

Potential Effects Of Sglt-2 Inhibitors on Parkinson Disease

Sglt-2 İnhibitörlerinin Parkinson Hastalığı Üzerindeki Potansiyel Etkileri

Veysel Baskın

Dr. Öğr. Üyesi, Hıtit Üniversitesi Tıp Fakültesi Tıbbi Farmakoloji Anabilim Dalı, Çorum, 0000-0002-1733-2621

ÖZET

Parkinson hastalığı (PD), hem merkezi hem de periferik sinir sistemlerini etkileyen ilerleyici bir nörodejeneratif bozukluktur. Substansya nigra'daki dopaminerjik nöronların kaybı ile karakterize edilir ve striatumdaki dopamin seviyelerinde önemli bir düşüşe neden olur. Bu arada, tip 2 diabetes mellitus (T2DM) genel sağlık için ciddi bir tehdit oluşturmaktadır. T2DM'nin patofizyolojisinin önemli bir yönü, artan oksidatif stresi içerir. Kanıtlar, T2DM'li bireylerin PD gelişirme riskinin yüksek olabileceğini düşündürmektedir. Oksidatif stres ve enfiamasyon gibi alatta yatan ortak mekanizmalar, her iki durumun da gelişmesine katkıda bulunabilir. T2DM'yi yönetmek için onaylanan SGLT-2 inhibitörleri olarak bilinen ilaçlar, böbreklerde glikoz geri emilimini engelleyerek kan şekerini düşürür. Glikoz düşürücü etkilerinin ötesinde, bu ilaçların enfiamasyonu azalttığı, mitokondriyal sağlığı koruduğu ve reaktif oksijen türlerinin üretimini azalttığı bilinmektedir. Bu özellikler nedeniyle SGLT-2 inhibitörleri, PD dahil olmak üzere nörodejeneratif hastalıklardaki potansiyel faydaları açısından araştırılmaktadır. Örneğin empagliflozin, Parkinson hastalığının fare modellerinde motor fonksiyonları iyileştirme, nöroenflamasyonu azaltma ve nöroplastisiteyi teşvik etme yeteneğini göstermiştir. Bununla birlikte, mevcut araştırma sınırlıdır ve genellikle metodolojik olarak kusurludur, bu da bu bulguları doğrulamak için daha büyük, daha titiz çalışmalarla duyulan ihtiyacı vurgulamaktadır. Bu derleme, T2DM ve PH arasındaki ilişkiye araştırmayı, mevcut literatürü özetlemeyi ve SGLT-2 inhibitörlerinin PH ilerlemesi üzerindeki potansiyel etkisini değerlendirmeyi amaçlamaktadır. Ancak literatürdeki bilgiler kısıtlı olduğundan dolayı bu konu ile ilgili daha fazla çalışmaya ihtiyaç vardır. Gelecekteki araştırmalar yeni terapötik yaklaşımın önünü açabilir ve bu ilaçların nörodejeneratif süreçleri nasıl etkileyebileceğine dair anlayışımızı derinleştirebilir.

Anahtar kelimeler: Parkinson hastalığı, Diabetus Mellitus, SGLT-2 inhibitörü, nöroenflamasyon

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder that impacts both the peripheral and central nervous systems. It is characterized by the deficit of dopaminergic neurons in the substantia nigra, resulting in a significant decline in dopamine levels within the striatum. Meanwhile, type 2 diabetes mellitus (T2DM) poses a serious threat to overall health. A key aspect of T2DM's pathophysiology involves increased oxidative stress. Evidence suggests that individuals with T2DM may have a heightened risk of developing PD. Shared underlying mechanisms, such as oxidative stress and inflammation, could contribute to the development of both conditions. Medications known as SGLT-2 inhibitors, which are approved for managing T2DM, reduce blood sugar by blocking glucose reabsorption in the kidneys. Beyond their glucose-lowering effects, these drugs are known to decrease inflammation, maintain mitochondrial health, and reduce the production of reactive oxygen species. Due to these properties, SGLT-2 inhibitors are being explored for their potential benefits in neurodegenerative diseases, including PD. For example, empagliflozin has demonstrated the ability to improve motor functions, lower neuroinflammation, and promote neuroplasticity in mouse models of Parkinson's disease. However, current research is limited and often methodologically flawed, highlighting the need for larger, more rigorous studies to confirm these findings. This review aims to explore the relationship between T2DM and PD, summarize the existing literature, and evaluate the potential impact of SGLT-2i on PD progression. However, due to the limited information available in the literature, further research on this topic is needed. Future investigations could pave the way for new therapeutic approaches and deepen our understanding of how these drugs might influence neurodegenerative processes.

