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1. Introduction

Decision-making is a phenomenon that is frequently realized and has significant consequences for the stakeholders affected
by the decision. Some decisions need to be made on a daily basis, while others need to be made with strategic thinking (Pala,
2022). Strategic decision making is defined in terms of the magnitude of actions, the allocation of resources, and the
significance of the results (Eisenhardt & Zbaracki, 1992). Decision-making science has recently developed as a branch of
operations research, especially due to the importance of strategic decision-making.

In the decision-making process, in cases where evaluation should be made according to more than one criterion, the problem
is analyzed with Multi-Criteria Decision Making (MCDM) methods. These approaches simply break the problem into parts
and evaluate the alternatives based on criteria (Mardani et al., 2015). MCDM techniques and approaches have been utilized
to solve problems in various fields such as project management (Chen et al. 2019), military (Carman & Sakar, 2019),
education (Kazancoglu & Ozen, 2019), health (Liou et al., 2017), information systems (Esangbedo, et al., 2021), tourism
planning (Alptekin & Biiyiikdzkan, 2011), city planning (Ozbekler & Akgiil, 2025), agriculture systems (Radmehr et al.,
2022), energy sources (Lee & Chang, 2018), environment plans (Chen et al., 2010), supply chain management (Biiyiikozkan
& Giiler, 2021), logistics systems (Tzeng & Huang, 2012), finance (Baydas & Elma, 2021), quality management (Akdag et
al., 2014), vendor selection (Lin et al., 2010), mechanical process (Chatterjee et al., 2017), material selection (Anojkumar et
al., 2014), supplier selection (Karsak & Dursun, 2015) and (Soygiider & Geger, 2023).

MCDM problem consists of a finite number of alternatives and criteria. Selection of the best alternative (or ranking of all
alternatives) depends on the evaluation of alternatives in terms of criteria. In MCDM, criteria are symbolized through a
performance value that is most desired in selecting alternatives (Zeleny, 1998). The process of assigning criteria weights is a
very susceptible issue as it directly affects alternative rankings. Two major and different trends have been prevailed in
determining the weights of the criteria: subjective and objective approaches. Subjective methods reveal criteria importance
levels based only on the opinion of the decision maker or expert. However, it is not possible to know the accuracy of this
subjective evaluation. Additionally there would be a precisionism problem about these values (Jessop, 2004). Some failures
in assigning criteria weights may occur due to the cognitive deficiency of people in decision-making (Danielson & Ekenberg,
2017). Objective weighting methods that rely solely on the decision matrix attempt to address these concerns. However, no
matter how it is acquired (subjectively or objectively), an agreement cannot be achieved completely on the weights of the
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criteria. Accordingly, the alternative rankings should remain indifferent to the weight changes of the criteria as possible as
(Wang & Luo, 2010) and (Pala, 2023).

In this study, a weighting method that focuses on robustness (insensitivity) in alternative rankings against changes in criteria
weights, as in (Wang & Luo, 2010) and (Pala, 2023), but does not require optimization processes like them and also does not
include functions such as logarithms and exponentials but only four basic operations in the calculation stages, is proposed. |
evaluated each criterion by extracting one by one from the model and examined their affects to robustness. Hence, the
criterion that provides more robustness comes to the fore in weighting process. Accordingly, the proposed approach RRC
(Robustness to Removing Criteria) provides decision-makers and practitioners an easy tool to implement and outputs more
reliable rankings.

The rest of the paper is organized as follows. Section 2 contains preliminaries which are required to compare the RCC
method with the state of art methods. In Section 3, I briefly described the RRC method. In Section 4, I compared RRC with
the widely used and respected objective weighting methods. Section 5 consists of implementing RRC to a real life application
based on digital readiness of European Union (EU) countries. Finally, I provided an overview evaluation in the conclusions.

2. Preliminaries

I ensured the accuracy of RRC by comparing it with the most important, widely used and respected objective criteria
weighting methods, such as the Equal Weight Model (EWM), Entropy (Hwang & Yoon, 1981), CRITIC (Criteria Importance
through Correlation between Criteria) and SD (Standard Deviation) methods (Diakoulaki et al., 1995) and MEREC (Method
Based on the Removal Effects of Criteria) (Keshavarz-Ghorabaee et al., 2021), as in the studies by Vinogradova-Zinkevi¢
(2024), Pala (2024), Uyala (2024), and Su et al. (2025). In EWM, all criteria weights are equal and can be calculated with
w, =1/m . Here, I can describe the rest of the methods as follows.

