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1. Introduction 
 
Decision-making is a phenomenon that is frequently realized and has significant consequences for the stakeholders affected 

by the decision. Some decisions need to be made on a daily basis, while others need to be made with strategic thinking (Pala, 

2022). Strategic decision making is defined in terms of the magnitude of actions, the allocation of resources, and the 

significance of the results (Eisenhardt & Zbaracki, 1992). Decision-making science has recently developed as a branch of 

operations research, especially due to the importance of strategic decision-making. 

In the decision-making process, in cases where evaluation should be made according to more than one criterion, the problem 

is analyzed with Multi-Criteria Decision Making (MCDM) methods. These approaches simply break the problem into parts 

and evaluate the alternatives based on criteria (Mardani et al., 2015). MCDM techniques and approaches have been utilized 

to solve problems in various fields such as project management (Chen et al. 2019), military (Çarman & Şakar, 2019), 

education (Kazancoglu & Özen, 2019), health (Liou et al., 2017), information systems (Esangbedo,  et al., 2021), tourism 

planning (Alptekin & Büyüközkan, 2011), city planning (Özbekler & Akgül, 2025), agriculture systems (Radmehr et al., 

2022), energy sources (Lee & Chang, 2018), environment plans (Chen et al., 2010), supply chain management (Büyüközkan 

& Güler, 2021), logistics systems (Tzeng & Huang, 2012), finance (Baydaş & Elma, 2021), quality management (Akdag et 

al., 2014), vendor selection (Lin et al., 2010), mechanical process (Chatterjee et al., 2017), material selection (Anojkumar et 

al., 2014), supplier selection (Karsak & Dursun, 2015) and (Soygüder & Geçer, 2023).  

MCDM problem consists of a finite number of alternatives and criteria. Selection of the best alternative (or ranking of all 

alternatives) depends on the evaluation of alternatives in terms of criteria. In MCDM, criteria are symbolized through a 

performance value that is most desired in selecting alternatives (Zeleny, 1998). The process of assigning criteria weights is a 

very susceptible issue as it directly affects alternative rankings. Two major and different trends have been prevailed in 

determining the weights of the criteria: subjective and objective approaches. Subjective methods reveal criteria importance 

levels based only on the opinion of the decision maker or expert. However, it is not possible to know the accuracy of this 

subjective evaluation.  Additionally there would be a precisionism problem about these values (Jessop, 2004). Some failures 

in assigning criteria weights may occur due to the cognitive deficiency of people in decision-making (Danielson & Ekenberg, 

2017). Objective weighting methods that rely solely on the decision matrix attempt to address these concerns. However, no 

matter how it is acquired (subjectively or objectively), an agreement cannot be achieved completely on the weights of the 

In Multi-Criteria Decision Making (MCDM), the weighting of the criteria is at 

least as important as the normalization of the decision matrix and the procedure 

for ranking the alternatives. The slightest uncertainty in the weights of criteria 

poses a major problem for decision-makers, especially when there is little 

difference between the assessments of alternatives. One crucial question is which 

approaches should be applied to a given MCDM problem? This question may be 

answered by considering the insensitivity of rankings of the alternatives to 

changes in the weights of criteria. I propose a novel approach to criteria 

weighting that focuses solely on the insensitivity of rankings to changes in the 

weights of criteria. Simulations reveal that this approach is superior to other 

existing methods in terms of ranking stability. A real-life example concerning the 

digital readiness of the European Union reveals that this new approach yields 

beneficial results in different aspects of decision-making. 
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criteria. Accordingly, the alternative rankings should remain indifferent to the weight changes of the criteria as possible as 

(Wang & Luo, 2010) and (Pala, 2023).  

In this study, a weighting method that focuses on robustness (insensitivity) in alternative rankings against changes in criteria 

weights, as in (Wang & Luo, 2010) and (Pala, 2023), but does not require optimization processes like them and also does not 

include functions such as logarithms and exponentials but only four basic operations in the calculation stages, is proposed. I 

evaluated each criterion by extracting one by one from the model and examined their affects to robustness. Hence, the 

criterion that provides more robustness comes to the fore in weighting process. Accordingly, the proposed approach RRC 

(Robustness to Removing Criteria) provides decision-makers and practitioners an easy tool to implement and outputs more 

reliable rankings. 

The rest of the paper is organized as follows. Section 2 contains preliminaries which are required to compare the RCC 

method with the state of art methods. In Section 3, I briefly described the RRC method. In Section 4, I compared RRC with 

the widely used and respected objective weighting methods. Section 5 consists of implementing RRC to a real life application 

based on digital readiness of European Union (EU) countries. Finally, I provided an overview evaluation in the conclusions.  