Keywords: Parkinson's Disease, Diabetes Mellitus, SGLT-2 Inhibitor, neuroinflammation

Sorumlu yazar:

Veysel Baskın, Dr. Öğr. Üyesi, Hıtit Üniversitesi Tıp Fakültesi Tıbbi Farmakoloji AD, Çorum, baskin_veysel@hotmail.com

Başvuru/Submitted: 06.03.2025 **Kabul/Accepted:** 20.08.2025

Cite this article as: Baskın V. Potential Effects Of Sglt-2 Inhibitors On Parkinson Disease. J TOGU Heal Sci. 2026;6(1):380-392.

INTRODUCTION

Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting both the central and peripheral nervous systems. It is characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra, leading to a marked reduction of dopamine levels in the striatum (1). While research has traditionally focused on the basal ganglia's role in PD, emerging evidence suggests that the loss of Purkinje cells in the cerebellum, which regulate movement via GABAergic signaling, may also contribute to motor and cognitive deficits (2, 3). Globally, PD affects about 1% of individuals over 60 and up to 5% of those over 85 years old (4). A hallmark pathological feature of Parkinson's disease (PD) is the accumulation of misfolded alpha-synuclein (α -syn) proteins, which aggregate to form intracellular inclusions known as Lewy bodies. These aggregates disrupt normal cellular homeostasis, impair proteasomal and lysosomal degradation pathways, and contribute to mitochondrial dysfunction and oxidative stress. As a result, the progressive accumulation of Lewy bodies leads to neuronal dysfunction and death, particularly within dopaminergic neurons of the substantia nigra, thereby driving the characteristic motor and non-motor symptoms of PD (5). Mutations in genes such as Parkin and DJ-1 also contribute to PD development. Parkin mutations disrupt mitochondrial function, whereas DJ-1 mutations impair antioxidant defense mechanisms (6). Oxidative stress is considered a major driver of PD pathology (7), with elevated levels of oxidative damage to proteins, lipids, and DNA observed in the substantia nigra of PD patients (8). Dopaminergic neurons are especially vulnerable due to the activity of ROS-generating enzymes, including tyrosine hydroxylase (TH) and monoamine oxidase (MAO) (7, 9). Neuroinflammation further contributes to PD progression, mainly through microglial activation and the release of proinflammatory cytokines (10). In addition, insulin resistance has been implicated in accelerating PD pathology (11). Recent hypotheses propose that DOPAL, a toxic dopamine metabolite produced via MAO, may promote α -synuclein aggregation and Lewy body formation (10).

Type 2 Diabetes Mellitus (T2DM) is another major global health concern, affecting 9.3% of the world's population in 2019. It is associated with microvascular and macrovascular complications such as cardiovascular disease, nephropathy, and retinopathy (12). Oxidative stress plays a central role in T2DM pathogenesis, where hyperglycemia promotes ROS production and chronic inflammation, leading to endothelial dysfunction. Conversely, elevated oxidative stress and inflammation can worsen insulin resistance and glycemic control. Several enzymatic pathways including xanthine oxidase, NADPH oxidases, eNOS, and AGEs

contribute to oxidative stress and systemic complications in T2DM (13-16). Effective management of oxidative stress and hyperglycemia through lifestyle changes and pharmacological treatments (such as statins, antihypertensives, probiotics, antiplatelet therapies, and antidiabetic drugs) is crucial for preventing disease progression (13, 17-19).