2.1 Entropy Method

Objective weighting can be done in MCDM by measuring the contrast intensity in the criteria with the entropy function. The
phases of the entropy method are as follows (Wang & Lee, 2009);

Phase 1: The decision matrix D =|\d; o has to be normalized according to Eq. (1);
d.
2=t (1)
d;
i=1
Phase 2: Entropy values of each criterion can be evaluated by Eq. (2);
-1 7
= d,Ind 2
€; ln(n); g nd; ( )
Phase 3: Acquiring criteria weights through the entropy can be done by Eq. (3);
1-e,
we, = — 3)

m-— Ze/’

=1

2.2 MEREC Method

The decision matrix D = d, oy €A1 be normalized by Eq. (4) and (5) in MEREC (Keshavarz-Ghorabaee et al., 2021) ;
= d:_ix for cost criteria 4)
J
z, = d/ for benefit criteria %)

i
While the performance scores of alternatives can be calculated by all criteria included in Eq. (6), the alternative scores are
obtained with Eq. (7) by removing the criterion j from the model.

5, :ln(l+ig(‘ln(zlj )} i=ln (6)

)j, i=l.,n j=Ll..,m @)

m

S = ln[l L > (|in(z,

=y
E, , which represents the change in alternative scores when the criterion is removed, can be obtained by Eq. (8) and is used to

determine the criterion weights via Eq. (9).
E =Y j=l..m ®)
i=1

S; = Sils
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E.
w J j=1...m (9)

A
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=

2.3 CRITIC Method

The decision matrix D =|d, o has to be normalized using Egs. (10) and (11) in CRITIC (Diakoulaki et al., 1995);
d. —dm
; z, =————=—— for benefit criteria (10)
j d};‘nax _ djmm
dm —d,
z, =—~2——1 for cost criteria (11)
= — g

The correlation coefficients and standard deviations can be obtained via Egs. (12) and (13), respectively.

Z(zg —z;)(zy —2k)
pjk - n = - n —
\/Z(z,/ - z/)z.Z(z‘k —zi)?
i=1 i=l

1< - .
o, = ;;(z,}.fz,)z ,ji=L..,m. (13)

The criteria weights are acquired by Egs. (14) and (15);

, Jok=1..m (12)

c; :O'F/Z(lfpjk), j=L..,m. (14)
k=1

w,; = mc/. , j=L..,m (15)
S

2.4 SD Method
Diakoulaki et al. (1995) stated that the criteria weight according to SD can be evaluated by Eq. (16) as follows;
wo=-0_ ji=l..m. (16)

J m

Z O
k=1

3. Robustness to Removing Criteria Method

The Decision matrix is beneficial in defining the MCDM problems. Assume that the decision matrix D=d,

ooy CONEAINS N

alternatives as 4,,,,4, and m criteria C,,,,C, where d, denotes the importance of 4;in terms of C; . We have to assess the
weight of each criterion w, to calculate the importance of each alternative. While all w, must be nonnegative, they must also

add up to 1. In addition, alternative values can have different scales in terms of criteria, and criteria can be either based on
benefit or cost. To overwhelm these two issues we can simply normalize the decision matrix. The most widespread

normalization method can be performed by employing Eqgs. (17) and (18) where 4™ and o™ are lowest and highest values
of criterion j , respectively.
d,—d™

z;=——— for benefit criteria (17
d/ - d/
d™ g
2, =——— for cost criteria (18)
a7 —d;

After obtaining the w; and z,, we can assess the alternatives scores using an assessment MCDM method.

i
The most basic and broadly applied Weighted Sum Model (WSM) evaluates the S, , the final score of the alternative i , using
Eq. (19) (Fishburn, 1967):

S,=2wjz”., i=1,..,n (19)
=
Determining all w, can vary without any alteration in the alternative rankings can be evaluated for the WSM method, using

Eq. (20) and 7" denotes the stability interval ratio that all criteria weight can vary without occurring ranking changes among
any alternatives (Wang & Luo, 2010);

m
Z(zi/' _ZA/)W/'

n=min{— | wherei=t,k=t+1,t=1,...,n—land S,> S,

m t+1

e

Jj=1

>..>8, (20)

U_Zk/‘wi
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This »" value is evaluated in terms of all criteria, and just as a chain is as strong as its weakest link, the strength of the

model's stability is as strong as the criterion with the weakest stability. Accordingly, this 7", evaluated and obtained on the
weakest stable criterion, is desired to be as high as possible in order to ensure the stability of the whole model.

andS >SS

+1 n-1 no

If we sought to examine stability for each pairwise rankings like S, > S, we can evaluate the stability intervals
for each pair using equal values for all w; as in Eq. (21). The 7, denotes the stability interval ratio of all w, can vary
without occurring ranking changes between alternatives i and k with respect to their overall scores.

