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Abstract  Öz 

The vast variety of applications available and being developed for 
computer networks have different quality of service requirements. One 
of the most significant ways to satisfy the needs of the applications is the 
packet scheduling algorithms employed by the network routers. By 
allocating router resources to the applications, packet schedulers try to 
improve the quality of service needs of the applications. Thus, the delays 
can be reduced or the reliability of the applications can be increased by 
reducing packet losses. Priority schedulers are able reduce the delay and 
losses for high priority applications. On the other hand, for low priority 
applications they introduce the starvation problem. Low priority 
application packets can face excessive delays and losses. In this paper, a 
non-preemptive priority scheduler with multiple thresholds (PRMT) is 
proposed. The PRMT scheduler needs only a single queue with 
predefined threshold levels for different priority applications. The PRMT 
scheduler eliminates the starvation problem of low priority applications 
without a significant impact on the high priority applications. 

 Bilgisayar ağları için mevcut ve geliştirilmekte olan çok çeşitli 
uygulamaların farklı hizmet kalitesi gereksinimleri vardır. 
Uygulamaların ihtiyaçlarını karşılamanın en önemli yollarından birisi 
ağ yönlendiricileri tarafından kullanlan paket zamanlama 
algoritmalarıdır. Uygulamalara yönlendirici kaynaklarını ayırarak, 
paket zamanlayıcıları uygulamaların hizmet kalitesi ihtiyaçlarını 
artırmaya çalışır. Bu nedenle, gecikmeler azaltılabilir ya da 
uygulamaların güvenilirliği paket kayıplarını azaltmak suretiyle 
arttırılabilir. Öncelikli zamanlayıcılar, yüksek öncelikli uygulamaların 
gecikme ve kayıplarını azaltabilirler. Öte yandan, düşük öncelikli 
uygulamalar için açlık problemi getirirler. Düşük öncelikli uygulama 
paketleri aşırı gecikmeler ve kayıplarla karşılaşabilirler. Bu makalede 
çoklu eşik kullanan geçişsiz öncelikli zamanlayıcı (PRMT) 
önerilmektedir. PRMT zamanlayıcı farklı öncelikli uygulamalar için 
önceden tanımlanmış eşik seviyeleri kullanan tek bir kuyruk ihtiyacı 
duyar. PRMT zamanlayıcı yüksek öncelikli uygulamaların üzerinde 
önemli bir etkiye yol açmadan,  düşük öncelikli uygulamalardaki açlık 
sorunu ortadan kaldırır. 

Keywords: Network routers, Quality of service, Priority scheduler, 
Multiple threshold 

 Anahtar kelimeler: Ağ yönlendiricileri, Servis kalitesi, Öncelikli 
zamanlayıcı, Çoklu eşik 

1 Introduction 

Computer networks support an enormous variety of 
applications from digital audio to instant messaging, from peer-
to-peer file sharing to streaming video. Not only the number of 
these applications but also the number of users are rapidly 
increasing. The growth rate of applications and the number of 
users are expected to increase further with the spread of 
Internet of Things (IoT) [1],[2] in the next decade. According to 
the estimates given by [3], approximately 6.4 billion connected 
things are in use in 2016 and this number will reach to 20.8 
billion by 2020. 

The applications that are in use have different requirements 
from the network. Treating all traffic in the same manner will 
result in poor or unacceptable performance for some of the 
applications, as the requirements of those applications may be 
more critical compared to the others. Thus, different types of 
services should be provided for different applications 
according to their needs. 

Quality of Service (QoS) refers to the capability of a network to 
provide differentiated and better service for distinct network 
applications. The basic QoS parameters [4] are specified as 
bandwidth, latency, jitter and loss ratio. These four parameters 
usually define the QoS requirements of an application. 

 

The bandwidth refers the rate at which traffic is carried by the 
network. The amount of bandwidth required by an application 
varies significantly and depends on the application type. For 
example, video applications such as HD streaming video are in 
need of high bandwidth. However, for data applications such as 
e-mail or remote login lower bandwidth might suffice. 

