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Abstract 

 

In this paper, stochastic loss reserving methods are compared using the mean absolute percentage error criterion. For 

this purpose, loss development squares (upper-left development triangles and lower-right goal triangles) are 

simulated using individual losses with changing severity under the scenarios where various distributional 

assumptions are made. In this loss square generating method, the distribution and the development process of a loss 

are considered from its occurrence to the closure based on the reporting and settlement delays. After simulating the 

loss development squares, loss reserves are estimated with the inflation-adjusted chain-ladder method and three 

different logarithmic regression models. The performance of the loss reserving methods is examined by comparing 

the estimated and actual loss reserves for different distributions commonly used for individual loss amount modeling 

in non-life insurance. It is seen that logarithmic regression models generally perform better than chain-ladder 

method for the specified scenarios. 

 

Keywords: Loss development triangle, changing loss severity, inflation-adjusted loss, chain-ladder method, 

logarithmic regression models. 

Öz 

Farklı Hasar Şiddeti Dağılımları için Stokastik Hasar Rezerv Yöntemlerinin Tahmin Performansı 

 

Bu çalışmada, ortalama mutlak yüzde hata kriteri ile stokastik hasar rezerv yöntemleri karşılaştırılmıştır. Bu 

amaçla, değişen tutarlı bireysel hasarlar kullanılarak çeşitli dağılım varsayımları yapılan senaryolar altında hasar 

gelişim kareleri (sol-üst gelişim üçgenleri ve sağ-alt hedef üçgenler) benzetimle üretilmiştir. Bu hasar karesi üretme 

yönteminde, bir hasarın dağılımı ile bildirilme ve kapatılma gecikmelerine bağlı olarak bir hasarın meydana 

gelmesinden kapatılmasına kadar geçen süredeki gelişim süreci ele alınır. Hasar gelişim karelerinin benzetim ile 

üretilmesinden sonra, hasar rezervleri enflasyon-düzeltmeli zincir merviden yöntemi ve üç farklı logaritmik 

regresyon modeliyle tahmin edilmiştir. Rezerv yöntemlerinin performansı, hayat dışı sigortalarda bireysel hasar 

tutarlarının modellenmesinde sıklıkla kullanılan çeşitli dağılımlar için tahmini ve gerçek hasar rezervleri 

karşılaştırılarak incelenmiştir. Logaritmik regresyon modellerinin, belirlenen senaryolar için çoğunlukla zincir 

merdiven yönteminden daha iyi performans gösterdiği görülmüştür. 

 

Anahtar Sözcükler: Hasar gelişim üçgeni, değişen hasar tutarı, enflasyon-düzeltmeli hasar, zincir merdiven 

yöntemi, logaritmik regresyon modelleri.
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Introduction 

The solvency of insurance companies does not only depend on their paid losses, but also an accurate 

estimation of their expected future loss payments. It is essential to allocate loss reserves sufficiently. The 

estimation of future claims has become crucial to insurance industry especially after the Solvency Capital 

Requirement (SCR). The SCR consists of various risks one of which is non-life underwriting risks 

including reserve risk [11]. In this context, it can be said that one of the most important responsibilities of 

an insurance company is to estimate unpaid claims and to allocate an adequate reserve in order to 

compensate these claims. Choosing the most suitable method among all deterministic and stochastic 

reserving methods is crucial. In order to do that, the loss reserving process should be understood properly. 

This process includes defining the model structure for the claim, preparing the loss data in accordance 

with the loss development triangle (upper-left triangle) and obtaining the goal triangle (lower-right 

triangle) by means of a suitable loss reserving method [10]. 

The Undersecretariat of Treasury is an institution which regulates the rules for technical and actuarial 

calculations of insurance companies in Turkey. For non-life loss reserving, the techniques which actuaries 

are allowed to use are limited to chain-ladder (CL) methods for the sake of simplicity and practibility. 

These methods are based on loss development triangles. In this study, we use inflation-adjusted CL 

method and loglinear regression models using run-off triangles for loss reserving. We propose that 

logarithmic regression models generally give better results in comparison with traditional CL methods. 