Z(Zi/ _Z’f/')w/'

My = E=EE— wherei=t, k=t+1,t=1,.,n-land S,> S

m t+1

>z

Jj=1

>..>5, @n

i _ij‘wj

Accordingly, the singular contribution of the relevant criteria to the stability of rankings can be measured from the stability
values that will be obtained when each criterion is removed from the decision matrix. So, we can evaluate the WSM scores
when the criterion j is removed and the rest of the criteria weights are equal, as in Eq. (22);

S, = z WZys i=Ll,n, j=1..,m (22)
h=1h#]
Using S, values we can evaluate 7, (the average ratio that a criterion changes without altering each ranking of alternatives

when the j criterion discarded from model) and 7, (the maximum ratio that a criterion changes without altering any ranking

of alternative when the j criterion discarded from model) for each criterion as in Eq. (23) and Eq. (24), respectively.

n
et Z (z:h ~Zp )Wh
=l A wherei=t,k=t+1,t=1..,n-1, j=1.,mand S;> S, >..>S,
= Z Zin _zkh‘wh
ey
Mo’ = (23)
n—1
m
z (Zm Zk/v)wh
77*/ =min ":l’f':’ wherei=t, k=t+1,t=1,.,n-1, j=1..,mand S; > S, >...>S, (24)
Z Zin 7Zkh‘wh
h=1h#]

Evaluating both the 7,** and 5", , we can assess the singular contribution of each criterion in the stability of rankings. If the
7, and ", values increase when the criterion j is removed, less weight should be given for the criterion and these values
should be normalized as follows:

2, = 2 A ™ A ™ (25)
2= AT 1] i (26)

In RRC, we can obtain w, according to z7,"* and zi;", for each criterion as in Eq. (27).

ave *

™ |
DI
* =] =1 .
w/:% j=L.,m 27

In determining criteria weights, using only the 7", values yields the disperences between weight values quite higher.

Conversely, employing only the average of 7, in the same manner causes decreasing effects on the stability intervals. So,

the combination of these two variable produces more balanced results.

Employing WSM in ranking alternatives with RRC’s criteria weight would be beneficial in two ways. First, due to RRC
acquiring stability values via WSM, these two methods merge effectively. The other one is the decision-maker can obtain
stability intervals and examine sensitivity in detail.

A numerical example of using RRC method, as follows. Suppose we have a decision matrix (DM) with five alternatives and
six benefit criteria (28) as follows;

[1000 5 5 5 500 1000
| 10 990 10 10 600 1000
DM =] 5 1000 990 20 900 1000 (28)
5 1000 1000 25 1000 999J
10 980 1000 15 600 1000
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I can acquire z, via Eq. (17), as follows.

Zij= [1.0000 0 0 0 0 1.0000
0.0050 0.9899 0.0050 0.2500 0.2000 1.0000
0 1.0000 0.9899 0.7500 0.8000 1.0000
0 1.0000 1.0000 1.0000 1.0000 0
0.0050 0.9799 1.0000 0.5000 0.2000 1.0000];

Then, I can obtain S, via Eq. (22), as follows.

Sij= [ 0.2000 0.4000 0.4000 0.4000 0.4000 0.2000
0.4890 0.2920 0.4890 0.4400 0.4500 0.2900
0.9080 0.7080 0.7100 0.7580 0.7480 0.7080
0.8000 0.6000 0.6000 0.6000 0.6000 0.8000
0.7360 0.5410 0.5370 0.6370 0.6970 0.5370];

Afterwards, we can acquire 7, and 7, via using Eq. (23) and (24), respectively.

n™ =[0.6229 0.2829 0.4051 0.3575 0.3989 0.7836]
7, =[0.1380 0.1280 0.1355 0.0913 0.1116 0.18449]

Then, zi7,* and ziy"; can be obtained by employing Eq. (25) and (26), respectively.

znj""‘):[O.4436 0.7836 0.6615 0.7091 0.6676 0.2829]
zn*/.:[O.lS’SO 0.1280 0.1355 0.0913 0.1116 0.1844]

Finally, the w; can be acquired via Eq. (27).
w, = [0.1421 0.1958 0.1742 0.2064 0.1889 0.0926]

4. Comparative Analysis of Objective Weighting Methods

I compared RRC with well-known approaches through the simulations where I randomly generated 1000 samples via
uniform distribution in the range [1-100] for each different size of matrix. I have presented in Table 1 how many times the
RRC method outperforms other methods in terms of 7" scores in each sample. For example, the value of 801 in the first row
and first column reveals in how many cases out of 1000 different 3*3 matrices RCC provides better stability than EWM.