 

2. Preliminaries 

  
I ensured the accuracy of RRC by comparing it with the most important, widely used and respected objective criteria 

weighting methods, such as the Equal Weight Model (EWM), Entropy (Hwang & Yoon, 1981), CRITIC (Criteria Importance 

through Correlation between Criteria) and SD (Standard Deviation) methods (Diakoulaki et al., 1995) and MEREC (Method 

Based on the Removal Effects of Criteria) (Keshavarz-Ghorabaee et al., 2021), as in the studies by Vinogradova-Zinkevič 

(2024), Pala (2024), Uyala (2024), and Su et al. (2025). In EWM, all criteria weights are equal and can be calculated with

1/jw m . Here, I can describe the rest of the methods as follows. 

 

2.1 Entropy Method 

 

Objective weighting can be done in MCDM by measuring the contrast intensity in the criteria with the entropy function. The 

phases of the entropy method are as follows (Wang & Lee, 2009); 

 Phase 1: The decision matrix 
( * )ij n m

D d has to be normalized according to Eq. (1); 
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 Phase 2: Entropy values of each criterion can be evaluated by Eq. (2); 
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 Phase 3: Acquiring criteria weights through the entropy can be done by Eq. (3); 

1

1 j

j m

j

j

e
we

m e






                       (3) 

 

2.2 MEREC Method 

The decision matrix
( )ij nxm

D d can be normalized by Eq. (4) and (5) in MEREC (Keshavarz-Ghorabaee  et al., 2021)  ; 
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While the performance scores of alternatives can be calculated by all criteria included in Eq. (6), the alternative scores are 

obtained with Eq. (7) by removing the criterion j from the model. 
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jE , which represents the change in alternative scores when the criterion is removed, can be obtained by Eq. (8) and is used to 

determine the criterion weights via Eq. (9). 
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2.3 CRITIC Method 

The decision matrix 
( * )ij n m

D d has to be normalized using Eqs. (10) and (11) in CRITIC (Diakoulaki et al., 1995); 

; 
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The correlation coefficients and standard deviations can be obtained via Eqs. (12) and (13), respectively.  

1

2 2

1 1

( )( )

, , 1,...,

( ) . ( )

n

j kij ik

i
jk

n n

j kij ik

i i

z z z z

j k m

z z z z



 



 

 

 

 

 



 

        (12) 

2

1

1
( ) , 1,..., .

n

jj ij

i

z z j m
n






            (13) 

The criteria weights are acquired by Eqs. (14) and (15); 
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2.4 SD Method 

Diakoulaki et al. (1995) stated that the criteria weight according to SD can be evaluated by Eq. (16) as follows; 
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3. Robustness to Removing Criteria Method  
The Decision matrix is beneficial in defining the MCDM problems. Assume that the decision matrix 

( * )ij n mD d contains n 

alternatives as 1, , , nA A and m criteria 1, , , mC C where 
ijd denotes the importance of iA in terms of

jC . We have to assess the 

weight of each criterion 
jw  to calculate the importance of each alternative. While all

jw must be nonnegative, they must also 

add up to 1. In addition, alternative values can have different scales in terms of criteria, and criteria can be either based on 

benefit or cost. To overwhelm these two issues we can simply normalize the decision matrix. The most widespread 

normalization method can be performed by employing Eqs. (17) and (18) where min

jd and max

jd are lowest and highest values 

of criterion j , respectively.   
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After obtaining the 
jw  and

ijz , we can assess the alternatives scores using an assessment MCDM method. 

The most basic and broadly applied Weighted Sum Model (WSM) evaluates the iS , the final score of the alternative i , using 

Eq. (19) (Fishburn, 1967): 
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Determining all
jw  can vary without any alteration in the alternative rankings can be evaluated for the WSM method, using 

Eq. (20) and * denotes the stability interval ratio that all criteria weight can vary without occurring ranking changes among 

any alternatives (Wang & Luo, 2010); 
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This *  value is evaluated in terms of all criteria, and just as a chain is as strong as its weakest link, the strength of the 

model's stability is as strong as the criterion with the weakest stability. Accordingly, this * , evaluated and obtained on the 

weakest stable criterion, is desired to be as high as possible in order to ensure the stability of the whole model. 