Sodium-glucose cotransporter 2 (SGLT-2) inhibitors represent a newer class of antidiabetic drugs that lower blood glucose by inhibiting renal glucose reabsorption. Agents such as empagliflozin, dapagliflozin, canagliflozin, and others have been approved by regulatory agencies including the FDA (20, 21). Beyond glycemic control, SGLT-2 inhibitors show potential neuroprotective effects, including anti-inflammatory actions, preservation of mitochondrial function, and reduction of oxidative stress, suggesting possible benefits for neurodegenerative diseases (21, 22). Although preclinical data are limited, studies with empagliflozin in a rotenone-induced mouse model of PD demonstrated improved motor function, reduced neuroinflammation, enhanced neuroplasticity, dopaminergic neuron preservation, and increased autophagy (23, 24). Epidemiological studies also suggest that T2DM may increase the risk of developing PD (25), potentially due to shared pathological mechanisms such as inflammation and oxidative stress (26).

Experimental research indicates that insulin modulates dopaminergic neuron function, whereas chronic hyperglycemia impairs it (27). T2DM may also contribute to tau pathology (28) and cognitive decline in elderly populations (29). Between 8% and 30% of PD patients develop diabetes, and 50% to 80% exhibit insulin resistance (30-37). Diabetes appears to influence the clinical course of PD, being associated with more severe gait disturbances (38-40) and faster cognitive decline (40, 41) (table.1).

Table 1. Epidemiological evidence linking T2DM to PD

Study / Year	Study Type	Sample Size	PD Risk in T2DM (HR/OR)	95% CI
Xu et al., 2011(42)	Prospective cohort	2,017,115	1.32	1.18 – 1.48
De Pablo-Fernández et al., 2018 (43)	Systematic review & meta-analysis	7 studies	1.38	1.18 – 1.62
Cereda et al., 2011 (44)	Meta-analysis	8 studies	1.37	1.21 – 1.55
Sun et al., 2012 (45)	Cohort study	51,552	1.36	1.04 – 1.77
Schernhammer et al., 2011 (46)	Prospective cohort	288,662	1.32	1.08 – 1.62

Abbreviations: HR: Hazard Ratio, OR: Odds Ratio, CI: Confidence Interval

This compilation study examined studies published in the PubMed, Scopus, and Web of Science databases. The keywords were determined as “SGLT-2 inhibitors,” “Parkinson’s disease,” “oxidative stress,” and “neuroinflammation.”

