

Pamukkale Univ Muh Bilim Derg, 24(2), 246-254, 2018

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi

 Pamukkale University Journal of Engineering Sciences

246

Non-preemptive priority scheduler with multiple thresholds for network
routers

Ağ yönlendiricileri için çoklu eşik kullanan geçişsiz öncelikli zamanlayıcı

Tamer DAĞ1*

1Computer Engineering Department, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey.
tamer.dag@khas.edu.tr

Received/Geliş Tarihi: 24.10.2016, Accepted/Kabul Tarihi: 15.03.2017
* Corresponding author/Yazışılan Yazar

doi: 10.5505/pajes.2017.74318
Research Article/Araştırma Makalesi

Abstract Öz

The vast variety of applications available and being developed for
computer networks have different quality of service requirements. One
of the most significant ways to satisfy the needs of the applications is the
packet scheduling algorithms employed by the network routers. By
allocating router resources to the applications, packet schedulers try to
improve the quality of service needs of the applications. Thus, the delays
can be reduced or the reliability of the applications can be increased by
reducing packet losses. Priority schedulers are able reduce the delay and
losses for high priority applications. On the other hand, for low priority
applications they introduce the starvation problem. Low priority
application packets can face excessive delays and losses. In this paper, a
non-preemptive priority scheduler with multiple thresholds (PRMT) is
proposed. The PRMT scheduler needs only a single queue with
predefined threshold levels for different priority applications. The PRMT
scheduler eliminates the starvation problem of low priority applications
without a significant impact on the high priority applications.

 Bilgisayar ağları için mevcut ve geliştirilmekte olan çok çeşitli
uygulamaların farklı hizmet kalitesi gereksinimleri vardır.
Uygulamaların ihtiyaçlarını karşılamanın en önemli yollarından birisi
ağ yönlendiricileri tarafından kullanlan paket zamanlama
algoritmalarıdır. Uygulamalara yönlendirici kaynaklarını ayırarak,
paket zamanlayıcıları uygulamaların hizmet kalitesi ihtiyaçlarını
artırmaya çalışır. Bu nedenle, gecikmeler azaltılabilir ya da
uygulamaların güvenilirliği paket kayıplarını azaltmak suretiyle
arttırılabilir. Öncelikli zamanlayıcılar, yüksek öncelikli uygulamaların
gecikme ve kayıplarını azaltabilirler. Öte yandan, düşük öncelikli
uygulamalar için açlık problemi getirirler. Düşük öncelikli uygulama
paketleri aşırı gecikmeler ve kayıplarla karşılaşabilirler. Bu makalede
çoklu eşik kullanan geçişsiz öncelikli zamanlayıcı (PRMT)
önerilmektedir. PRMT zamanlayıcı farklı öncelikli uygulamalar için
önceden tanımlanmış eşik seviyeleri kullanan tek bir kuyruk ihtiyacı
duyar. PRMT zamanlayıcı yüksek öncelikli uygulamaların üzerinde
önemli bir etkiye yol açmadan, düşük öncelikli uygulamalardaki açlık
sorunu ortadan kaldırır.

Keywords: Network routers, Quality of service, Priority scheduler,
Multiple threshold

 Anahtar kelimeler: Ağ yönlendiricileri, Servis kalitesi, Öncelikli
zamanlayıcı, Çoklu eşik

1 Introduction

Computer networks support an enormous variety of
applications from digital audio to instant messaging, from peer-
to-peer file sharing to streaming video. Not only the number of
these applications but also the number of users are rapidly
increasing. The growth rate of applications and the number of
users are expected to increase further with the spread of
Internet of Things (IoT) [1],[2] in the next decade. According to
the estimates given by [3], approximately 6.4 billion connected
things are in use in 2016 and this number will reach to 20.8
billion by 2020.

The applications that are in use have different requirements
from the network. Treating all traffic in the same manner will
result in poor or unacceptable performance for some of the
applications, as the requirements of those applications may be
more critical compared to the others. Thus, different types of
services should be provided for different applications
according to their needs.

Quality of Service (QoS) refers to the capability of a network to
provide differentiated and better service for distinct network
applications. The basic QoS parameters [4] are specified as
bandwidth, latency, jitter and loss ratio. These four parameters
usually define the QoS requirements of an application.

The bandwidth refers the rate at which traffic is carried by the
network. The amount of bandwidth required by an application
varies significantly and depends on the application type. For
example, video applications such as HD streaming video are in
need of high bandwidth. However, for data applications such as
e-mail or remote login lower bandwidth might suffice.

Latency is the delay in data transmission. Some applications are
sensitive to delay such as interactive applications. For such
applications, the users will find the connection unacceptable for
high delay values. For example, VoIP applications cannot
tolerate delay more than one sec. But, streaming audio or video
applications do not have low delay requirements.

