those of U‐

Net, NestedU‐Net, and UNetFormer. Moreover, 

scAGAttU‐Net (Bicubic) has the highest third quartile 

with a relatively narrow interquartile range, indicating 

that performance is consistently high across different 

folds. 

In Figure 10, the validation loss of scAGAttU-Net 

(Bilinear) follows the training loss more closely with 

minimal fluctuations than other models. Therefore, by 

allowing more stable training, scAGAttU-Net (Bilinear) 

has a strong generalization capability while converging 

relatively faster. 

5. CONCLUSION 

To summarize, this research effectively showcases the 

effectiveness of incorporating spatial-channel attention 

gates (scAGs) into the U-Net model for segmenting wheat 

yellow-rust disease in multispectral remote sensing 

imagery. By focusing on different upsampling techniques, 

the research highlights the superiority of bicubic 

interpolation, which consistently outperforms other 

methods, including bilinear, nearest neighbor, and 

transposed convolution. Specifically, the scAGAttU-Net 

(Bicubic) model improves the IoU performance by up to 

6.8% for RGB images and up to 7.8% for NDVI images 

compared to the scAGAttU-Net (Transposed conv.) 

model. Additionally, bicubic interpolation reduces false 

alarms and increases correct predictions, achieving 

superior performance across all cases. This study proves 

that optimizing the scAGAttU-Net model with bicubic 

interpolation upsampling for wheat yellow-rust disease 

semantic segmentation using multispectral remote sensing 

images yields promising results, showing great potential 

for highly accurate disease detection. 
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