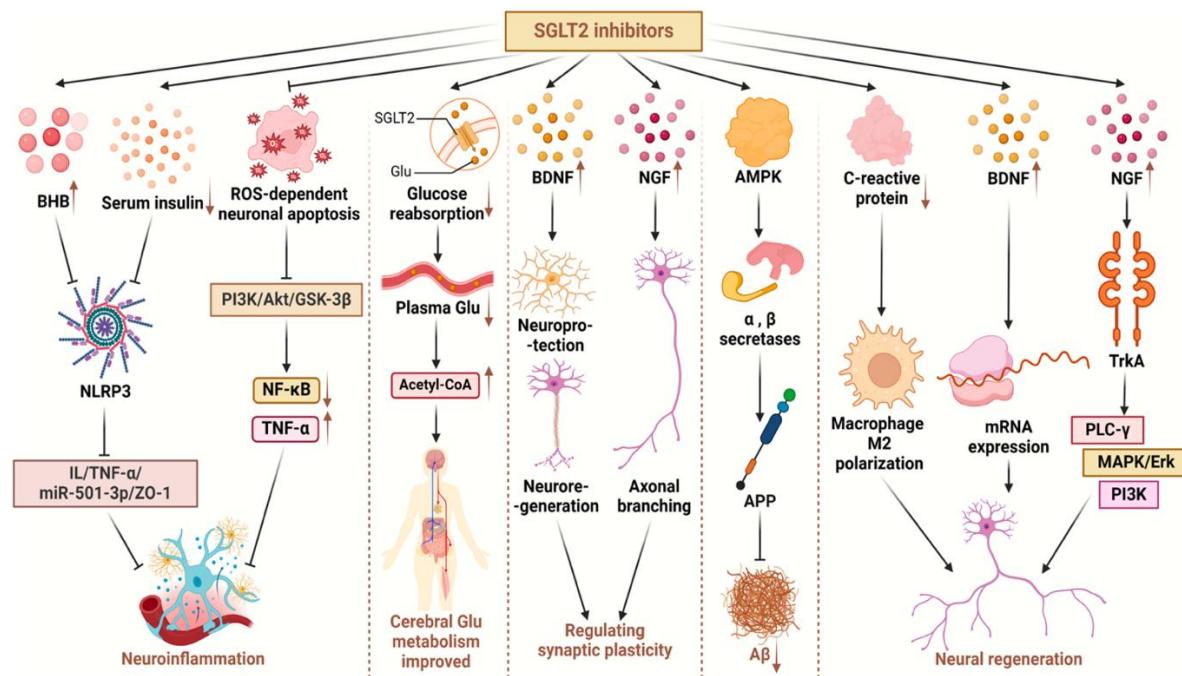
Effects of SGLT-2 Inhibitors on Parkinson’s Disease

Most SGLT-2 inhibitors are lipid-soluble, enabling them to effectively cross the blood-brain barrier (BBB) (47). Empagliflozin has been shown to alleviate cognitive deficits in mice by reducing cerebral oxidative stress, decreasing the expression of NADPH oxidase subunits (gp91), enhancing BDNF levels, and minimizing albuminuria and glomerular injury mechanisms that may underlie its neuroprotective effects (48-50). However, studies investigating the impact of SGLT-2 inhibitors in PD models remain limited. Notably, empagliflozin was reported to attenuate neurodegeneration in a rotenone-induced PD rat model by modulating α -synuclein and PARK2 expression, as well as by exerting antioxidant and anti-inflammatory effects (51). Additionally, empagliflozin improved locomotor function, reduced α -synuclein accumulation, alleviated oxidative stress and inflammation, and activated the AMPK/SIRT-1/PGC-1 α and Wnt/ β -catenin signaling pathways in this model (52). Similarly, dapagliflozin was found to significantly ameliorate motor deficits and neuronal damage through the ROS-dependent AKT/GSK-3 β /NF- κ B and DJ-1/Nrf2 pathways in another rotenone-induced PD rat model (53). A limited number of case reports also suggest that treatment with

SGLT-2 inhibitors in PD patients may improve metabolic profiles and overall health outcomes (21, 54) (Table 2).

Glucose serves as the brain's primary energy source and is essential for maintaining normal neuronal function (55). After crossing the BBB, glucose is transported into neurons and glial cells via specific carrier proteins. Two main types of glucose transporters are involved: sodium-dependent glucose transporters (SGLTs) and facilitated diffusion glucose transporters (GLUTs) (56). Neurons predominantly express GLUT3, whereas glial cells and the endothelial cells of the BBB primarily express GLUT1 (57).

SGLT transporters were originally identified in the kidney and small intestine (58, 59). However, recent research has demonstrated that these transporters are also expressed in several regions of the brain, including the frontal cortex, hippocampus, caudate nucleus, putamen, parietal cortex, and the paraventricular nucleus of the hypothalamus, though their presence is less prominent in the brainstem (60). The partial lipid solubility of SGLT-2 inhibitors, their ability to cross the blood-brain barrier, and the confirmed presence of SGLT-2 in the brain have increased interest in their potential use for treating neurological disorders (61-63). (Figure 1).