Jitter is the variation in the latency. Jitter requirement is also
application specific. For example, real-time voice applications
require low jitter values and they can suffer when the jitter
increases. However, for a file sharing application jitter is not
very important and does not impact the performance of the
application. Thus, some applications may tolerate high jitter
values, while some can not.

Loss ratio is the percentage of packets discarded by routers.
Since the router resources are finite, under heavy traffic or
when there is congestion in the network, some packets may not
be accepted for service and they are discarded and lost. The
amount of packet losses that an application can tolerate varies
considerably. For example, while audio applications are able to

https://orcid.org/0000-0001-7020-3741

Pamukkale Univ Muh Bilim Derg, 24(2), 246-254, 2018
T. Dağ

247

tolerate some losses, for some applications such as e-mail every
single bit must be correctly delivered to the destination without
any losses.

In order to satisfy the QoS requirements of the applications,
several disciplines such as admission control and traffic control
can be implemented. Admission control [5] determines which
applications and users can access the resources provided by the
network. After an application declares its QoS requirements,
the network decides if it can accept the traffic through resource
reservations, call admission or call setup signaling. Traffic
control regulates the data flowing in the network by classifying,
shaping, policing and scheduling the traffic. These mechanisms
separate the traffic into service classes and control each service
class.

Packet scheduling is one of the ways for the traffic control
discipline. Packet scheduling algorithms allocate router
resources to competing applications in terms of bandwidth,
buffer space or CPU cycles. Thus, it is an effective way for
providing better QoS to applications.

In this work, a non-preemptive priority packet scheduler with
multiple thresholds is proposed. The priority schedulers
usually suffer from the starvation problem. Low priority
application traffic may never get serviced when there is high
priority traffic present in the router. The delay and packet
losses that low priority applications are imposed can reach
excessive amounts. The proposed scheduler allows lower
priority traffic to be serviced even with the presence of higher
priority traffic, when the buffer is not congested. This way
allows reduced packet drop ratios and latency values for lower
priority traffic. High priority application QoS is not affected
since when the buffer is congested, the proposed scheduler
services high priority traffic first. Thus, with the proposed
scheduler, the starvation problem commonly seen in priority
schedulers can be reduced and solved.

The organization for the rest of the paper is as follows. Section
2 describes most common scheduling algorithms and packet
drop policies in use. Section 3 introduces the proposed
scheduling algorithm, the policies for accepting incoming
packets and how they are serviced. Section 4 discusses the
simulation environment used for simulating the proposed
algorithm and the obtained results. Finally, the paper ends with
the conclusions made in Section 5.

2 Packet scheduling

A packet scheduler is a traffic control discipline which
determines the transmission order of packets at a router in
order to respond to the application’s QoS requirements. Packet
scheduling algorithms have been a major research area [6],[7]
as they are one of the most critical components in a network for
increasing the level of QoS offered for applications.

Packet schedulers can be classified into non-work-conserving
packet schedulers and work-conserving packet schedulers [8].

With a non-work-conserving scheduler, the scheduler can stay
idle even when there are packets waiting to be serviced. Non-
work-conserving schedulers have the benefit of reducing the
jitter, thus making the downstream traffic more predictable
and causing fewer and smaller traffic bursts.

For a non-work-conserving scheduling algorithm, the
scheduler waits until a packet is eligible for transmission. The
eligibility of the packets for transmission might be decided in
different ways. To control the end-to-end jitter, it can be

ensured that a packet always spends no more than a fixed time
at a router. Another way to decide eligibility is to establish the
notion of a fixed end-to-end delay for a packet. In this case,
routers decide a packet is eligible based on the time budget that
remains for each packet.

Non-work-conserving schedulers might reduce the buffering
requirements at routers and end-systems. But, the end-systems
can already fix this issue as they can de-jitter flows as needed.
The cost of using such mechanisms is higher overall end-to-end
delay. In addition, such systems can be complex to build in
practise. Consequently, non-work-conserving disciplines are
not used but considered as an active research area.

With a work-conserving scheduler, the router never stays idle
when there are packets waiting to be serviced. A scheduler is
work-conserving, if Kleinrock’s conservation law [9] stated by
Equation (1) holds. In this equation, 𝜌𝑛 is the average link
utilization for flow n, 𝑞𝑛 is the average waiting time caused by
the scheduler for flow n, and C is a constant for the N flows
arriving at the scheduler. Based on the conservation law,
providing a better QoS for one flow will have a negative impact
on the QoS of one or more others. If the delay for a flow is
lowered through a scheduling algorithm, then the delay for
other flows will increase. If the loss ratio for a flow is lowered,
the loss ratio of other flows will increase, in a similar sense.
Thus, work-conserving schedulers need to be carefully
designed without hurting the needs of some flows too much.