Latency is the delay in data transmission. Some applications are 
sensitive to delay such as interactive applications. For such 
applications, the users will find the connection unacceptable for 
high delay values. For example, VoIP applications cannot 
tolerate delay more than one sec. But, streaming audio or video 
applications do not have low delay requirements. 

Jitter is the variation in the latency. Jitter requirement is also 
application specific. For example, real-time voice applications 
require low jitter values and they can suffer when the jitter 
increases. However, for a file sharing application jitter is not 
very important and does not impact the performance of the 
application. Thus, some applications may tolerate high jitter 
values, while some can not.  

Loss ratio is the percentage of packets discarded by routers. 
Since the router resources are finite, under heavy traffic or 
when there is congestion in the network, some packets may not 
be accepted for service and they are discarded and lost. The 
amount of packet losses that an application can tolerate varies 
considerably. For example, while audio applications are able to 
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tolerate some losses, for some applications such as e-mail every 
single bit must be correctly delivered to the destination without 
any losses. 

In order to satisfy the QoS requirements of the applications, 
several disciplines such as admission control and traffic control 
can be implemented. Admission control [5] determines which 
applications and users can access the resources provided by the 
network. After an application declares its QoS requirements, 
the network decides if it can accept the traffic through resource 
reservations, call admission or call setup signaling. Traffic 
control regulates the data flowing in the network by classifying, 
shaping, policing and scheduling the traffic. These mechanisms 
separate the traffic into service classes and control each service 
class. 

Packet scheduling is one of the ways for the traffic control 
discipline. Packet scheduling algorithms allocate router 
resources to competing applications in terms of bandwidth, 
buffer space or CPU cycles. Thus, it is an effective way for 
providing better QoS to applications. 

In this work, a non-preemptive priority packet scheduler with 
multiple thresholds is proposed. The priority schedulers 
usually suffer from the starvation problem. Low priority 
application traffic may never get serviced when there is high 
priority traffic present in the router. The delay and packet 
losses that low priority applications are imposed can reach 
excessive amounts. The proposed scheduler allows lower 
priority traffic to be serviced even with the presence of higher 
priority traffic, when the buffer is not congested. This way 
allows reduced packet drop ratios and latency values for lower 
priority traffic. High priority application QoS is not affected 
since when the buffer is congested, the proposed scheduler 
services high priority traffic first. Thus, with the proposed 
scheduler, the starvation problem commonly seen in priority 
schedulers can be reduced and solved. 

The organization for the rest of the paper is as follows. Section 
2 describes most common scheduling algorithms and packet 
drop policies in use. Section 3 introduces the proposed 
scheduling algorithm, the policies for accepting incoming 
packets and how they are serviced. Section 4 discusses the 
simulation environment used for simulating the proposed 
algorithm and the obtained results. Finally, the paper ends with 
the conclusions made in Section 5. 

2 Packet scheduling 

A packet scheduler is a traffic control discipline which 
determines the transmission order of packets at a router in 
order to respond to the application’s QoS requirements. Packet 
scheduling algorithms have been a major research area [6],[7] 
as they are one of the most critical components in a network for 
increasing the level of QoS offered for applications. 

Packet schedulers can be classified into non-work-conserving 
packet schedulers and work-conserving packet schedulers [8]. 

With a non-work-conserving scheduler, the scheduler can stay 
idle even when there are packets waiting to be serviced.  Non-
work-conserving schedulers have the benefit of reducing the 
jitter, thus making the downstream traffic more predictable 
and causing fewer and smaller traffic bursts. 

For a non-work-conserving scheduling algorithm, the 
scheduler waits until a packet is eligible for transmission. The 
eligibility of the packets for transmission might be decided in 
different ways. To control the end-to-end jitter, it can be 

ensured that a packet always spends no more than a fixed time 
at a router. Another way to decide eligibility is to establish the 
notion of a fixed end-to-end delay for a packet. In this case, 
routers decide a packet is eligible based on the time budget that 
remains for each packet. 

Non-work-conserving schedulers might reduce the buffering 
requirements at routers and end-systems. But, the end-systems 
can already fix this issue as they can de-jitter flows as needed. 
The cost of using such mechanisms is higher overall end-to-end 
delay. In addition, such systems can be complex to build in 
practise. Consequently, non-work-conserving disciplines are 
not used but considered as an active research area. 