 

If we sought to examine stability for each pairwise rankings like 1t tS S  and 1n nS S  , we can evaluate the stability intervals 

for each pair using equal values for all 
jw  as in Eq. (21). The ik denotes the stability interval ratio of all 

jw  can vary 

without occurring ranking changes between alternatives i and k with respect to their overall scores. 
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Accordingly, the singular contribution of the relevant criteria to the stability of rankings can be measured from the stability 

values that will be obtained when each criterion is removed from the decision matrix. So, we can evaluate the WSM scores 

when the criterion j is removed and the rest of the criteria weights are equal, as in Eq. (22); 
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Using 
ijS  values we can evaluate ave

j (the average ratio that a criterion changes without altering each ranking of alternatives 

when the j criterion discarded from model) and *

j  (the maximum ratio that a criterion changes without altering any ranking 

of alternative when the j criterion discarded from model) for each criterion as in Eq. (23) and Eq. (24), respectively. 
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Evaluating both the ave

j and *

j , we can assess the singular contribution of each criterion in the stability of rankings. If the 

ave

j and *

j values increase when the criterion j  is removed, less weight should be given for the criterion and these values 

should be normalized as follows: 

max min

ave ave ave ave
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* * * *

max minj jz                 (26) 

In RRC, we can obtain *

jw  according to ave

jz and *

jz  for each criterion as in Eq. (27). 
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In determining criteria weights, using only the *

j  values yields the disperences between weight values quite higher. 

Conversely, employing only the average of ave

j in the same manner causes decreasing effects on the stability intervals. So, 

the combination of these two variable produces more balanced results. 

Employing WSM in ranking alternatives with RRC’s criteria weight would be beneficial in two ways. First, due to RRC 

acquiring stability values via WSM, these two methods merge effectively. The other one is the decision-maker can obtain 

stability intervals and examine sensitivity in detail.  

 

A numerical example of using RRC method, as follows. Suppose we have a decision matrix (DM) with five alternatives and 

six benefit criteria (28) as follows; 

 

𝐷𝑀 =

[
 
 
 
 
1000 5 5 5 500 1000
10 990 10 10 600 1000
5 1000 990 20 900 1000
5 1000 1000 25 1000 999
10 980 1000 15 600 1000]

 
 
 
 

       (28) 
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I can acquire 
ijz  via Eq. (17), as follows. 

 

Zij=    [1.0000   0             0             0             0            1.0000 

            0.0050   0.9899    0.0050   0.2500    0.2000   1.0000 

            0            1.0000    0.9899   0.7500    0.8000   1.0000 

            0            1.0000    1.0000   1.0000    1.0000   0 

            0.0050   0.9799    1.0000   0.5000    0.2000   1.0000];  

 

Then, I can obtain 
ijS  via Eq. (22), as follows. 

 

   Sij=   [  0.2000    0.4000    0.4000    0.4000    0.4000    0.2000 

     0.4890    0.2920    0.4890    0.4400    0.4500    0.2900 

     0.9080    0.7080    0.7100    0.7580    0.7480    0.7080 

     0.8000    0.6000    0.6000    0.6000    0.6000    0.8000 

    0.7360    0.5410    0.5370    0.6370    0.6970    0.5370]; 

 

Afterwards, we can acquire ave

j  and *

j  via using Eq. (23) and (24), respectively.  

 ave

j  = [ 0.6229    0.2829    0.4051    0.3575    0.3989    0.7836] 

 *

j    = [0.1380    0.1280    0.1355    0.0913    0.1116    0.18449] 

 

Then, ave

jz and *

jz  can be obtained by employing Eq. (25) and (26), respectively. 

 
ave

jz =[ 0.4436    0.7836    0.6615    0.7091    0.6676    0.2829] 

  *

jz =[ 0.1380    0.1280    0.1355    0.0913    0.1116    0.1844] 

 

Finally, the *

jw can be acquired via Eq. (27). 

*

jw = [0.1421    0.1958    0.1742    0.2064    0.1889    0.0926] 

 

4. Comparative Analysis of Objective Weighting Methods 

 
I compared RRC with well-known approaches through the simulations where I randomly generated 1000 samples via 

uniform distribution in the range [1-100] for each different size of matrix. I have presented in Table 1 how many times the 

RRC method outperforms other methods in terms of *  scores in each sample. For example, the value of 801 in the first row 

and first column reveals in how many cases out of 1000 different 3*3 matrices RCC provides better stability than EWM. 

The first and last values presented in matrix size refer to the number of alternatives and the number of criteria, respectively, 

represented in the Table 1-3. 

According to Table1, RRC outperformed all methods in the range of 853 to 706 in the 3-by-3 decision matrices. Although the 

degree of superiority decreased as the size of the matrix increased, the superiority of RRC over other methods continued even 

in the 20 by 20 matrices. In overall I generated 10000 decision matrices (one thousand times for each of ten different sizes) 

and RRC outperformed EWM, Entropy, MEREC, CRITIC, and SD by 61.18%, 60.29%, 56.64%, 64.67% and 60.48%, 

respectively. 