∑ ρn𝑞𝑛

𝑁

𝑛=1

= 𝐶 (1)

The rest of this section describes the most common scheduling
algorithms and packet dropping policies.

2.1 First-Come first-served (FCFS) scheduling

Traditional routers use the first-come first served (FCFS)
scheduling policy. The simple and easy to implement FCFS
scheduler schedules the packets in the same order as they
arrive at the router. With FCFS, there is no kind of service
differentiation and all the packets are treated with the same
manner. Thus FCFS is suitable for networks where no QoS
guarantees are required. FCFS is a work-conserving scheduling
disciple.

[10] studies on the performance analysis of FCFS. In [11], FCFS
and EDF scheduling algorithms for real-time packet switching
networks are compared in terms of packet loss, delay and
buffer size.

2.2 Priority scheduling

Under priority scheduling, the packets arriving at a router are
classified into several priority classes. A packet’s priority class
can depend on an explicit marking carried in the packet header,
source or destination addresses, port number or other criteria.

The priority scheduling establishes a queue for each priority
level and the queues are served in the order of their priority.
With priority scheduling, high priority traffic always gets the
best possible service quality as higher priority queues are
serviced before lower priority queues. On the other hand, this
approach will lead into excessive delays and losses for low
priority traffic as lower priority queues will only be serviced if
there are no packets awaiting service in a higher priority queue.
As a consequence, priority scheduling can result in a situation
called as starvation. If there is a constant flow of high priority

Pamukkale Univ Muh Bilim Derg, 24(2), 246-254, 2018
T. Dağ

248

packets, low priority packets will be prevented from getting
service.

Priority schedulers can be either preemptive or non-
preemptive. A non-preemptive scheduler can never interrupt a
packet in service. That is, if a packet is in service, its service will
be completed even if a higher priority packet arrives in the
meanwhile. On the other hand, a preemptive scheduler can
interrupt a packet in service. If a higher priority packet arrives
while a lower priority packet is in service, lower priority packet
will be taken out of service and higher priority packet will start
being serviced. Priority scheduling is a work-conserving
scheduling disciple.

In [12], a fuzzy based dynamic multilevel priority packet
scheduler is proposed with three types of priority queues.
[13] proposes an energy efficient packet scheduling with delay
and loss constraints. Every incoming data packet is analysed
and prioritized based on delay and loss constraints. However,
this type of approach introduces excessive processing delays. In
[14], dynamic multi threshold priority scheduling algorithm is
introduced. If a packet arrives with an urgent flag set, its
priority is increased and the packet is placed forward in the
queue. This algorithm may require shifting off all the packets
present in the queue and therefore increases the time
complexity significantly. In [15] and [16], the priority queues
are organized in such a way that real time packets are stored in
high priority queue, non-real time packets whose destinations
are distant nodes are stored in medium priority queue and non-
real time packets whose destinations are local nodes are stored
in low priority queue. In these studies, the priority scheduler is
preemptive. While non-real time packets are processing, an
arriving real-time packet can preempt. [17] also proposes a
preemptive scheduling algorithm that can be applied to
wireless sensor networks. In this paper, not only the high
priority packets can preempt low priority packets, but also low
priority packets can preempt high priority packets given that
they have waited for a long time. Thus, this scheduler needs to
follow the waiting time of low priority packets in the queue,
thus extra overhead is introduced with the algorithm.

2.3 Deadline based scheduling

Deadline based schedulers [11],[18] check arriving packet’s
delivery deadline and give priority to packets which have less
remaining deadline. This approach enables packets with lower
remaining deadlines to reach their destination faster, however
similar to priority schedulers, packets with higher remaining
deadlines may get stacked at the routers, leading into
starvation. Deadline based schedulers are work-conserving
schedulers.

In [19], a frame oriented round-robin earliest deadline first
(EDF-RR) is introduced. [20] develops a modified earliest
deadline first scheduling algorithm for real-time traffic in LTE
networks by improving average throughput, delay, packet loss
ratio and fairness index.

2.4 Fair queuing

Fair queuing relies on the General Processor Sharing (GPS)
model. GPS is a work-conserving scheduler aiming to provide
max-min fairness with probabilistic, statistical and
deterministic performance bounds. However, it is only a
theoretical model and some approximations have been
presented such as Weighted Fair Queuing (WFQ) [21] and
Packet based GPS (PGPS) [22].

2.5 Packet dropping policies

Under heavy traffic the routers may become congested and the
router buffers start to fill up very quickly. When the router
buffers are completely occupied, a new arrival might not be
accepted in the buffer. In this situation, a packet will need to be
dropped.