Providing standard errors for estimated parameter values in addition to estimating reserves using 

development triangles make regression models become advantageous choices when compared with the 

basic CL techniques. 

Stanard [13] and Pentikäinen and Rantala [9] used simulation methods for comparing loss reserving 

methods. Verrall [14] applied logarithmic linear models for the reserve estimation. Renshaw and Verrall 

[10] associated the chain-ladder method directly with generalized linear models. Antonio and Plat referred 

to underlying data set as ‘micro-level’ data because a loss triangle is actually the summary of the claim 

data set. The temporal information such as the occurance time, the reporting and settlement delays as well 

as the amounts of the claims are used in order to represent the over-all data [1]. Likewise, we use a 

simulation procedure taking into account this temporal information of claims and that the amounts of 

claims change in time until they are paid. 

Studies about the comparison of loss reserving methods are mostly focused on ‘backtesting’ or 

‘simulation’. Performance of the loss reserving methods can be compared stochastically with simulation 

[7, 8]. Choy et al. [4] defined the ‘growing triangle’ approach in order to compare the different methods 

used for reserve estimation. Jing et al. [6] applied the ‘cross-validation’ technique which measures 

estimation errors for performance testing of actuarial projection methods. 

Nevruz and Gençtürk [8] used four different loss square generating methods one of which assumes 

“individual losses with changing severity” and concluded that this method is more effective when one 

considers stochastic characteristics of the loss and the related reporting and settlement delays.  In their 

paper, the individual claim amounts are assumed to have Pareto distribution for this method. Here, we 

extend this assumption by obtaining and applying the solutions of developed loss amount estimations for 

lognormal and gamma distributions which are also commonly used for modeling loss severities in the 

actuarial literature. Also, the CL method is adjusted by taking the inflation rate into account. The 

scenarios are generated in line with the inflation rates, the distributions of the individual claim amount, 

and mean and dispersion of the individual claim amount random variable. 

This paper is organized as follows: In Section 2, the simulation and reserving methods are given after the 

claim process is explained. The scenarios for the simulations are introduced and results are discussed in 

Section 3. Conclusion remarks are made in the last section. 
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1. Materials and Methods 

The loss development triangle, which is used to summarize the loss data, is an important tool for various 

loss reserving methods. It is a table representing changes in values of different data groups related to the 

loss [5]. Consider that each claim of a risk portfolio is settled in the accident year or within the following 

 development years. Let  and  denote the incremental loss and the cumulative loss random 

variables, respectively for the -th accident year and -th development year. It is assumed that incremental 

and cumulative losses are observable for . The loss development triangles on an accident 

year basis are represented in Figure 2.1. 

 

Figure 2.1. Upper-left and lower-right loss development triangles 

If incremental losses are known, the cumulative loss is given by . Let  be the 

estimated incremental loss random variable. Then, the estimated cumulative loss is given by  

 [12]. 

1.1. Loss Square Generating Method: Individual Losses with Changing Severity 

In order to compare loss reserving methods, simulation techniques are preferred because simulated loss 

development triangles are stochastic and they do not give any considerable advantage to a specific loss 

reserving method [7]. Since incremental losses are assumed to be positive under logarithmic regression 

models, the loss square generating method is set to generate positive incremental losses. 

It is considered that there are  accident and  development years ( ). The claims for each 

accident year are developed to the ultimate claims ( -th calendar year). The lower-right triangle, which 

includes the last column showing the projections of the ultimate claims, is estimated from the observable 

upper-left triangle. The ultimate claim of an accident year is the total claim amount to be paid for this 

year. The unpaid amount of the total claim (total claim amount minus paid claim amount) is the reserve to 

be allocated. 

The cumulative losses  are simulated for . Since claims are assumed to be settled at 

the end of the -th year, the ultimate loss for -th accident year is . 

http://dictionary.cambridge.org/dictionary/turkish/considerable
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Stanard [13] and Bühlmann et al. [3] proposed the idea behind the loss square generating method 

assuming individual losses with changing severity. The algorithm for this method is as follows: 

Step 1. Generate claim numbers  and individual claim amounts  for accident year . 