With a work-conserving scheduler, the router never stays idle 
when there are packets waiting to be serviced.  A scheduler is 
work-conserving, if Kleinrock’s conservation law [9] stated by 
Equation (1) holds. In this equation, 𝜌𝑛  is the average link 
utilization for flow n, 𝑞𝑛 is the average waiting time caused by 
the scheduler for flow n, and C is a constant for the N flows 
arriving at the scheduler. Based on the conservation law, 
providing a better QoS for one flow will have a negative impact 
on the QoS of one or more others. If the delay for a flow is 
lowered through a scheduling algorithm, then the delay for 
other flows will increase. If the loss ratio for a flow is lowered, 
the loss ratio of other flows will increase, in a similar sense. 
Thus, work-conserving schedulers need to be carefully 
designed without hurting the needs of some flows too much. 

∑ ρn𝑞𝑛

𝑁

𝑛=1

= 𝐶 (1) 

The rest of this section describes the most common scheduling 
algorithms and packet dropping policies. 

2.1 First-Come first-served (FCFS) scheduling 

Traditional routers use the first-come first served (FCFS) 
scheduling policy. The simple and easy to implement FCFS 
scheduler schedules the packets in the same order as they 
arrive at the router. With FCFS, there is no kind of service 
differentiation and all the packets are treated with the same 
manner. Thus FCFS is suitable for networks where no QoS 
guarantees are required. FCFS is a work-conserving scheduling 
disciple. 

[10] studies on the performance analysis of FCFS. In [11], FCFS 
and EDF scheduling algorithms for real-time packet switching 
networks are compared in terms of packet loss, delay and 
buffer size.   

2.2 Priority scheduling 

Under priority scheduling, the packets arriving at a router are 
classified into several priority classes. A packet’s priority class 
can depend on an explicit marking carried in the packet header, 
source or destination addresses, port number or other criteria. 

The priority scheduling establishes a queue for each priority 
level and the queues are served in the order of their priority. 
With priority scheduling, high priority traffic always gets the 
best possible service quality as higher priority queues are 
serviced before lower priority queues. On the other hand, this 
approach will lead into excessive delays and losses for low 
priority traffic as lower priority queues will only be serviced if 
there are no packets awaiting service in a higher priority queue. 
As a consequence, priority scheduling can result in a situation 
called as starvation. If there is a constant flow of high priority 
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packets, low priority packets will be prevented from getting 
service. 

Priority schedulers can be either preemptive or non-
preemptive. A non-preemptive scheduler can never interrupt a 
packet in service. That is, if a packet is in service, its service will 
be completed even if a higher priority packet arrives in the 
meanwhile. On the other hand, a preemptive scheduler can 
interrupt a packet in service. If a higher priority packet arrives 
while a lower priority packet is in service, lower priority packet 
will be taken out of service and higher priority packet will start 
being serviced. Priority scheduling is a work-conserving 
scheduling disciple. 

In [12], a fuzzy based dynamic multilevel priority packet 
scheduler is proposed with three types of priority queues.  
[13] proposes an energy efficient packet scheduling with delay 
and loss constraints. Every incoming data packet is analysed 
and prioritized based on delay and loss constraints. However, 
this type of approach introduces excessive processing delays. In 
[14], dynamic multi threshold priority scheduling algorithm is 
introduced. If a packet arrives with an urgent flag set, its 
priority is increased and the packet is placed forward in the 
queue. This algorithm may require shifting off all the packets 
present in the queue and therefore increases the time 
complexity significantly. In [15] and [16], the priority queues 
are organized in such a way that real time packets are stored in 
high priority queue, non-real time packets whose destinations 
are distant nodes are stored in medium priority queue and non-
real time packets whose destinations are local nodes are stored 
in low priority queue. In these studies, the priority scheduler is 
preemptive. While non-real time packets are processing, an 
arriving real-time packet can preempt. [17] also proposes a 
preemptive scheduling algorithm that can be applied to 
wireless sensor networks.  In this paper, not only the high 
priority packets can preempt low priority packets, but also low 
priority packets can preempt high priority packets given that 
they have waited for a long time.  Thus, this scheduler needs to 
follow the waiting time of low priority packets in the queue, 
thus extra overhead is introduced with the algorithm.  