The most common way for dropping packets is drop-from-tail.
In this method, the packets at the end of the queue are dropped.
Drop-from-tail is easy to implement, however, the packets
already in the queue and already delayed may expire. When
such packets arrive at their destination, its usefulness for the
application might be insignificant.

A solution for this problem might be to drop-from-head. The
packets that have stayed in the network longest are dropped,
giving way to new arrivals. But the processing time of drop-
from-head is significantly larger, as all the remaining packets in
the queue will need to be shifted.

Packets can also be dropped in random. With random drop
packets from different buffer locations are selected at random
and dropped. Under random drop, packets belonging to a flow
using a higher bandwidth are affected more. It is also possible
to see the following scenario under random drop. The dropped
packets may belong to a high priority application traffic flow,
while there are lower priority application packets in the queue.

Another way to drop packets is to flush the whole queue. Thus,
in case of a congestion all the packets already waiting in the
queue are dropped. This method immediately frees all the
buffers for the new arriving packets. However, it is not efficient
as for real-time applications having a big hole in their traffic
flow as a result of flushing might not be acceptable.

Another alternative is intelligent dropping, where packets are
dropped by knowledge of the traffic flow. In PRMT, this
approach is used. If the latest arrival’s priority causing a buffer
overflow is higher than some packets priority waiting in the
queue, it is more beneficial to pick lower priority packets as a
candidate to drop instead of high priority packets. But if there
are available lower priority traffic packets in the queue, then
the latest arriving packet is dropped. This method needs more
information from the router, but appears to have the potential
of offering very fine-grained congestion control.

3 Non-preemptive priority scheduler with
multiple thresholds

In this section, the proposed priority scheduler with multiple
thresholds (PRMT) is described. The proposed scheduler aims
to reduce the starvation problem commonly seen in priority
schedulers.

PRMT defines a single queue with three levels of priorities for
different application types. However, the number of priority
levels can be increased or decreased based on the application
needs. The considered priority levels are high priority
(priority level 1), medium priority (priority level 2) and low
priority (priority level 3). For each priority level, the buffer uses
different threshold levels. While the threshold level for high
priority applications is lower, the threshold levels for low
priority applications is higher. An example buffer structure
with the indicated threshold levels is shown in Figure 1.

For a buffer with capacity C, high priority packets’ threshold
level is Th1, medium priority packets’ threshold level is Th2
and low priority packets’ threshold level is Th3. The reason for

Pamukkale Univ Muh Bilim Derg, 24(2), 246-254, 2018
T. Dağ

249

defining low threshold levels to high priority applications is to
place high priority application packets between the head of the
queue and its threshold level whenever possible, so that the
delay that they will face is reduced as well as the packet losses.

Figure 1: Threshold structure for PRMT.

3.1 Packet arrival with PRMT

When a new packet arrives at the buffer, the scheduler takes an
action based on the incoming packet’s priority level, the buffer
occupancy and the threshold level defined for the arriving
packet.

The following cases describe, what happens at the buffer with a
new packet arrival.

 If the new arrival finds the buffer empty, the arriving
packet is placed at the head of the buffer and
immediately serviced as PRMT is a work-conserving
scheduler. An example illustration depicting this case
is shown in Figure 2. When a packet with priority level
2 arrives at an empty queue, it is placed at the head of
the buffer and the PRMT scheduler immediately starts
service for that packet.

Figure 2: Arrival of packet with priority level 2 to an empty
buffer.

 If the new arrival finds the buffer occupancy less than
its corresponding threshold value, the arriving packet
is placed at the end of the queue just like in FCFS
scheduling. Higher priority packets will not prevent
lower priority packets ahead of them from getting
service. As a result, lower priority packets in front of
the new arrival will be served before. By this way, low
priority packets’ starvation rate will be reduced. An
example illustration depicting this case is shown in
Figure 3.

When a packet with priority level 2 arrives at a buffer
with occupancy less than Th2, the packet is placed at
the end of the queue. Even though there are priority
level 3 packets in the front, they will still be served
before the newly arriving packet. As the new arriving
packet is placed ahead of its defined threshold level,
its QoS needs can still be satisfied, without
deteriorating low priority applications QoS needs.

Figure 3: Arrival of packet with priority level 2 to a buffer with
occupancy less than its corresponding threshold.

 If the new arrival finds the buffer occupancy more
than its corresponding threshold value, scheduling
decisions are made in favour of high priority packets,
in order not to deteriorate their QoS requirements.
Different from the previous case, the algorithm will
not allow a lower priority packet to be serviced before
the newly arriving packet. The newly arriving high
priority packet is replaced with a lower priority
packet between the threshold and the head of the
queue. If there are multiple lower priority packets
between the threshold level of the arriving packet and
the head of the queue, the one which is closer to the
threshold is chosen, as the others have already been
waiting for a long time, and they will be serviced soon.