Here, parameters are estimated by “method of moments”. 

 

i. Claim number random variable is assumed to be Poisson distributed. 

ii. Individual claim amount random variable is assumed to have lognormal, Pareto and gamma 

distributions. 

 

Step 2. Obtain the percentile of each individual claim amount as  where  is the 

distribution function of the individual claim amount random variable. 

 

Step 3. For each , generate the occurrence date , the reporting delay  and 

the settlement delay . 

 

Here, the occurrence date  is simulated from Uniform(0,1) distribution since the claims occur within 

the accident year. The reporting delay  and the settlement delay  are assumed to have 

exponential distribution. It is considered that the higher the mean and the variance of the individual claim 

amount random variable, the longer it takes to report and settle the claim. Therefore, the means of 

reporting and settlement delays are taken smaller for the scenarios where the claims amount random 

variable is assumed to have low mean-low variance in comparison with the scenarios where the claims 

amount random variable is assumed to have high mean-high variance. 

 

The following random variables are defined based on the assumption that claims are settled in the 

accident year or within the following  development years: 

 

i. , and 

ii.  

 

where  is the greatest integer that is less than or equal to . Thus, the -th individual loss in the -th 

accident year is reported and settled in the calendar years  and , respectively [7]. 

 

Step 4. Estimate the developed loss amounts  for  for each individual claim amount by 

means of the inverse of the distribution function, i.e. . Here,  increases as  increases. In 

this step, the solutions of  are obtained for lognormal, Pareto and gamma distributions, respectively 

as follows: 

 

i. Let  has lognormal distribution with parameters  and .  is obtained by 

 

      (1) 

 

where  is the inverse of the error function .  

 

ii. Let  has Pareto distribution with parameters  and .  is obtained by 
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                        (2) 

 

 

iii. Let  has gamma distribution with parameters  and .  is obtained by 

 

                                     (3) 

 

where  is the lower regularized gamma function. 

 

Step 5. Calculate the cumulative losses  where  is the inflation rate. Since 

the cumulative losses are obtained increasingly, the incremental losses are positive. 

 

1.2. Loss Reserving Methods 

1.2.1. Inflation-Adjusted Chain-Ladder (IACL) Method 

Although the reserve calculation is based on the experience in past years, one should be cautious about 

the impact of the inflation. The values of the claims will change in the development years if the claims are 

not settled in the accident year when they occur. Therefore, CL method is adjusted using the inflation-

adjusted cumulative losses , which is obtained as the summation of the inflation-adjusted incremental 

losses . According to the IACL method, the reserve is estimated for the accident year 

 (since all claims are developed for the first accident year, ) such that 

               (4) 

where  is the estimated ultimate loss and  is the estimated development factor such that  

 [7].        (5) 

1.2.2. Logarithmic Regression Models 

For the logarithmic regression models, the reserve is estimated using the estimated expected value of the 

incremental losses for the accident year  ( ) such that 

                          (6) 

where  is the unbiased estimation of . Here,  is the row 

vector of explanatory variables and  is the column vector of parameters. Since the incremental loss 

random variables are assumed to be independent and lognormally distributed, the dependent variable of 

the regression model defined as  has normal distribution with the expectation 

 and the variance . 
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The investigated models, which differ based on the idea that the accident year or/and development year 

is/are significant for loss reserving, are as follows:  

Model 1:  

Model 2:  

Model 3:  

where the error terms  are independent and  normally distributed with parameters  and . Here, it is 

assumed that  and  to make the model full rank [14]. 

After  is obtained by the method of least squares, the variance of the error is calculated 

as . Here,  is the number of observations,  is the 

number of parameters,  is the  design matrix having the rows  and 

 is the vector of observed losses.   

Lastly, the unbiased estimation of the expected value of the incremental losses is obtained for 

 and  such that 

                (7) 

where . Here,  is the degree of freedom of  and 

 is the unbiased estimate of  [2]. 

2. Application Results and Discussion 

In order to compare the loss reserving methods through simulation, firstly different scenarios are 

generated. In the scenarios, the assumptions about characteristics of a risk portfolio are specified as in 

Table 3.1. 