The first and last values presented in matrix size refer to the number of alternatives and the number of criteria, respectively,
represented in the Table 1-3.

According to Tablel, RRC outperformed all methods in the range of 853 to 706 in the 3-by-3 decision matrices. Although the
degree of superiority decreased as the size of the matrix increased, the superiority of RRC over other methods continued even
in the 20 by 20 matrices. In overall I generated 10000 decision matrices (one thousand times for each of ten different sizes)
and RRC outperformed EWM, Entropy, MEREC, CRITIC, and SD by 61.18%, 60.29%, 56.64%, 64.67% and 60.48%,
respectively.

Table 1. Number of times the RRC method outperforms other methods in terms of stability

Matrix Size EWM Entropy MEREC CRITIC SD
3*3 801 816 706 853 802
4*4 688 667 590 750 668
5%5 626 652 567 708 632
6%6 621 592 558 664 598
7*7 617 589 572 613 611
8*8 571 559 536 605 570
9%9 564 535 551 585 542
10*10 587 542 554 590 554
15*15 519 536 512 541 532
20%*20 524 541 518 558 539
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The average 7" values of 1000 samples for different matrix size are represented in Table 2. RRC outperformed all other
methods in terms of stability degrees in each matrix size. I also conducted statistical comparisons according to average 71’
values, considering a 5% significance level were applied and the RRC statistically outperformed the EWM, Entropy,
MEREC, CRITIC, and SD with the same p-values (0.001). In overall average 7’ values methods are ranked as RRC

(0.0992), MEREC (0.0692), Entropy (0.0563), SD (0.0558), EWM (0.0550), and CRITIC (0.0417). In general, it is observed
that all methods except RRC have similar values, while RRC differs positively from the others.

Table 2. The average ;" values (1000 samples) of each weighting method.

Matrix Size RRC EWM Entropy MEREC CRITIC SD

3*3 0.5337 0.2518 0.2570 0.3301 0.1792 0.2547
4*4 0.1959 0.1134 0.1191 0.1467 0.0853 0.1157
5%5 0.1059 0.0693 0.0679 0.0822 0.0526 0.0687
6%6 0.0574 0.0397 0.0419 0.0477 0.0322 0.0417
7*7 0.0369 0.0266 0.0268 0.0305 0.0232 0.0265
8*8 0.0249 0.0184 0.0190 0.0211 0.0169 0.0196
9%9 0.0178 0.0144 0.0148 0.0159 0.0131 0.0146
10*10 0.0136 0.0104 0.0109 0.0117 0.0092 0.0106
15*15 0.0043 0.0038 0.0038 0.0040 0.0035 0.0038
20*20 0.0020 0.0018 0.0018 0.0019 0.0017 0.0018

In Fig. 1, I represented the histogram of 7" values for each method and matrix size. Although the superiority of RRC in the

3%*3 matrix is obvious in terms of 5, it also has superiority in the others. The increasing number of 7" values towards the

right in the histogram indicates that higher »" values are obtained more frequently with the relevant method.

To examine the performances further I defined a threshold ratio for 7" as % 1, which means ranking is stable when any of
criterion changes up to %1. I evaluated each method according to the threshold limit and the results are listed in Table 3.

Fig. 1 . The histogram of 7" for each method
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Table 3. Number of 7" values above the threshold rate in 1000 samples.

Matrix Size RRC EWM Entropy MEREC CRITIC SD
3*3 994 977 981 973 918 968
4*4 954 925 926 948 903 943
5*5 920 879 883 919 847 900
6%6 868 774 790 820 745 802
7*7 797 708 705 740 677 703
8*8 679 601 608 635 567 614
9*9 581 521 524 547 489 524
10*10 471 408 394 428 328 406
15*15 336 279 271 298 248 269
20%20 75 49 63 74 54 63

Considering the results in Table 3, for the threshold ratio of 1% that will create significant robustness, RRC provided
significant robustness in more cases in all matrix dimensions compared to other methods, at sample numbers where 7’
exceeded this threshold ratio. As the matrix size increases, the decrease in the stability value and the lower number of cases
above the limit value is not a coincidence because the possible average weight value per criterion is becoming smaller.
Accordingly, a fairer comparison was made by considering this limit value as 0.5% for matrices 15*15 and 20*20.
Considering the significant stability values, it has been observed that RRC continues to be useful even as the matrix sizes
increase.