 

Table 1. Number of times the RRC method outperforms other methods in terms of stability 

Matrix Size EWM Entropy MEREC CRITIC SD 

3*3 801 816 706 853 802 

4*4 688 667 590 750 668 

5*5 626 652 567 708 632 

6*6 621 592 558 664 598 

7*7 617 589 572 613 611 

8*8 571 559 536 605 570 

9*9 564 535 551 585 542 

10*10 587 542 554 590 554 

15*15 519 536 512 541 532 

20*20 524 541 518 558 539 
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The average * values of 1000 samples for different matrix size are represented in Table 2. RRC outperformed all other 

methods in terms of stability degrees in each matrix size. I also conducted statistical comparisons according to  average *

values, considering a 5% significance level were applied and the RRC statistically outperformed the EWM, Entropy, 

MEREC, CRITIC, and  SD with the same p-values (0.001). In overall average * values methods are ranked as RRC 

(0.0992), MEREC (0.0692), Entropy (0.0563), SD (0.0558), EWM (0.0550), and CRITIC (0.0417). In general, it is observed 

that all methods except RRC have similar values, while RRC differs positively from the others.  

 

Table 2. The average * values (1000 samples) of each weighting method. 

Matrix Size RRC EWM Entropy MEREC CRITIC SD 

3*3 0.5337 0.2518 0.2570 0.3301 0.1792 0.2547 

4*4 0.1959 0.1134 0.1191 0.1467 0.0853 0.1157 

5*5 0.1059 0.0693 0.0679 0.0822 0.0526 0.0687 

6*6 0.0574 0.0397 0.0419 0.0477 0.0322 0.0417 

7*7 0.0369 0.0266 0.0268 0.0305 0.0232 0.0265 

8*8 0.0249 0.0184 0.0190 0.0211 0.0169 0.0196 

9*9 0.0178 0.0144 0.0148 0.0159 0.0131 0.0146 

10*10 0.0136 0.0104 0.0109 0.0117 0.0092 0.0106 

15*15 0.0043 0.0038 0.0038 0.0040 0.0035 0.0038 

20*20 0.0020 0.0018 0.0018 0.0019 0.0017 0.0018 

 

In Fig. 1, I represented the histogram of * values for each method and matrix size. Although the superiority of RRC in the 

3*3 matrix is obvious in terms of * , it also has superiority in the others. The increasing number of *  values towards the 

right in the histogram indicates that higher *  values are obtained more frequently with the relevant method. 

To examine the performances further I defined a threshold ratio for *  as % 1, which means ranking is stable when any of 

criterion changes up to %1.  I evaluated each method according to the threshold limit and the results are listed in Table 3. 

 

Fig. 1 . The histogram of * for each method 

M.S* RRC EWM Entropy MEREC CRITIC SD 

3 
*
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4 
* 
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5 
* 
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*
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7 
* 
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8 
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9 
* 
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1
0 
* 
1
0 

      
1 
5 
* 
1
5 

      
2 
0 
* 
2
0 

      

* M.S. refers to matrix size 

Table 3. Number of *  values above the threshold rate in 1000 samples. 

Matrix Size RRC EWM Entropy MEREC CRITIC SD 

3*3 994 977 981 973 918 968 

4*4 954 925 926 948 903 943 

5*5 920 879 883 919 847 900 

6*6 868 774 790 820 745 802 

7*7 797 708 705 740 677 703 

8*8 679 601 608 635 567 614 

9*9 581 521 524 547 489 524 

10*10 471 408 394 428 328 406 

15*15 336 279 271 298 248 269 

20*20 75 49 63 74 54 63 

 

Considering the results in Table 3, for the threshold ratio of 1% that will create significant robustness, RRC provided 

significant robustness in more cases in all matrix dimensions compared to other methods, at sample numbers where *  

exceeded this threshold ratio. As the matrix size increases, the decrease in the stability value and the lower number of cases 

above the limit value is not a coincidence because the possible average weight value per criterion is becoming smaller. 

Accordingly, a fairer comparison was made by considering this limit value as 0.5% for matrices 15*15 and 20*20. 

Considering the significant stability values, it has been observed that RRC continues to be useful even as the matrix sizes 

increase. 