An example illustration depicting this case is shown in
Figure 4. When a packet with priority level 2 arrives
at a buffer with occupancy greater than Th2, the
newly arriving packet is replaced with the first
priority level 3 packet before Th2.

Figure 4: Arrival of packet with priority level 2 to a buffer with
occupancy larger than its corresponding threshold.

On the other hand, when new packet arrives, if there
are no lower priority packets present in the queue, the
new packet will be placed at the end of the queue. All
the packets before have higher priority and the
algorithm will not allow to deteriorate their
performance. In this case, the newly arriving packet’s
delay requirements will be negatively affected
because of the heavy high priority traffic present in
the network.

A disadvantage of the PRMT scheduler can be
observed in Figure 5. When a packet with priority
level 1 arrives at a buffer with occupancy greater than
Th1, it is replaced with the priority level 2 packet
before Th1. However, this replacement places priority
level 2 packet after priority level 3 packets even
though it has arrived before priority level 3 packets.
Such a case might increase the waiting time of the

Pamukkale Univ Muh Bilim Derg, 24(2), 246-254, 2018
T. Dağ

250

priority level 2 packet. This situation might be
avoided by shifting the low priority packets, but
shifting operation would increase the complexity of
the algorithm. On the other hand, it is very likely that
the lowest priority packets will be placed backwards
in the queue with the later arrivals of higher priority
packets. Thus, these type of occurrences are not
expected to have a significant impact on the
performance of the algorithm.

Figure 5: Arrival of packet with priority level 1 to a buffer with
occupancy larger than its corresponding threshold.

 If the new arrival finds the buffer full at its maximum
capacity C, the PRMT scheduler drops a lower priority
packet waiting in the queue, and places the new
arriving packet in its place.

An example illustration depicting this case is shown in
Figure 6. When a packet with priority level 2 arrives
at the full buffer, the newly arriving packet is placed
in the place of the first priority level 3 packet, and the
priority level 3 packet is dropped.

If there are no lower priority packets, when the new
packet arrives, then there is no choice left other than
dropping the newly arriving packet.

Figure 6: Arrival of packet with priority level 2 to a buffer with
full occupancy.

The flowchart of PRMT at a packet arrival is shown in Figure 7.
For every new packet arrival, the steps are repeated.

3.2 Packet service with PRMT

Since PRMT is work-conserving, the server will be busy serving
a packet at the head of the queue whenever there are packets
present in the queue. The server will always pick the first
packet in the queue for service. Only when the buffer is
completely empty, the server will sit idle.

If an arriving packet whether high priority or low priority finds
the buffer empty, it will enter service immediately. Otherwise,
the packet at the head of the queue will be picked up by the
server for transmission. If there are no waiting packets the
server will be idle.

Since PRMT is a non-preemptive scheduling algorithm, an
arriving may never interfere the current transmission, even if
the arriving packet is of highest priority and the packet under
service is of lowest priority.

Figure 7: PRMT scheduler flowchart for packet arrivals.

Pamukkale Univ Muh Bilim Derg, 24(2), 246-254, 2018
T. Dağ

251

4 Simulation and analysis of PRMT

In this section, the simulation method for the analysis of PRMT
scheduler and the obtained results are discussed. For the
simulations, the discrete event system simulation method [23]
is used. Discrete event system simulation is based on event
scheduling and time advance algorithms.

Two events are observed in a packet scheduling algorithm:
Packet arrival event and packet service completion event. The
packet arrival event deals with how a packet will be placed in
the buffer queue upon its arrival. For example, for the FCFS
packet scheduler, an arriving packet is placed in the first
available buffer space or is dropped if no space is available. An
arrival event always triggers a new arrival event and
conditionally triggers a service completion event only if the
new arrival enters service upon arrival. Packet service
completion event deals with which waiting packet will be
chosen for transmission when the transmission of the current
packet is completed. For example, for the PRMT packet
scheduler, the packet at the head of the queue is chosen for
transmission. A packet service completion event is a
conditional event, meaning that only when there are waiting
packets, the next packet service completion event is triggered
and scheduled.

The scheduled events are placed in the future event list (FEL)
The purpose of the time advance algorithm is to execute the
simulation by calling the imminent event from the FEL. As
events can trigger new events, the length and the contents of
the FEL constantly changes throughout the simulation.

Since PRMT can be considered as a priority scheduler, the
performance of PRMT is compared with priority scheduler and
the FCFS scheduler traditionally employed by routers. For each
of these algorithms, packet arrival and packet service
completion events as well as time advance and FEL are coded
with C++. Each simulation run is repeated 100 times and the
averages obtained from these runs are presented in the
simulation results.