4. A Real Life Application

This study aims to examine the digital readiness of EU countries. In recent years, the Digital Readiness Index (DRI)
developed by CISCO (A leading company in digital communications technology) has become a golden standard in evaluation
of digital readiness. I carried out the analysis of the DRI data for 2021. Table 4 contains the DRI data of 27 EU member
states over 7 benefit-oriented criteria.
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Table 4. The DRI values of EU Countries in 2021

CRITERIA
Business & Ease of
Basic Government Doing Human Start-Up Technology Technology
EU Country Needs Investment Business Capital Environment Adoption Infrastructure
Austria 0.86 1.57 1.44 1.06 -0.18 1.02 091
Belgium 0.86 1.22 0.46 0.95 0.13 0.78 0.94
Bulgaria 0.61 -0.04 -0.69 0.32 0.30 0.17 0.95
Croatia 0.63 0.11 0.67 0.52 -0.07 0.21 0.68
Cyprus 0.85 0.09 0.51 1.05 1.54 0.87 1.10
Czech Republic 0.79 0.41 1.00 1.12 -0.07 0.63 1.15
Denmark 0.83 1.60 1.84 1.29 0.81 1.19 3.44
Estonia 0.77 0.57 1.25 1.39 2.79 0.98 1.78
Finland 0.88 222 1.65 1.30 0.31 1.16 1.74
France 0.89 1.00 0.98 0.78 0.39 0.76 1.17
Germany 0.85 1.60 1.47 1.29 0.08 1.18 1.60
Greece 0.88 -0.02 0.53 0.48 -0.40 0.35 0.72
Hungary 0.70 0.40 -0.52 0.78 -0.26 0.35 0.73
Ireland 0.84 2.05 1.34 1.30 0.98 1.23 1.61
Italy 0.93 0.55 0.37 0.42 -0.15 0.66 0.59
Latvia 0.62 0.27 0.96 1.14 0.27 0.43 0.99
Lithuania 0.63 0.19 1.19 1.13 0.04 1.12 1.03
Luxembourg 0.89 1.31 1.16 0.87 5.78 2.16 1.27
Malta 0.86 0.35 0.33 0.64 1.24 1.20 1.05
Netherlands 0.88 2.18 1.09 1.36 0.57 1.20 221
Poland 0.75 0.53 0.46 1.07 -0.40 0.68 1.34
Portugal 0.87 0.79 0.96 0.73 0.24 0.46 0.79
Romania 0.64 -0.07 0.20 0.32 0.03 0.33 0.67
Slovakia 0.70 0.16 0.68 0.82 -0.10 0.72 0.71
Slovenia 0.86 0.44 1.05 1.12 -0.12 0.70 0.94
Spain 0.93 1.80 0.91 0.83 -0.17 0.82 0.93
Sweden 0.91 3.44 1.51 1.38 1.93 1.33 1.34

Source: CISCO Digital Readiness Index (https://www.cisco.com)

Employing the data in Table 4 as decision matrix, I obtained the normalized matrix by using Eq. (17) and represented in
Table 5.

Table 5. The Normalized DRI values of EU Countries in 2021

Business & Ease of
Basic Government Doing Human Start-Up Technology  Technology

Country Needs Investment Business Capital Environment Adoption Infrastructure
Austria 0.7812 0.4672 0.8419 0.6916 0.0356 0.4271 0.1123
Belgium 0.7812 0.3675 0.4545 0.5888 0.0858 0.3065 0.1228
Bulgaria 0 0.0085 0 0 0.1133 0 0.1263
Croatia 0.0625 0.0513 0.5375 0.1869 0.0534 0.0201 0.0316
Cyprus 0.75 0.0456 0.4743 0.6822 0.3139 0.3518 0.1789
Czech Republic 0.5625 0.1368 0.668 0.7477 0.0534 0.2312 0.1965
Denmark 0.6875 0.4758 1 0.9065 0.1958 0.5126 1
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Estonia 0.5 0.1823 0.7668 1 0.5162 0.407 0.4175
Finland 0.8437 0.6524 0.9249 0.9159 0.1149 0.4975 0.4035
France 0.875 0.3048 0.6601 0.4299 0.1278 0.2965 0.2035
Germany 0.75 0.4758 0.8538 0.9065 0.0777 0.5075 0.3544
Greece 0.8437 0.0142 0.4822 0.1495 0 0.0905 0.0456
Hungary 0.2812 0.1339 0.0672 0.4299 0.0227 0.0905 0.0491
Ireland 0.7187 0.604 0.8024 0.9159 0.2233 0.5327 0.3579
Italy 1 0.1766 0.419 0.0935 0.0405 0.2462 0