2.3  Deadline based scheduling 

Deadline based schedulers [11],[18] check arriving packet’s 
delivery deadline and give priority to packets which have less 
remaining deadline. This approach enables packets with lower 
remaining deadlines to reach their destination faster, however 
similar to priority schedulers, packets with higher remaining 
deadlines may get stacked at the routers, leading into 
starvation.  Deadline based schedulers are work-conserving 
schedulers. 

In [19], a frame oriented round-robin earliest deadline first 
(EDF-RR) is introduced. [20] develops a modified earliest 
deadline first scheduling algorithm for real-time traffic in LTE 
networks by improving average throughput, delay, packet loss 
ratio and fairness index.  

2.4 Fair queuing 

Fair queuing relies on the General Processor Sharing (GPS) 
model. GPS is a work-conserving scheduler aiming to provide 
max-min fairness with probabilistic, statistical and 
deterministic performance bounds. However, it is only a 
theoretical model and some approximations have been 
presented such as Weighted Fair Queuing (WFQ) [21] and 
Packet based GPS (PGPS) [22]. 

2.5 Packet dropping policies 

Under heavy traffic the routers may become congested and the 
router buffers start to fill up very quickly. When the router 
buffers are completely occupied, a new arrival might not be 
accepted in the buffer. In this situation, a packet will need to be 
dropped.  

The most common way for dropping packets is drop-from-tail. 
In this method, the packets at the end of the queue are dropped. 
Drop-from-tail is easy to implement, however, the packets 
already in the queue and already delayed may expire. When 
such packets arrive at their destination, its usefulness for the 
application might be insignificant. 

A solution for this problem might be to drop-from-head. The 
packets that have stayed in the network longest are dropped, 
giving way to new arrivals. But the processing time of drop-
from-head is significantly larger, as all the remaining packets in 
the queue will need to be shifted. 

Packets can also be dropped in random. With random drop 
packets from different buffer locations are selected at random 
and dropped. Under random drop, packets belonging to a flow 
using a higher bandwidth are affected more. It is also possible 
to see the following scenario under random drop. The dropped 
packets may belong to a high priority application traffic flow, 
while there are lower priority application packets in the queue. 

Another way to drop packets is to flush the whole queue. Thus, 
in case of a congestion all the packets already waiting in the 
queue are dropped. This method immediately frees all the 
buffers for the new arriving packets. However, it is not efficient 
as for real-time applications having a big hole in their traffic 
flow as a result of flushing might not be acceptable. 

Another alternative is intelligent dropping, where packets are 
dropped by knowledge of the traffic flow. In PRMT, this 
approach is used. If the latest arrival’s priority causing a buffer 
overflow is higher than some packets priority waiting in the 
queue, it is more beneficial to pick lower priority packets as a 
candidate to drop instead of high priority packets. But if there 
are available lower priority traffic packets in the queue, then 
the latest arriving packet is dropped. This method needs more 
information from the router, but appears to have the potential 
of offering very fine-grained congestion control. 

3 Non-preemptive priority scheduler with 
multiple thresholds 

In this section, the proposed priority scheduler with multiple 
thresholds (PRMT) is described. The proposed scheduler aims 
to reduce the starvation problem commonly seen in priority 
schedulers.  

PRMT defines a single queue with three levels of priorities for 
different application types. However, the number of priority 
levels can be increased or decreased based on the application 
needs. The considered priority levels are high priority  
(priority level 1), medium priority (priority level 2) and low 
priority (priority level 3). For each priority level, the buffer uses 
different threshold levels. While the threshold level for high 
priority applications is lower, the threshold levels for low 
priority applications is higher. An example buffer structure 
with the indicated threshold levels is shown in Figure 1. 

For a buffer with capacity C, high priority packets’ threshold 
level is Th1, medium priority packets’ threshold level is Th2 
and low priority packets’ threshold level is Th3. The reason for 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 24(2), 246-254, 2018 
T. Dağ 

 

249 
 

defining low threshold levels to high priority applications is to 
place high priority application packets between the head of the 
queue and its threshold level whenever possible, so that the 
delay that they will face is reduced as well as the packet losses. 