Three priority level packets (high priority, medium priority and
low priority) are considered throughout the simulations. The
packets from different priority levels arrive in accordance with
a Poisson process where the total arrival rate is 𝜆 Thus, the
number of arrivals N(t) in a finite interval of length t obeys the
Poisson distribution given by Equation (2).

𝑃{𝑁(𝑡) = 𝑛} =
(𝜆𝑡)𝑛

𝑛!
𝑒−𝜆𝑡 (2)

For the simulation studies, it is assumed that the arrival rate of
low priority application packets is λ/2, the arrival rate of
medium priority application packets is λ/3 and the arrival rate
of high priority application packets is λ/6.

Only a single queue with size C is implemented for the FCFS and
PRMT schedulers. However, three queues are implemented for
the priority scheduler due to its nature. The total sizes of the
queues are kept the same for all schedulers, and the buffer sizes
for the priority scheduler are adjusted according to the packet
arrival rates of each priority to make a fair comparison.

The service times are independent exponential random
variables with a mean value 1/µ. Thus, the utilization factor of
the buffer can be represented by equation (3).

𝜌 =
𝑚𝑒𝑎𝑛 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒

𝑚𝑒𝑎𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑎𝑡𝑒
=

𝜆

𝜇
 (3)

In order to measure the performance of the scheduling
algorithms, the simulations are conducted under heavy traffic
when the utilization factor ρ = 0.99.

Figure 8 illustrates packet drop ratios for the three levels of
priorities under the simulated scheduling algorithms when the
buffer capacity C=50. Since FCFS scheduler does not
differentiate amongst different priority levels, the loss ratios for
all three priority levels are at the same levels. Under priority
scheduler, high priority packets do not incur any packet losses,
however as the priority levels decrease, the loss ratios increase
significantly. As a consequence, with priority scheduler low
priority packets suffer excessive loss ratios. The proposed
PRMT scheduler, on the other hand, improves the loss ratio of
the low priority packets significantly when compared with the
priority scheduler by allowing low priority packets for
transmission if the queue occupancy is below the
corresponding threshold level. For high priority packets, the
loss ratio under the PRMT scheduler is still similar to the
priority scheduler.

Figure 8: Loss ratio for different priorities.

Figure 9 shows the packet drop ratios for priority level 1
packets as a function of the buffer capacity C. 50% of the
arriving packets belong to a low priority traffic, 33.3% belong
to a medium priority traffic and 16.7% belong to a high priority
traffic. As the buffer capacity increases, the loss ratio decreases.
For priority and PRMT schedulers no losses are observed for
the high priority packets as both schedulers aim to serve high
priority packets first. The PRMT scheduler performs slightly
worse than priority scheduler only for very low buffer
capacities.

Figure 9: Loss ratio for priority 1 packets.

Pamukkale Univ Muh Bilim Derg, 24(2), 246-254, 2018
T. Dağ

252

The difference in PRMT and priority scheduler can be explained
as follows: Priority scheduler always serves high priority
packets first without considering lower priority packets. But,
PRMT scheduler can serve lower priority packets before high
priority packets, if the occupancy of the buffer is low and
consequently all incoming packets are serviced in order. In such
a case, a new arriving high priority packet does not prevent the
service of a lower priority packet in front of the queue. FCFS
scheduler, on the other hand, observes losses, since for the FCFS
scheduler a newly arriving packet does not have any impact at
all on the service of the packets in the buffer on the contrary to
the above discussion.

Figure 10 illustrates the packet drop ratio for priority level 2
packets as a function of the buffer capacity C. As the buffer
capacity increases, the loss ratios decrease. While FCFS has the
worst performance, the best performance is obtained under the
PRMT scheduler. PRMT scheduler allows service of medium
priority level packets even if high priority packets are arriving,
when the buffer occupancy is lower than the corresponding
threshold value. However, priority scheduler prefers and
allows the transmission of high priority packets whenever a
high priority packet arrives. As a consequence, the loss ratio for
priority level 2 packets under the priority scheduler is better
than priority level 3 application flow but worse than priority
level 1 application flow.

Figure 10: Loss ratio for priority 2 packets.

Figure 11 shows the packet drop ratio for priority level 3
packets as a function of the buffer capacity C. As the buffer
capacity increases, the loss ratios decrease. In this case, the
priority scheduler has the worst performance and PRMT
scheduler has the best performance slightly better than FCFS.
Under the priority scheduler, low priority packets are always
served last without considering the buffer occupancy. Because
of this reason low priority application flows may have the
starvation problem, resulting in an excessive amount of losses
as can be seen from Figure 11. Since PRMT scheduler allows low
priority packets to be served if the occupancy of the buffer is
lower than the corresponding threshold, it reduces the
starvation problem and decreases the starvation problem
significantly. Only when the buffer starts to get congested,
lower priority packets will be served last and might be dropped.
As FCFS scheduler is indifferent to different priorities, similar
loss ratio figures are observed. While this might seem beneficial
for low priority applications, providing lower level of QoS for
high priority applications can have severe inferences under
FCFS. Thus, FCFS may not be a suitable choice for computer
networks where a vast number of applications with different
QoS requirements reside.