 

4. A Real Life Application 

 
This study aims to examine the digital readiness of EU countries. In recent years, the Digital Readiness Index (DRI) 

developed by CISCO (A leading company in digital communications technology) has become a golden standard in evaluation 

of digital readiness. I carried out the analysis of the DRI data for 2021. Table 4 contains the DRI data of 27 EU member 

states over 7 benefit-oriented criteria.  
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Table 4. The DRI values of EU Countries in 2021 

 CRITERIA 

EU Country 
Basic 
Needs 

Business & 

Government 
Investment 

Ease of 

Doing 
Business 

Human 
Capital 

Start-Up 
Environment 

Technology 
Adoption 

Technology 
Infrastructure 

Austria 0.86 1.57 1.44 1.06 -0.18 1.02 0.91 

Belgium 0.86 1.22 0.46 0.95 0.13 0.78 0.94 

Bulgaria 0.61 -0.04 -0.69 0.32 0.30 0.17 0.95 

Croatia 0.63 0.11 0.67 0.52 -0.07 0.21 0.68 

Cyprus 0.85 0.09 0.51 1.05 1.54 0.87 1.10 

Czech Republic 0.79 0.41 1.00 1.12 -0.07 0.63 1.15 

Denmark 0.83 1.60 1.84 1.29 0.81 1.19 3.44 

Estonia 0.77 0.57 1.25 1.39 2.79 0.98 1.78 

Finland 0.88 2.22 1.65 1.30 0.31 1.16 1.74 

France 0.89 1.00 0.98 0.78 0.39 0.76 1.17 

Germany 0.85 1.60 1.47 1.29 0.08 1.18 1.60 

Greece 0.88 -0.02 0.53 0.48 -0.40 0.35 0.72 

Hungary 0.70 0.40 -0.52 0.78 -0.26 0.35 0.73 

Ireland 0.84 2.05 1.34 1.30 0.98 1.23 1.61 

Italy 0.93 0.55 0.37 0.42 -0.15 0.66 0.59 

Latvia 0.62 0.27 0.96 1.14 0.27 0.43 0.99 

Lithuania 0.63 0.19 1.19 1.13 0.04 1.12 1.03 

Luxembourg 0.89 1.31 1.16 0.87 5.78 2.16 1.27 

Malta 0.86 0.35 0.33 0.64 1.24 1.20 1.05 

Netherlands 0.88 2.18 1.09 1.36 0.57 1.20 2.21 

Poland 0.75 0.53 0.46 1.07 -0.40 0.68 1.34 

Portugal 0.87 0.79 0.96 0.73 0.24 0.46 0.79 

Romania 0.64 -0.07 0.20 0.32 0.03 0.33 0.67 

Slovakia 0.70 0.16 0.68 0.82 -0.10 0.72 0.71 

Slovenia 0.86 0.44 1.05 1.12 -0.12 0.70 0.94 

Spain 0.93 1.80 0.91 0.83 -0.17 0.82 0.93 

Sweden 0.91 3.44 1.51 1.38 1.93 1.33 1.34 

 
Source: CISCO Digital Readiness Index (https://www.cisco.com) 

Employing the data in Table 4 as decision matrix, I obtained the normalized matrix by using Eq. (17) and represented in 

Table 5. 

 
Table 5. The Normalized DRI values of EU Countries in 2021 

Country 
Basic 
Needs 

Business & 

Government 
Investment 

Ease of 

Doing 
Business 

Human 
Capital 

Start-Up 
Environment 

Technology 
Adoption 

Technology 
Infrastructure 

Austria 0.7812 0.4672 0.8419 0.6916 0.0356 0.4271 0.1123 

Belgium 0.7812 0.3675 0.4545 0.5888 0.0858 0.3065 0.1228 

Bulgaria 0 0.0085 0 0 0.1133 0 0.1263 

Croatia 0.0625 0.0513 0.5375 0.1869 0.0534 0.0201 0.0316 

Cyprus 0.75 0.0456 0.4743 0.6822 0.3139 0.3518 0.1789 

Czech Republic 0.5625 0.1368 0.668 0.7477 0.0534 0.2312 0.1965 

Denmark 0.6875 0.4758 1 0.9065 0.1958 0.5126 1 
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Estonia 0.5 0.1823 0.7668 1 0.5162 0.407 0.4175 