 

Figure 1: Threshold structure for PRMT. 

3.1 Packet arrival with PRMT  

When a new packet arrives at the buffer, the scheduler takes an 
action based on the incoming packet’s priority level, the buffer 
occupancy and the threshold level defined for the arriving 
packet. 

The following cases describe, what happens at the buffer with a 
new packet arrival. 

 If the new arrival finds the buffer empty, the arriving 
packet is placed at the head of the buffer and 
immediately serviced as PRMT is a work-conserving 
scheduler. An example illustration depicting this case 
is shown in Figure 2. When a packet with priority level 
2 arrives at an empty queue, it is placed at the head of 
the buffer and the PRMT scheduler immediately starts 
service for that packet. 

 

Figure 2: Arrival of packet with priority level 2 to an empty 
buffer. 

 If the new arrival finds the buffer occupancy less than 
its corresponding threshold value, the arriving packet 
is placed at the end of the queue just like in FCFS 
scheduling. Higher priority packets will not prevent 
lower priority packets ahead of them from getting 
service. As a result, lower priority packets in front of 
the new arrival will be served before. By this way, low 
priority packets’ starvation rate will be reduced. An 
example illustration depicting this case is shown in 
Figure 3. 

When a packet with priority level 2 arrives at a buffer 
with occupancy less than Th2, the packet is placed at 
the end of the queue. Even though there are priority 
level 3 packets in the front, they will still be served 
before the newly arriving packet. As the new arriving 
packet is placed ahead of its defined threshold level, 
its QoS needs can still be satisfied, without 
deteriorating low priority applications QoS needs.   

 

Figure 3: Arrival of packet with priority level 2 to a buffer with 
occupancy less than its corresponding threshold. 

 If the new arrival finds the buffer occupancy more 
than its corresponding threshold value, scheduling 
decisions are made in favour of high priority packets, 
in order not to deteriorate their QoS requirements. 
Different from the previous case, the algorithm will 
not allow a lower priority packet to be serviced before 
the newly arriving packet. The newly arriving high 
priority packet is replaced with a lower priority 
packet between the threshold and the head of the 
queue. If there are multiple lower priority packets 
between the threshold level of the arriving packet and 
the head of the queue, the one which is closer to the 
threshold is chosen, as the others have already been 
waiting for a long time, and they will be serviced soon. 

An example illustration depicting this case is shown in 
Figure 4. When a packet with priority level 2 arrives 
at a buffer with occupancy greater than Th2, the 
newly arriving packet is replaced with the first 
priority level 3 packet before Th2.  

 

Figure 4: Arrival of packet with priority level 2 to a buffer with 
occupancy larger than its corresponding threshold. 

On the other hand, when new packet arrives, if there 
are no lower priority packets present in the queue, the 
new packet will be placed at the end of the queue. All 
the packets before have higher priority and the 
algorithm will not allow to deteriorate their 
performance. In this case, the newly arriving packet’s 
delay requirements will be negatively affected 
because of the heavy high priority traffic present in 
the network.  

A disadvantage of the PRMT scheduler can be 
observed in Figure 5. When a packet with priority 
level 1 arrives at a buffer with occupancy greater than 
Th1, it is replaced with the priority level 2 packet 
before Th1. However, this replacement places priority 
level 2 packet after priority level 3 packets even 
though it has arrived before priority level 3 packets. 
Such a case might increase the waiting time of the 
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priority level 2 packet. This situation might be 
avoided by shifting the low priority packets, but 
shifting operation would increase the complexity of 
the algorithm. On the other hand, it is very likely that 
the lowest priority packets will be placed backwards 
in the queue with the later arrivals of higher priority 
packets. Thus, these type of occurrences are not 
expected to have a significant impact on the 
performance of the algorithm. 

 

Figure 5: Arrival of packet with priority level 1 to a buffer with 
occupancy larger than its corresponding threshold. 

 If the new arrival finds the buffer full at its maximum 
capacity C, the PRMT scheduler drops a lower priority 
packet waiting in the queue, and places the new 
arriving packet in its place.   