Latvia 0.0313 0.0969 0.6522 0.7664 0.1084 0.1307 0.1404
Lithuania 0.0625 0.0741 0.7431 0.757 0.0712 0.4774 0.1544
Luxembourg 0.875 0.3932 0.7312 0.514 1 1 0.2386
Malta 0.7812 0.1197 0.4032 0.2991 0.2654 0.5176 0.1614
Netherlands 0.8437 0.641 0.7036 0.972 0.157 0.5176 0.5684
Poland 0.4375 0.1709 0.4545 0.7009 0 0.2563 0.2632
Portugal 0.8125 0.245 0.6522 0.3832 0.1036 0.1457 0.0702
Romania 0.0938 0 0.3518 0 0.0696 0.0804 0.0281
Slovakia 0.2812 0.0655 0.5415 0.4673 0.0485 0.2764 0.0421
Slovenia 0.7812 0.1453 0.6877 0.7477 0.0453 0.2663 0.1228
Spain 1 0.5328 0.6324 0.4766 0.0372 0.3266 0.1193
Sweden 0.9375 1 0.8696 0.9907 0.377 0.5829 0.2632

According to Eq. (22), the S, values (see in the Table 6) when the criterion j is removed can be acquired where S,, denotes

the WSM scores of the first alternative when the second criteria is eliminated from the decision model.

Table 6. The Sij Values

Business & Ease of
Basic Government Doing Human Start-Up Technology Technology
Needs Investment Business Capital Environment Adoption Infrastructure

Austria 0.4293 0.4816 0.4192 0.4442 0.5536 0.4883 0.5408
Belgium 0.321 0.3899 0.3754 0.3531 0.4369 0.4001 0.4307
Bulgaria 0.0414 0.0399 0.0414 0.0414 0.0225 0.0414 0.0203
Croatia 0.1468 0.1487 0.0676 0.1261 0.1483 0.1539 0.152

Cyprus 0.3411 0.4585 0.3871 0.3524 0.4138 0.4075 0.4363
Czech Republic 0.3389 0.4099 0.3213 0.308 0.4238 0.3941 0.3999
Denmark 0.6818 0.7171 0.6297 0.6453 0.7637 0.7109 0.6297
Estonia 0.5483 0.6013 0.5038 0.465 0.5456 0.5638 0.5621
Finland 0.5848 0.6167 0.5713 0.5728 0.7063 0.6426 0.6582
France 0.3371 0.4321 0.3729 0.4113 0.4616 0.4335 0.449

Germany 0.5293 0.575 0.512 0.5032 0.6413 0.5697 0.5952
Greece 0.1303 0.2686 0.1906 0.246 0.271 0.2559 0.2634
Hungary 0.1322 0.1568 0.1679 0.1074 0.1753 0.164 0.1709
Ireland 0.5727 0.5918 0.5587 0.5398 0.6553 0.6037 0.6328
Italy 0.1626 0.2999 0.2595 0.3137 0.3225 0.2883 0.3293
Latvia 0.3158 0.3049 0.2123 0.1933 0.3029 0.2992 0.2976
Lithuania 0.3795 0.3776 0.2661 0.2638 0.3781 0.3104 0.3642
Luxembourg 0.6462 0.7265 0.6701 0.7063 0.6253 0.6253 0.7522
Malta 0.2944 0.4046 0.3574 0.3747 0.3804 0.3383 0.3977
Netherlands 0.5933 0.627 0.6166 0.5719 0.7077 0.6476 0.6391
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Poland 0.3076 0.3521 0.3048 0.2637 0.3806 0.3378 0.3367
Portugal 0.2666 0.3612 0.2934 0.3382 0.3848 0.3778 0.3904
Romania 0.0883 0.1039 0.0453 0.1039 0.0923 0.0905 0.0993
Slovakia 0.2402 0.2762 0.1968 0.2092 0.279 0.241 0.2801
Slovenia 0.3359 0.4419 0.3514 0.3415 0.4585 0.4217 0.4456
Spain 0.3542 0.432 0.4154 0.4414 0.5146 0.4664 0.5009
Sweden 0.6806 0.6701 0.6919 0.6717 0.774 0.7396 0.7929

Based on Eq. (23) and (24), I evaluated the 1, and 7", values for each criterion and afterwards I obtained =z, ziy’; ,

and w, via Eq. (25), (26), and (27), respectively. The results are represented in Table 7. According to RRC, the most

prominent criterion is Human Capital and the least one is Ease of Doing Business.