The assumptions of the scenarios in Table 3.1 are given in detail as follows: 

i. The inflation rate: Low (6%), Medium (8%), High (10%) 

ii. The distribution of the individual claim amount random variable: Lognormal, Pareto, gamma. 

iii. The mean and variance of the individual claim amount random variable: Low mean ( ), low 

variance ( ); low mean ( ), high variance ( ); high mean ( ), low variance ( ); 

high mean ( ), high variance ( ) 

 

 

In the application part, it is considered that , i.e.  and . Firstly, the 

ultimate losses and the actual reserves are calculated from the generated loss development squares with 

10,000 trials. The reserves are estimated by the loss reserving methods from the upper-left triangles. 

Lastly, the deviations of the estimated reserves from the actual reserves are calculated. 
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Table 3.1. The summary of the scenarios 
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The studies comparing the performance of loss reserving methods mostly focus on the performance 

criteria such as bias, root mean square error (RMSE), mean absolute error (MAE), mean percentage error 

(MPE), and correlation between the actual and estimated reserves. When one needs to measure errors, the 

magnitude of the difference between actual and estimated values gives more reliable information. In 

addition, the relative error, which is calculated as the error relative to the magnitude of the actual value, is 

more useful for comparing various data samples having different means and dispersions. In this study, the 

performance of the loss reserving methods is tested by mean absolute percentage error (MAPE) 

examining the prediction accuracy of the estimated reserves. The MAPE results for loss reserving 

methods are represented in Figure 3.1. 

This figure helps to investigate the performance of each method among scenarios. Since our main aim is 

to examine the estimation performance of the IACL method and log-regression models for different loss 

severity distributions, we control the performance of each loss reserving method separately for all 

scenarios in this figure. In order to compare the loss reserving methods, the numerical MAPE results for 

each scenario are also examined separately for all loss reserving methods in Table 3.2. 
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Figure 3.1. MAPE graph for IACL, Log-Regression Model 1, Log-Regression Model 2 and 

Log-Regression Model 3 loss reserving methods 

The IACL method performs better for lognormal and Pareto distributed samples which have heavier tails 

than gamma. Specifically, the performance of the IACL method is relatively higher for Pareto distributed 

samples with high mean and high variance (Scenarios 8, 20, 32). This method does not generally work 

well for the scenarios where the individual claim amount has lognormal distribution with high variance 

(Scenarios 14, 16, 26 and 28) and gamma distribution with high mean and high variance (Scenarios 12, 

24, 36). 

This figure shows that the Log-Regression Model 1 works better for lognormal samples with low mean 

and high variance (Scenarios 2, 14 and 26). If one wants to investigate where this method performs 

poorly, it is concluded that the performance of the Log-Regression Model 1 is lower for the scenarios 

where the individual claim amount has lognormal and gamma distributions with low dispersion relative to 

the mean, i.e. low mean-low variance or high mean-high variance and the inflation rate is not low 

(Scenarios 12, 13, 16, 24, 25, 28, 36). 

As seen from this figure, the performance of the Log-Regression Model 2 is not very good for Pareto and 

lognormal distributed samples with high mean and high variance (Scenarios 4, 8, 16, 20, 28 and 32), and 

gamma distributed samples with low mean and high variance (Scenarios 10, 22, 34). 

It is also seen that the Log-Regression Model 3 does not perform well for lognormal samples with high 

variance (Scenarios 2, 4, 14, 16, 26, 28) and and gamma distribution with high mean and high variance 

(Scenarios 12, 24, 36). 