An example illustration depicting this case is shown in 
Figure 6. When a packet with priority level 2 arrives 
at the full buffer, the newly arriving packet is placed 
in the place of the first priority level 3 packet, and the 
priority level 3 packet is dropped. 

If there are no lower priority packets, when the new 
packet arrives, then there is no choice left other than 
dropping the newly arriving packet. 

 

Figure 6: Arrival of packet with priority level 2 to a buffer with 
full occupancy. 

The flowchart of PRMT at a packet arrival is shown in Figure 7.  
For every new packet arrival, the steps are repeated.   

3.2 Packet service with PRMT 

Since PRMT is work-conserving, the server will be busy serving 
a packet at the head of the queue whenever there are packets 
present in the queue. The server will always pick the first 
packet in the queue for service. Only when the buffer is 
completely empty, the server will sit idle. 

If an arriving packet whether high priority or low priority finds 
the buffer empty, it will enter service immediately. Otherwise, 
the packet at the head of the queue will be picked up by the 
server for transmission. If there are no waiting packets the 
server will be idle. 

Since PRMT is a non-preemptive scheduling algorithm, an 
arriving may never interfere the current transmission, even if 
the arriving packet is of highest priority and the packet under 
service is of lowest priority. 

 

 

Figure 7: PRMT scheduler flowchart for packet arrivals. 
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4 Simulation and analysis of PRMT 

In this section, the simulation method for the analysis of PRMT 
scheduler and the obtained results are discussed. For the 
simulations, the discrete event system simulation method [23] 
is used. Discrete event system simulation is based on event 
scheduling and time advance algorithms.  

Two events are observed in a packet scheduling algorithm: 
Packet arrival event and packet service completion event. The 
packet arrival event deals with how a packet will be placed in 
the buffer queue upon its arrival. For example, for the FCFS 
packet scheduler, an arriving packet is placed in the first 
available buffer space or is dropped if no space is available. An 
arrival event always triggers a new arrival event and 
conditionally triggers a service completion event only if the 
new arrival enters service upon arrival. Packet service 
completion event deals with which waiting packet will be 
chosen for transmission when the transmission of the current 
packet is completed. For example, for the PRMT packet 
scheduler, the packet at the head of the queue is chosen for 
transmission. A packet service completion event is a 
conditional event, meaning that only when there are waiting 
packets, the next packet service completion event is triggered 
and scheduled. 

The scheduled events are placed in the future event list (FEL) 
The purpose of the time advance algorithm is to execute the 
simulation by calling the imminent event from the FEL. As 
events can trigger new events, the length and the contents of 
the FEL constantly changes throughout the simulation. 

Since PRMT can be considered as a priority scheduler, the 
performance of PRMT is compared with priority scheduler and 
the FCFS scheduler traditionally employed by routers. For each 
of these algorithms, packet arrival and packet service 
completion events as well as time advance and FEL are coded 
with C++. Each simulation run is repeated 100 times and the 
averages obtained from these runs are presented in the 
simulation results. 

Three priority level packets (high priority, medium priority and 
low priority) are considered throughout the simulations. The 
packets from different priority levels arrive in accordance with 
a Poisson process where the total arrival rate is 𝜆 Thus, the 
number of arrivals N(t) in a finite interval of length t obeys the 
Poisson distribution given by Equation (2). 

𝑃{𝑁(𝑡) = 𝑛} =
(𝜆𝑡)𝑛

𝑛!
𝑒−𝜆𝑡  (2) 

For the simulation studies, it is assumed that the arrival rate of 
low priority application packets is λ/2, the arrival rate of 
medium priority application packets is λ/3 and the arrival rate 
of high priority application packets is λ/6. 

Only a single queue with size C is implemented for the FCFS and 
PRMT schedulers. However, three queues are implemented for 
the priority scheduler due to its nature. The total sizes of the 
queues are kept the same for all schedulers, and the buffer sizes 
for the priority scheduler are adjusted according to the packet 
arrival rates of each priority to make a fair comparison.   

The service times are independent exponential random 
variables with a mean value 1/µ. Thus, the utilization factor of 
the buffer can be represented by equation (3). 