Table 7. The Criteria Weights obtained by RRC

Basic Business & Ease of Human Start-Up Technology ~ Technology
Needs Government Doing Capital Environment Adoption Infrastructure
Investment Business
7. 0.2024 0.1937 0.2203 0.2027 0.2121 0.2223 0.2086
n 0.0043 0.0015 0.0188 0.0002 0.001 0.0023 0.0092
J
m, 0.1473 0.1533 0.1350 0.1471 0.1406 0.1336 0.1430
' 0.154 0.1829 0.0018 0.1970 0.1881 0.1743 0.1019
J
W 0.1507 0.1681 0.0684 0.1720 0.1644 0.1539 0.1225
J

I also compared RRC with other prominent objective weighting methods in evaluating the criteria of DRI, and the criteria
weights based on these methods are given in Table 8. Zhang et al. (2014) stated that if there is a negative value in decision
matrix, the Z score approach can be applied in normalization process of entropy method. Accordingly, I performed this
approach in the entropy method.

Incidentally, it causes problems in practice if the difference between the most and the least important criteria is enormous
(Zavadskas & Podvezko, 2016) and (Ecer & Pamucar, 2022). Accordingly, it is desired that the ratio difference between them
should not be as large as possible. While this ratio is naturally 1 for EWM, I calculated the ratio for RRC, Entropy, MEREC,
CRITIC and SD as 2.5146, 1.673, 14.8607, 2.2863, and 1.5696, respectively. Acceptable results were acquired with all
methods except MEREC. Conversely, if this ratio is close to 1, there will be no differentiation between criteria. The RRC
come to the fore with its more balanced ratio regarding these two issues.

Table 8. The criteria weights obtained by objective weighting methods

Business & Ease of

Basic Government Doing Human Start-Up Technology Technology

Needs Investment Business Capital Environment Adoption Infrastructure
EWM 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429
Entropy 0.1640 0.1296 0.1852 0.1569 0.1107 0.1361 0.1175
MEREC 0.0201 0.2987 0.2455 0.0756 0.2042 0.1101 0.0458
CRITIC 0.2204 0.1264 0.1162 0.1654 0.1521 0.0964 0.1232
SD 0.1849 0.1433 0.1342 0.1771 0.1178 0.1238 0.1189

According to the rankings in Table 9, it can be thought that all methods are quite similar to each other except MEREC, while
the values of Spearman Rank Correlations given in Table 10 clearly reveal this argument. Meanwhile, the RRC’s ranking is
highly correlated with other methods.

Table 9. Rankings of Countries acquired by each weighting approach via WSM

RRC EWM Entropy MEREC CRITIC SD

Score Rank Score Rank  Score Rank Score Rank Score Rank Score Rank
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Austria 0.4582 9 04796 9 0.5284 9 0.4737 9 0.5039 9 05173 9
Belgium 0.3882 13 03867 14 0.418 14 0.3385 12 0.4265 14 0.425 14
Bulgaria 0.0355 27 0.0354 27 0.0285 27 0.0315 27 0.0339 27 0.0296 27
Croatia 0.1027 25 0.1348 25 0.1581 25 0.1772 23 0.1276 25 0.1367 25
Cyprus 0.3981 11 03995 12 0.4275 13 0.3077 17 0.4427 12 0.4315 13
Czech Republic ~ 0.3505 16 03708 15 0.4115 15 0318 16 0.3971 15 0.4039 15
Denmark 0.6415 3 0.6826 2 0.7108 2 0.6122 3 0.6802 3 0.6955 2
Estonia 0.5291 8 0.5414 8 0.5662 8 0.4977 8 0.5569 8 0.5594 8
Finland 0.6025 5 0.6218 5 0.6658 4 0.6049 4 0.6425 5 0.6589 5
France 0.3938 12 0.414 11 0.4511 11 0.3713 11 0.4523 11 0.4461 11
Germany 0.5416 7 0.5608 7 0.6043 7 0.5233 7 0.579 7 0.5961 7
Greece 0.2077 23 02323 23 0.2707 23 0.163 24 02829 21 0.2659 22
Hungary 0.1671 24 0.1535 24 0.164 24 0.1115 26 0.176 24 0.1761 24
Ireland 0.5848 6 0.5936 6 0.6277 6 0.5817 5 0.6088 6 0.6241 6
Italy 0.2696 20 0.2823 20 0.3171 20 0.2182 22 0.3367 19 03182 20
Latvia 0.2526 21 02752 21 0.305 21 0.2905 19 0.268 22 0.2885 21
Lithuania 0.307 19 03342 18 0.3673 18 0.3372 13 03106 20 03418 19
Luxembourg 0.6839 2 0.6789 3 0.6854 3 0.6786 2 0.6904 2 0.6773 3
Malta 0.3599 15 0.3639 16 0.384 17 0.2916 18 0.3937 16 03832 16
Netherlands 0.6253 4 0.629 4 0.6589 5 0.5697 6 0.6532 4 0.6646 4
Poland 0.318 18 03262 19 0.3539 19 0.2647 20 0.3439 18 03536 18
Portugal 0.3222 17 03446 17 0.3854 16 0.319 15 0.3876 17 03793 17
Romania 0.0654 26 0.0891 26 0.1025 26 0.1126 25 0.0833 26 0.086 26
Slovakia 0.2265 22 02461 22 0.2762 22 0.2358 21 02497 23 0.2618 23
Slovenia 0.3813 14 0.3995 13 0.4473 12 0.3287 14 0.4418 13 0.4429 12
Spain 0.4365 10 0.4464 10 0.4875 10 0.4196 10 0.4919 10 0.4895 10
Sweden 0.7232 1 07173 1 0.7518 1 0.7591 1 0.7438 1 0.7566 1