Finland 0.8437 0.6524 0.9249 0.9159 0.1149 0.4975 0.4035 

France 0.875 0.3048 0.6601 0.4299 0.1278 0.2965 0.2035 

Germany 0.75 0.4758 0.8538 0.9065 0.0777 0.5075 0.3544 

Greece 0.8437 0.0142 0.4822 0.1495 0 0.0905 0.0456 

Hungary 0.2812 0.1339 0.0672 0.4299 0.0227 0.0905 0.0491 

Ireland 0.7187 0.604 0.8024 0.9159 0.2233 0.5327 0.3579 

Italy 1 0.1766 0.419 0.0935 0.0405 0.2462 0 

Latvia 0.0313 0.0969 0.6522 0.7664 0.1084 0.1307 0.1404 

Lithuania 0.0625 0.0741 0.7431 0.757 0.0712 0.4774 0.1544 

Luxembourg 0.875 0.3932 0.7312 0.514 1 1 0.2386 

Malta 0.7812 0.1197 0.4032 0.2991 0.2654 0.5176 0.1614 

Netherlands 0.8437 0.641 0.7036 0.972 0.157 0.5176 0.5684 

Poland 0.4375 0.1709 0.4545 0.7009 0 0.2563 0.2632 

Portugal 0.8125 0.245 0.6522 0.3832 0.1036 0.1457 0.0702 

Romania 0.0938 0 0.3518 0 0.0696 0.0804 0.0281 

Slovakia 0.2812 0.0655 0.5415 0.4673 0.0485 0.2764 0.0421 

Slovenia 0.7812 0.1453 0.6877 0.7477 0.0453 0.2663 0.1228 

Spain 1 0.5328 0.6324 0.4766 0.0372 0.3266 0.1193 

Sweden 0.9375 1 0.8696 0.9907 0.377 0.5829 0.2632 

 

According to Eq. (22), the
ijS values (see in the Table 6) when the criterion j is removed can be acquired where 12S denotes 

the WSM scores of the first alternative when the second criteria is eliminated from the decision model. 

 
Table 6.  The Sij Values 

 

Basic 

Needs 

Business & 

Government 

Investment 

Ease of 

Doing 

Business 

Human 

Capital 

Start-Up 

Environment 

Technology 

Adoption 

Technology 

Infrastructure 

Austria 0.4293 0.4816 0.4192 0.4442 0.5536 0.4883 0.5408 

Belgium 0.321 0.3899 0.3754 0.3531 0.4369 0.4001 0.4307 

Bulgaria 0.0414 0.0399 0.0414 0.0414 0.0225 0.0414 0.0203 

Croatia 0.1468 0.1487 0.0676 0.1261 0.1483 0.1539 0.152 

Cyprus 0.3411 0.4585 0.3871 0.3524 0.4138 0.4075 0.4363 

Czech Republic 0.3389 0.4099 0.3213 0.308 0.4238 0.3941 0.3999 

Denmark 0.6818 0.7171 0.6297 0.6453 0.7637 0.7109 0.6297 

Estonia 0.5483 0.6013 0.5038 0.465 0.5456 0.5638 0.5621 

Finland 0.5848 0.6167 0.5713 0.5728 0.7063 0.6426 0.6582 

France 0.3371 0.4321 0.3729 0.4113 0.4616 0.4335 0.449 

Germany 0.5293 0.575 0.512 0.5032 0.6413 0.5697 0.5952 

Greece 0.1303 0.2686 0.1906 0.246 0.271 0.2559 0.2634 

Hungary 0.1322 0.1568 0.1679 0.1074 0.1753 0.164 0.1709 

Ireland 0.5727 0.5918 0.5587 0.5398 0.6553 0.6037 0.6328 

Italy 0.1626 0.2999 0.2595 0.3137 0.3225 0.2883 0.3293 

Latvia 0.3158 0.3049 0.2123 0.1933 0.3029 0.2992 0.2976 

Lithuania 0.3795 0.3776 0.2661 0.2638 0.3781 0.3104 0.3642 

Luxembourg 0.6462 0.7265 0.6701 0.7063 0.6253 0.6253 0.7522 

Malta 0.2944 0.4046 0.3574 0.3747 0.3804 0.3383 0.3977 

Netherlands 0.5933 0.627 0.6166 0.5719 0.7077 0.6476 0.6391 
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Poland 0.3076 0.3521 0.3048 0.2637 0.3806 0.3378 0.3367 

Portugal 0.2666 0.3612 0.2934 0.3382 0.3848 0.3778 0.3904 

Romania 0.0883 0.1039 0.0453 0.1039 0.0923 0.0905 0.0993 

Slovakia 0.2402 0.2762 0.1968 0.2092 0.279 0.241 0.2801 

Slovenia 0.3359 0.4419 0.3514 0.3415 0.4585 0.4217 0.4456 

Spain 0.3542 0.432 0.4154 0.4414 0.5146 0.4664 0.5009 

Sweden 0.6806 0.6701 0.6919 0.6717 0.774 0.7396 0.7929 

 

Based on Eq.  (23) and (24), I evaluated the ave

j and *

j values for each criterion and afterwards I obtained  ave

jz , *

jz  , 

and *

jw  via Eq. (25), (26), and (27), respectively. The results are represented in Table 7. According to RRC, the most 

prominent criterion is Human Capital and the least one is Ease of Doing Business. 