𝜌 =
𝑚𝑒𝑎𝑛 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒

𝑚𝑒𝑎𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑎𝑡𝑒
=

𝜆

𝜇
 (3) 

In order to measure the performance of the scheduling 
algorithms, the simulations are conducted under heavy traffic 
when the utilization factor ρ = 0.99. 

Figure 8 illustrates packet drop ratios for the three levels of 
priorities under the simulated scheduling algorithms when the 
buffer capacity C=50. Since FCFS scheduler does not 
differentiate amongst different priority levels, the loss ratios for 
all three priority levels are at the same levels. Under priority 
scheduler, high priority packets do not incur any packet losses, 
however as the priority levels decrease, the loss ratios increase 
significantly. As a consequence, with priority scheduler low 
priority packets suffer excessive loss ratios. The proposed 
PRMT scheduler, on the other hand, improves the loss ratio of 
the low priority packets significantly when compared with the 
priority scheduler by allowing low priority packets for 
transmission if the queue occupancy is below the 
corresponding threshold level. For high priority packets, the 
loss ratio under the PRMT scheduler is still similar to the 
priority scheduler. 

 

Figure 8: Loss ratio for different priorities. 

Figure 9 shows the packet drop ratios for priority level 1 
packets as a function of the buffer capacity C. 50% of the 
arriving packets belong to a low priority traffic, 33.3% belong 
to a medium priority traffic and 16.7% belong to a high priority 
traffic. As the buffer capacity increases, the loss ratio decreases. 
For priority and PRMT schedulers no losses are observed for 
the high priority packets as both schedulers aim to serve high 
priority packets first. The PRMT scheduler performs slightly 
worse than priority scheduler only for very low buffer 
capacities. 

 

Figure 9: Loss ratio for priority 1 packets. 
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The difference in PRMT and priority scheduler can be explained 
as follows: Priority scheduler always serves high priority 
packets first without considering lower priority packets. But, 
PRMT scheduler can serve lower priority packets before high 
priority packets, if the occupancy of the buffer is low and 
consequently all incoming packets are serviced in order. In such 
a case, a new arriving high priority packet does not prevent the 
service of a lower priority packet in front of the queue. FCFS 
scheduler, on the other hand, observes losses, since for the FCFS 
scheduler a newly arriving packet does not have any impact at 
all on the service of the packets in the buffer on the contrary to 
the above discussion. 

Figure 10 illustrates the packet drop ratio for priority level 2 
packets as a function of the buffer capacity C. As the buffer 
capacity increases, the loss ratios decrease. While FCFS has the 
worst performance, the best performance is obtained under the 
PRMT scheduler. PRMT scheduler allows service of medium 
priority level packets even if high priority packets are arriving, 
when the buffer occupancy is lower than the corresponding 
threshold value. However, priority scheduler prefers and 
allows the transmission of high priority packets whenever a 
high priority packet arrives. As a consequence, the loss ratio for 
priority level 2 packets under the priority scheduler is better 
than priority level 3 application flow but worse than priority 
level 1 application flow. 

 

Figure 10: Loss ratio for priority 2 packets. 

Figure 11 shows the packet drop ratio for priority level 3 
packets as a function of the buffer capacity C.  As the buffer 
capacity increases, the loss ratios decrease. In this case, the 
priority scheduler has the worst performance and PRMT 
scheduler has the best performance slightly better than FCFS. 
Under the priority scheduler, low priority packets are always 
served last without considering the buffer occupancy. Because 
of this reason low priority application flows may have the 
starvation problem,  resulting in an excessive amount of losses 
as can be seen from Figure 11. Since PRMT scheduler allows low 
priority packets to be served if the occupancy of the buffer is 
lower than the corresponding threshold, it reduces the 
starvation problem and decreases the starvation problem 
significantly. Only when the buffer starts to get congested, 
lower priority packets will be served last and might be dropped. 
As FCFS scheduler is indifferent to different priorities, similar 
loss ratio figures are observed. While this might seem beneficial 
for low priority applications, providing lower level of QoS for 
high priority applications can have severe inferences under 
FCFS. Thus, FCFS may not be a suitable choice for computer 
networks where a vast number of applications with different 
QoS requirements reside. 