 

Numerical MAPE results are presented in Table 3.2. It must be noted that the lower the MAPE, the better 

the performance of the loss reserving method. In this table, the lowest MAPE value among all reserving 

methods is shown in bold in order to see the best performing loss reserving method for each scenario. 
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Table 3.2. Numerical MAPE results of the loss reserving methods for each scenario 

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

sce1 0.1268 0.0761 0.0019 0.0037 sce19 0.2458 0.0343 0.0014 0.0117

sce2 0.2497 0.0076 0.0011 0.3537 sce20 0.0526 0.0626 0.0523 0.0714

sce3 0.1848 0.0292 0.0018 0.0048 sce21 0.1688 0.1062 0.0016 0.0001

sce4 0.0051 0.0810 0.0209 0.4439 sce22 0.1883 0.0876 0.0455 0.0877

sce5 0.1524 0.0550 0.0012 0.0072 sce23 0.2300 0.0475 0.0020 0.0005

sce6 0.1521 0.0211 0.0089 0.0138 sce24 1.8623 0.3244 0.2819 0.4703

sce7 0.1922 0.0227 0.0018 0.0125 sce25 0.1951 0.1554 0.0019 0.0067

sce8 0.0391 0.0511 0.0458 0.0470 sce26 0.3909 0.0148 0.0052 0.3489

sce9 0.1316 0.0721 0.0013 0.0011 sce27 0.2821 0.0613 0.0022 0.0023

sce10 0.1440 0.0606 0.0447 0.0869 sce28 0.3870 0.1718 0.1340 0.2296

sce11 0.1803 0.0316 0.0018 0.0006 sce29 0.2325 0.1140 0.0011 0.0070

sce12 1.9814 0.2987 0.2840 0.4732 sce30 0.2474 0.0615 0.0095 0.0172

sce13 0.1626 0.1120 0.0020 0.0051 sce31 0.2949 0.0475 0.0019 0.0101

sce14 0.3263 0.0068 0.0013 0.3527 sce32 0.0143 0.0782 0.0551 0.0750

sce15 0.2361 0.0430 0.0018 0.0038 sce33 0.2028 0.1470 0.0016 0.0011

sce16 0.4510 0.1361 0.1257 0.2200 sce34 0.2310 0.1144 0.0444 0.0871

sce17 0.1946 0.0813 0.0006 0.0066 sce35 0.2749 0.0676 0.0026 0.0019

sce18 0.2054 0.0405 0.0064 0.0129 sce36 1.6306 0.3339 0.2854 0.4752

Logarithmic Regression ModelsLogarithmic Regression Models
IACLScenario Scenario IACL

 

From Table 3.2, it is seen that the Log-Regression Model 2 performs better for most of the scenarios in 

comparison with the other loss reserving methods. This result can also be derived from Figure 3.1.  The 

performance of the Log-Regression Model 3 seems to be close to the Log-Regression Model 2 in Figure 

3.1, however it is seen from Table 3.2 that the estimation performance of the Log-Regression Model 2 

dominates other reserving methods for most of the scenarios. The Log-Regression Model 3 works better 

than other loss reserving methods for only the low-variance gamma samples (Scenarios 9,11, 21, 23, 33 

and 35). 

 

The IACL reserving method mostly gives the highest errors. It should be noted that none of the loss 

reserving methods performs well for the gamma distributed samples with high mean and high variance 

(Scenarios 12, 24 and 36) since all MAPE values for these scenarios are relatively high. 

 

It is notable that Log-Regression Model 1 taking into account both accident year and development year 

together is not the best performing method for any scenarios whereas IACL is the best performing method 

for Scenarios 4, 8, and 32. These results indicate that the development year is significant in regression 

models. Thus, one should be careful about reporting and settlement delays of claims in loss reserving. 
 
3. Conclusion 

Based on the simulation results, it is concluded that logarithmic regression models considering the 

development year give better results. Although they do not provide the best results in all situations, they 

are consistent and give not only the point estimation but also a confidence interval. Unlike logarithmic 

regression models, the IACL reserving method mostly does not work well for the specified scenarios. 

Since the calculation of the development factors is very significant for chain-ladder methods, the 

performance of the IACL method could be better if the development factors are calculated taking into 

account of the changing severity structure of the individual losses. Hence, actuaries must be careful while 

applying the IACL method. Another result of this study is that both log-regression models and IACL 

perform poorly for the scenarios where individual losses are assumed to have gamma distribution with 
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high mean and high variance. It can also be concluded that the inflation rate affects the performance of 

the loss reserving methods. Here, the inflation rate is taken constant over the accounting period. It could 

be modeled with time series analysis for future studies. 
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