 

Table 7. The Criteria Weights obtained by RRC 

 Basic 
Needs 

Business & 
Government 

Investment 

Ease of 
Doing 

Business 

Human 
Capital 

Start-Up 
Environment 

Technology 
Adoption 

Technology 
Infrastructure 

j

ave  0.2024 0.1937 0.2203 0.2027 0.2121 0.2223 0.2086 

*

j  0.0043 0.0015 0.0188 0.0002 0.001 0.0023 0.0092 

j

avez  0.1473 0.1533 0.1350 0.1471 0.1406 0.1336 0.1430 

*

jz  0.154 0.1829 0.0018 0.1970 0.1881 0.1743 0.1019 

*

jw  0.1507 0.1681 0.0684 0.1720 0.1644 0.1539 0.1225 

 

I also compared RRC with other prominent objective weighting methods in evaluating the criteria of DRI, and the criteria 

weights based on these methods are given in Table 8. Zhang et al. (2014) stated that if there is a negative value in decision 

matrix, the Z score approach can be applied in normalization process of entropy method. Accordingly, I performed this 

approach in the entropy method.  

Incidentally, it causes problems in practice if the difference between the most and the least important criteria is enormous 

(Zavadskas & Podvezko, 2016) and (Ecer & Pamucar, 2022). Accordingly, it is desired that the ratio difference between them 

should not be as large as possible. While this ratio is naturally 1 for EWM, I calculated the ratio for RRC, Entropy, MEREC, 

CRITIC and SD as 2.5146, 1.673, 14.8607, 2.2863, and 1.5696, respectively. Acceptable results were acquired with all 

methods except MEREC. Conversely, if this ratio is close to 1, there will be no differentiation between criteria. The RRC 

come to the fore with its more balanced ratio regarding these two issues. 

 
Table 8. The criteria weights obtained by objective weighting methods  

 

Basic 
Needs 

Business & 

Government 
Investment 

Ease of 

Doing 
Business 

Human 
Capital 

Start-Up 
Environment 

Technology 
Adoption 

Technology 
Infrastructure 

EWM 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 

Entropy 0.1640 0.1296 0.1852 0.1569 0.1107 0.1361 0.1175 

MEREC 0.0201 0.2987 0.2455 0.0756 0.2042 0.1101 0.0458 

CRITIC 0.2204 0.1264 0.1162 0.1654 0.1521 0.0964 0.1232 

SD 0.1849 0.1433 0.1342 0.1771 0.1178 0.1238 0.1189 

 

According to the rankings in Table 9, it can be thought that all methods are quite similar to each other except MEREC, while 

the values of Spearman Rank Correlations given in Table 10 clearly reveal this argument. Meanwhile, the RRC’s ranking is 

highly correlated with other methods. 

 
Table 9. Rankings of Countries acquired by each weighting approach via WSM 

 

RRC EWM Entropy MEREC CRITIC SD 

 Score Rank Score Rank Score Rank Score Rank Score Rank Score Rank 
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Austria 0.4582 9 0.4796 9 0.5284 9 0.4737 9 0.5039 9 0.5173 9 