 

Figure 11: Loss ratio for priority 3 packets. 

Figure 12 shows the latency of priority level 1 packets as a 
function of the buffer capacity C. Similar to the previous 
simulations, 50% of the arriving packets belong to a low 
priority traffic, 33.3% belong to a medium priority traffic and 
16.7% belong to a high priority traffic. As the buffer capacity 
increases, the latency increases. The buffer utilization is very 
high and the buffer tends to fill up very quickly. As a result, the 
waiting time in the buffer will increase with increased buffer 
capacity. 

 

Figure 12: Average latency for priority level 1 packets. 

FCFS scheduler has the worst performance for the latency of 
high priority packets as FCFS does not differentiate high 
priority application packets and provide them the same level of 
QoS as medium or low priority application packets. On the 
other hand, both priority and PRMT schedulers favor high 
priority packets for service and their latency values are lower 
compared to FCFS. The performance of the PRMT scheduler is 
slightly worse than the priority scheduler, as priority scheduler 
always selects high priority packets for transmission but PRMT 
scheduler allows the transmission of low priority packets in the 
presence of high priority packets only when the buffer 
occupancy is below the corresponding threshold. 

In Figures 13 and 14, the latency of priority level 2 packets and 
priority level 3 packets as a function of the buffer capacity C is 
shown. As the buffer capacity increases, the latency increases. 
As a consequence of the starvation problem, priority scheduler 
is the worst for low priority application packets in terms of 
latency. The low priority packets need to wait for all the higher 
priority packets to be serviced under the priority scheduler. 

The latency under the PRMT scheduler is better than that of the 
priority scheduler. The PRMT scheduler would let lower 
priority packets to be served without placing them at the end of 
the queue, when the buffer occupancy is lower than the 
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corresponding threshold values. Thus, the resulting waiting 
times are lower than the priority scheduler. 

In addition, it can be observed that under the FCFS scheduler, 
both low and medium priority application packets result in 
similar latency figures as expected. 

 

Figure 13: Average latency for priority level 2 packets. 

 

Figure 14: Average latency for priority 3 packets. 

5 Conclusions 

Packet scheduling algorithms allocate router resources such as 
bandwidth by deciding which of the buffered packets will be 
transmitted next or which packet will be dropped when the 
buffer is full. In this paper, a packet scheduler for routers named 
as non-preemptive priority scheduler with multiple thresholds 
(PRMT) is proposed. The classical FCFS scheduler does not 
differantiate among different types of application flows, 
although they may have different QoS requirements. As a result, 
a high or a low priority application flow receives similar service 
from a FCFS scheduler and the QoS provided to a high priority 
application flow may decrease. On the other hand, priority 
schedulers favor high priority application flows by allocating 
router resources to them, which in turn results in starvation 
problem for low priority application flows. The proposed PRMT 
scheduler allows lower priority application flows to be served 
even in the presence of high priority traffic, given that the buffer 
occupancy is lower than the predefined threshold values.  By 
this way, the starvation problem seen in priority schedulers is 
reduced and a better packet drop ratio and latency is achieved 
for lower priority traffic. PRMT also tries to keep the QoS of 
higher priority traffic in the desired levels.  

Another benefit of the PRMT scheduler is the simple 
implementation. It’s time complexity is more than FCFS or 
priority scheduling, however with its implementation it is 
possible to offer better QoS levels especially to low priority 
applications. The PRMT scheduler requires only a single queue 
for all priority levels of arriving traffic. On the other hand, 

priority scheduler needs separate queues for each priority 
level. As a consequence, the PRMT scheduler can adapt to 
different numbers of priority levels by defining different 
threshold levels. But this task is more difficult for priority 
schedulers as more queues are required to be installed for more 
priority levels. 

For this work, the threshold levels are assumed to be 
predefined. In order to further increase the performance of 
PRMT, the threshold levels could be dynamic based on the 
characteristics of the incoming flows. However, such an 
approach will increase the complexity of the algorithm as  
continuous monitoring of the amount of different priority 
traffic will be needed in order to adjust the threshold levels.    
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