Figure 11: Loss ratio for priority 3 packets.

Figure 12 shows the latency of priority level 1 packets as a
function of the buffer capacity C. Similar to the previous
simulations, 50% of the arriving packets belong to a low
priority traffic, 33.3% belong to a medium priority traffic and
16.7% belong to a high priority traffic. As the buffer capacity
increases, the latency increases. The buffer utilization is very
high and the buffer tends to fill up very quickly. As a result, the
waiting time in the buffer will increase with increased buffer
capacity.

Figure 12: Average latency for priority level 1 packets.

FCFS scheduler has the worst performance for the latency of
high priority packets as FCFS does not differentiate high
priority application packets and provide them the same level of
QoS as medium or low priority application packets. On the
other hand, both priority and PRMT schedulers favor high
priority packets for service and their latency values are lower
compared to FCFS. The performance of the PRMT scheduler is
slightly worse than the priority scheduler, as priority scheduler
always selects high priority packets for transmission but PRMT
scheduler allows the transmission of low priority packets in the
presence of high priority packets only when the buffer
occupancy is below the corresponding threshold.

In Figures 13 and 14, the latency of priority level 2 packets and
priority level 3 packets as a function of the buffer capacity C is
shown. As the buffer capacity increases, the latency increases.
As a consequence of the starvation problem, priority scheduler
is the worst for low priority application packets in terms of
latency. The low priority packets need to wait for all the higher
priority packets to be serviced under the priority scheduler.

The latency under the PRMT scheduler is better than that of the
priority scheduler. The PRMT scheduler would let lower
priority packets to be served without placing them at the end of
the queue, when the buffer occupancy is lower than the

Pamukkale Univ Muh Bilim Derg, 24(2), 246-254, 2018
T. Dağ

253

corresponding threshold values. Thus, the resulting waiting
times are lower than the priority scheduler.

In addition, it can be observed that under the FCFS scheduler,
both low and medium priority application packets result in
similar latency figures as expected.

Figure 13: Average latency for priority level 2 packets.

Figure 14: Average latency for priority 3 packets.

5 Conclusions

Packet scheduling algorithms allocate router resources such as
bandwidth by deciding which of the buffered packets will be
transmitted next or which packet will be dropped when the
buffer is full. In this paper, a packet scheduler for routers named
as non-preemptive priority scheduler with multiple thresholds
(PRMT) is proposed. The classical FCFS scheduler does not
differantiate among different types of application flows,
although they may have different QoS requirements. As a result,
a high or a low priority application flow receives similar service
from a FCFS scheduler and the QoS provided to a high priority
application flow may decrease. On the other hand, priority
schedulers favor high priority application flows by allocating
router resources to them, which in turn results in starvation
problem for low priority application flows. The proposed PRMT
scheduler allows lower priority application flows to be served
even in the presence of high priority traffic, given that the buffer
occupancy is lower than the predefined threshold values. By
this way, the starvation problem seen in priority schedulers is
reduced and a better packet drop ratio and latency is achieved
for lower priority traffic. PRMT also tries to keep the QoS of
higher priority traffic in the desired levels.

Another benefit of the PRMT scheduler is the simple
implementation. It’s time complexity is more than FCFS or
priority scheduling, however with its implementation it is
possible to offer better QoS levels especially to low priority
applications. The PRMT scheduler requires only a single queue
for all priority levels of arriving traffic. On the other hand,

priority scheduler needs separate queues for each priority
level. As a consequence, the PRMT scheduler can adapt to
different numbers of priority levels by defining different
threshold levels. But this task is more difficult for priority
schedulers as more queues are required to be installed for more
priority levels.

For this work, the threshold levels are assumed to be
predefined. In order to further increase the performance of
PRMT, the threshold levels could be dynamic based on the
characteristics of the incoming flows. However, such an
approach will increase the complexity of the algorithm as
continuous monitoring of the amount of different priority
traffic will be needed in order to adjust the threshold levels.

6 References
[1] Zorzi M, Gluhak A, Lange S, Bassi A. “From today's intranet

of things to a future internet of things: a wireless-and
mobility-related view”. IEEE Wireless Communications,
17(6), 44-51, 2010

[2] Gubbi J, Buyya R, Marusic S, Palaniswami M. “Internet of
Things (IoT): A vision, architectural elements, and future
directions”. Future Generation Computer Systems, 29(7),
1645-1660, 2013.