Belgium 0.3882 13 0.3867 14 0.418 14 0.3385 12 0.4265 14 0.425 14 

Bulgaria 0.0355 27 0.0354 27 0.0285 27 0.0315 27 0.0339 27 0.0296 27 

Croatia 0.1027 25 0.1348 25 0.1581 25 0.1772 23 0.1276 25 0.1367 25 

Cyprus 0.3981 11 0.3995 12 0.4275 13 0.3077 17 0.4427 12 0.4315 13 

Czech Republic 0.3505 16 0.3708 15 0.4115 15 0.318 16 0.3971 15 0.4039 15 

Denmark 0.6415 3 0.6826 2 0.7108 2 0.6122 3 0.6802 3 0.6955 2 

Estonia 0.5291 8 0.5414 8 0.5662 8 0.4977 8 0.5569 8 0.5594 8 

Finland 0.6025 5 0.6218 5 0.6658 4 0.6049 4 0.6425 5 0.6589 5 

France 0.3938 12 0.414 11 0.4511 11 0.3713 11 0.4523 11 0.4461 11 

Germany 0.5416 7 0.5608 7 0.6043 7 0.5233 7 0.579 7 0.5961 7 

Greece 0.2077 23 0.2323 23 0.2707 23 0.163 24 0.2829 21 0.2659 22 

Hungary 0.1671 24 0.1535 24 0.164 24 0.1115 26 0.176 24 0.1761 24 

Ireland 0.5848 6 0.5936 6 0.6277 6 0.5817 5 0.6088 6 0.6241 6 

Italy 0.2696 20 0.2823 20 0.3171 20 0.2182 22 0.3367 19 0.3182 20 

Latvia 0.2526 21 0.2752 21 0.305 21 0.2905 19 0.268 22 0.2885 21 

Lithuania 0.307 19 0.3342 18 0.3673 18 0.3372 13 0.3106 20 0.3418 19 

Luxembourg 0.6839 2 0.6789 3 0.6854 3 0.6786 2 0.6904 2 0.6773 3 

Malta 0.3599 15 0.3639 16 0.384 17 0.2916 18 0.3937 16 0.3832 16 

Netherlands 0.6253 4 0.629 4 0.6589 5 0.5697 6 0.6532 4 0.6646 4 

Poland 0.318 18 0.3262 19 0.3539 19 0.2647 20 0.3439 18 0.3536 18 

Portugal 0.3222 17 0.3446 17 0.3854 16 0.319 15 0.3876 17 0.3793 17 

Romania 0.0654 26 0.0891 26 0.1025 26 0.1126 25 0.0833 26 0.086 26 

Slovakia 0.2265 22 0.2461 22 0.2762 22 0.2358 21 0.2497 23 0.2618 23 

Slovenia 0.3813 14 0.3995 13 0.4473 12 0.3287 14 0.4418 13 0.4429 12 

Spain 0.4365 10 0.4464 10 0.4875 10 0.4196 10 0.4919 10 0.4895 10 

Sweden 0.7232 1 0.7173 1 0.7518 1 0.7591 1 0.7438 1 0.7566 1 

 

Table 10. Correlation between the rankings based on each approach 

 

RRC EWM Entropy MEREC CRITIC SD 

RRC 1 0.9969 0.9933 0.9646 0.9957 0.9951 

EWM 0.9969 1 0.9982 0.9719 0.9957 0.9982 

Entropy 0.9933 0.9982 1 0.9768 0.9939 0.9976 

MEREC 0.9646 0.9719 0.9768 1 0.9579 0.9676 

CRITIC 0.9957 0.9957 0.9939 0.9579 1 0.9976 

SD 0.9951 0.9982 0.9976 0.9676 0.9976 1 

 

However, the stability values which are indications of the robustness of the rankings to the criteria weights, differs according 

the weighting methods. I obtained * values as 0.0214, 0.0004, 0.0090, 0.0055, 0.0079, and 0.0200 for RRC, EWM, Entropy 

Method, MEREC, CRITIC, and SD respectively. While RRC provides more robustness than any of these methods, SD 

achieved 2nd place. The effectiveness of RRCD in problem solving has emerged as alternative ranking is similar to other 

methods and provides additional robustness. 

 

5. Conclusions 

 
MCDM is an important methodology used in various fields. Criteria weighting is a vital part of MCDM. The objective 

criteria weighting approach, which provides criteria weighting based on decision matrix values instead of expert opinions, 

has a solid foundation in the MCDM field. Any doubt on the criteria weights would raises question marks about the MCDM's 
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results. However, there is always room for error in the alternative scores measured for each criterion. Any small change in the 

criterion scores of the alternatives, whether or not caused by measurement errors, can significantly affect criteria weights 

obtained by objective criteria weighting methods. According to (Wang & Luo, 2010), this point peculiarly causes objective 

approaches to receive significant criticism. To tide over this problem, especially small changes in the weights of the criteria 

should not affect the ranking. This *  ratio can be considered as a value that compensates the possible error margin in the 

weight values of the criteria. 

In this study, to address this concern, I proposed an objective criteria weighting approach that aims to increase the stability of 

rankings to the criteria weight changes. The proposed RRC, which focuses primarily on the criteria removal effect on 

robustness, was compared with EWM, Entropy Method, MEREC, CRITIC, and SD via simulations. In simulation-based 

analysis, the RRC outperformed all methods on every matrix size in average robustness and pairwise comparisons.   

The digital readiness of the EU member states were evaluated with the RRC method, which is easy to calculate and 

developed from a different point of view than existing methods. While only the proposed RRC and SD were able to exceed 

the previously determined limit value (1%) with 2.14% and 2%, the RRC prevailed against SD with a ratio of 2.5146 to 

1.5696 in differentiating the criteria. 

The validity of the model was ensured because there was no significant difference between the maximum and minimum 

criteria weight values, the stability value was higher than other methods, and the ranking correlations were high with other 

methods. On the other hand, as managerial insights, countries' prioritization of Human Capital and subsequent focus on 

Business & Government Investment and Start-Up Environment will lead to an increase in digital readiness processes. 

I employed the *

j and ave

j  to concern the robustness of ranking to the criteria changes. Future research can explore 

employing various robustness indicators like the correlation of stability values between criteria, the covariance of criteria, and 

ranking correlations. Moreover, the RRC approach can be extended by using different types of MCDMs than WSM. The 

integration of RRC with other existing weighting methods would be another direction of future studies. While extending 

RRC by applying it in a fuzzy environment can be beneficial in fuzzy decision-making, employing different normalization 

techniques can explore more fields in capability of the proposed approach.  
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