Table 10. Correlation between the rankings based on each approach

RRC EWM Entropy MEREC CRITIC SD
RRC 1 0.9969 0.9933 0.9646 0.9957 0.9951
EWM 0.9969 1 0.9982 0.9719 0.9957 0.9982
Entropy 0.9933 0.9982 1 0.9768 0.9939 0.9976
MEREC 0.9646 0.9719 0.9768 1 0.9579 0.9676
CRITIC 0.9957 0.9957 0.9939 0.9579 1 0.9976
SD 0.9951 0.9982 0.9976 0.9676 0.9976 1

However, the stability values which are indications of the robustness of the rankings to the criteria weights, differs according
the weighting methods. I obtained 7" values as 0.0214, 0.0004, 0.0090, 0.0055, 0.0079, and 0.0200 for RRC, EWM, Entropy

Method, MEREC, CRITIC, and SD respectively. While RRC provides more robustness than any of these methods, SD
achieved 2nd place. The effectiveness of RRCD in problem solving has emerged as alternative ranking is similar to other
methods and provides additional robustness.

5. Conclusions

MCDM is an important methodology used in various fields. Criteria weighting is a vital part of MCDM. The objective
criteria weighting approach, which provides criteria weighting based on decision matrix values instead of expert opinions,
has a solid foundation in the MCDM field. Any doubt on the criteria weights would raises question marks about the MCDM's
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results. However, there is always room for error in the alternative scores measured for each criterion. Any small change in the
criterion scores of the alternatives, whether or not caused by measurement errors, can significantly affect criteria weights
obtained by objective criteria weighting methods. According to (Wang & Luo, 2010), this point peculiarly causes objective
approaches to receive significant criticism. To tide over this problem, especially small changes in the weights of the criteria
should not affect the ranking. This #" ratio can be considered as a value that compensates the possible error margin in the

weight values of the criteria.

In this study, to address this concern, I proposed an objective criteria weighting approach that aims to increase the stability of
rankings to the criteria weight changes. The proposed RRC, which focuses primarily on the criteria removal effect on
robustness, was compared with EWM, Entropy Method, MEREC, CRITIC, and SD via simulations. In simulation-based
analysis, the RRC outperformed all methods on every matrix size in average robustness and pairwise comparisons.

The digital readiness of the EU member states were evaluated with the RRC method, which is easy to calculate and
developed from a different point of view than existing methods. While only the proposed RRC and SD were able to exceed
the previously determined limit value (1%) with 2.14% and 2%, the RRC prevailed against SD with a ratio of 2.5146 to
1.5696 in differentiating the criteria.

The validity of the model was ensured because there was no significant difference between the maximum and minimum
criteria weight values, the stability value was higher than other methods, and the ranking correlations were high with other
methods. On the other hand, as managerial insights, countries' prioritization of Human Capital and subsequent focus on
Business & Government Investment and Start-Up Environment will lead to an increase in digital readiness processes.

I employed the 7", andn,” to concern the robustness of ranking to the criteria changes. Future research can explore

employing various robustness indicators like the correlation of stability values between criteria, the covariance of criteria, and
ranking correlations. Moreover, the RRC approach can be extended by using different types of MCDMs than WSM. The
integration of RRC with other existing weighting methods would be another direction of future studies. While extending
RRC by applying it in a fuzzy environment can be beneficial in fuzzy decision-making, employing different normalization
techniques can explore more fields in capability of the proposed approach.
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