[3] Gartner Inc. “Gartner Says 6.4 Billion Connected Things
Will be in Use in 2016, up 30 Percent From 2015”.
http://www.gartner.com/newsroom/id/3165317
(19.10.2016).

[4] Tanenbaum AS, Wetherall DJ. Computer Networks. 5th ed.
Boston, USA, Pearson, 2011.

[5] Kurose JF, Ross KW. Computer Networking a Top-Down
Approach. 6th ed. Essex, England, Pearson, 2013.

[6] Zhang H. “Service disciplines for guaranteed performance
service in packet-switching networks”. Proceedings of the
IEEE, 83(10), 1374-1396, 1995.

[7] Necker MC. “A comparison of scheduling mechanisms for
service class differentiation in HSDPA networks”.
AEU-International Journal of Electronics and
Communications, 60(2), 136-141, 2006.

[8] Bhatti SN, Crowcroft J. “QoS-sensitive flows: Issues in IP
packet handling”. IEEE Internet Computing, 4(4), 48-57,
2000.

[9] Kleinrock L. Queuing Systems, Volume 2: Computer
Applications. New York, USA, Wiley Interscience, 1975.

[10] Zhao W, Stankovic JA. “Performance analysis of FCFS and
improved FCFS scheduling algorithms for dynamic
real-time computer systems”. Real Time Systems
Symposium, Santa Monica, CA, USA, 5-7 December 1989.

[11] Saleh M, Dong L. “Comparing FCFS & EDF scheduling
algorithms for real-time packet switching networks”. 2010
International Conference on Networking, Sensing and
Control (ICNSC), Chicago, IL, USA, 10-12 April 2010.

[12] Jain V, Agarwal S, Goswami K. “Dynamic multilevel priority
packet scheduling design for WSN”. 2014 International
Conference on Signal Propagation and Computer
Technology (ICSPCT), Rajasthan, India, 12-13 July 2014.

[13] Justus JJ, Sekar AC. “Energy efficient priority packet
scheduling with delay and loss constraints for wireless
sensor networks”. International Conference on Inventive
Computation Technologies, Tamilnadu, India,
26-27 August 2016.

http://www.gartner.com/newsroom/id/3165317

Pamukkale Univ Muh Bilim Derg, 24(2), 246-254, 2018
T. Dağ

254

[14] Dag T, Uzungenc S. “Dynamic multi threshold priority
packet scheduling algorithms”. 2016 International
Conference on Measurement Instrumentation and
Electronics (ICMIE), MATEC Web of Conferences, Munich,
Germany, 6-8 June 2016.

[15] Yantong W, Sheng Z. “An enhanced dynamic priority
packet scheduling algorithm in wireless sensor networks”.
18th International Conference on Computer Modelling and
Simulation (UKSim), Cambridge, UK, 6-8 April 2016.

[16] Bansode S, Sambare S. “Performance evaluation of
dynamic multilevel priority (DMP) packet scheduling for
wireless sensor networks”. 2015 International Conference
on Pervasive Computing, Pune, India, 8-10 January 2015.

[17] Karim L, Nasse N, Taleb T, Alqallaf A. “An efficient priority
packet scheduling algorithm for wireless sensor network”.
2012 IEEE International Conference on Communications
(ICC), Ottawa, ON, Canada, 10-15 June 2012.

[18] Kargahi M, Movaghar A. “Non-preemptive earliest-
deadline-first scheduling policy: a performance study”.
13th IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication
Systems, Atlanta, GA, USA, 26-29 September 2005.

[19] Liu D, Lee YH. “An efficient scheduling discipline for packet
switching networks using earliest deadline first round
robin”. 12th International Conference on Computer
Communications and Networks (ICCCN), Dallas, TX, USA,
20-22 October 2003.

[20] Hamed M, Shukry S, El-Mahallawy MS, El-Ramly S.
“Modified earliest deadline first scheduling with channel
quality indicator for downlink real-time traffic in LTE
networks”. 3rd International Conference on e-Techologies
and Networks for Development (ICeND), Beirut, Lebanon,
29 April-1 May 2014.

[21] Demers A, Keshav S, Shenker S. “Analysis and Simulation
of a Fair Queueing Algorithm”. ACM SIGCOMM Symposium,
Austin, TX, USA, 19-22 September 1989.

[22] Parekh AK, Gallager RG. “A generalized processor sharing
approach to flow control in ıntegrated services networks:
the single-node Case”. IEEE/ACM Transactions on
Networking, 1(3), 344-357, 1993.

[23] Banks J, Carson II JS, Nelson B, Nicol DM. Discrete-Event
System Simulation. 5th ed. New Jersey, USA, Pearson, 2010.