Table 2. Effects of SGLT-2 inhibitors in Parkinson's disease (54)

Medicine	Mechanism of action	Effect on the PD model	Clinical evidence in PD
SGLT-2 inhibitors	reduces the kidneys' reabsorption of glucose	<ul style="list-style-type: none"> • reduces neurodegeneration in Parkinson's disease caused by rotenone • Promotes more locomotor activity • Reduces the buildup of α-syn • Wnt/β-catenin and AMPK/SIRT-1/PGC-1α pathways are activated • Decreases neuronal damage via pathways dependent on ROS 	Potential advantages, such as neuroprotective effects, are suggested by several observational studies

Oxidative stress and inflammatory processes are closely interconnected. In a rat model of isoprenaline-induced renal oxidative injury, treatment with canagliflozin inhibited the expression of iNOS and NOX4, activated antioxidant and anti-inflammatory pathways such as AMPK, AKT, and eNOS, and subsequently reduced oxidative damage while restoring depleted antioxidant reserves (64). Given that the redox state reflects a delicate and dynamic balance between oxidative and antioxidative forces, numerous studies have concurrently examined both systems. For example, in streptozotocin-induced diabetic mice, SGLT-2 inhibition using phlorizin reduced the levels of nitrogen-derived free radicals, particularly 3-nitrotyrosine (3-NT), while also restoring the activity of key antioxidant enzymes, such as glutathione peroxidase (GPx) and catalase (CAT), in the kidney (65).

Furthermore, evidence suggests that SGLT-2 inhibition can restore manganese/copper/zinc-dependent superoxide dismutases and catalase activity in diabetic animal kidney tissues, contributing to reduced oxidative stress (66, 67). Overall, these findings suggest that SGLT-2 inhibitors have antioxidant and anti-inflammatory effects, especially in the kidneys. In human proximal tubular cells under high-glucose conditions, tofogliflozin reduced oxidative stress, lowered MCP-1 levels, and prevented cell death (68). Similarly, in cultured mouse renal proximal tubular cells, dapagliflozin reduced the expression of genes linked to oxidative stress and inflammatory cytokines, highlighting its role in alleviating hyperglycemia-induced inflammation and oxidative stress in diabetic nephropathy (69). Additionally, canagliflozin was found to inhibit glucose-induced excessive ROS production in cultured mouse mesangial cells by blocking the protein kinase C/NADPH oxidase signaling pathway (70).

Oxidative stress occurs when a biological system fails to maintain redox homeostasis, leading to an imbalance between the production and clearance of reactive oxygen species (ROS). A significant association exists between oxidative stress and the pathophysiology of PD, with oxidative damage contributing to the degeneration of dopaminergic neurons and the progression of neurodegeneration, where pathological mechanisms such as alpha-synuclein aggregation, neuroinflammation, mitochondrial dysfunction, and abnormal dopamine metabolism contribute to heightened oxidative damage (71). Consequently, targeting oxidative stress-related signaling pathways could offer therapeutic potential for managing PD (72). Given the established association between oxidative stress and PD, it is plausible that SGLT-2 inhibitors may exert indirect neuroprotective effects in the context of Parkinson's disease.

Figure 1. ways that SGLT-2 inhibitors regulate the survival of neurons

1. SGLT-2 inhibitors reduce the activation of the NLRP3 inflammasome in macrophages by increasing serum levels of β -hydroxybutyrate (BHB) and lowering circulating insulin levels. This results in the downregulation of the NLRP3/IL-1/TNF- α /miR-501-3p/ZO-1 signaling axis. Additionally, SGLT-2 inhibitors suppress the PI3K/Akt/GSK-3 β pathway, prevent ROS-induced neuronal cell death, and inhibit the activation of the NF- κ B and TNF- α pathways, thereby effectively mitigating neuroinflammation 2. The primary mechanism of action of SGLT-2 inhibitors involves targeting SGLT-2 transporters in the renal proximal tubules, promoting urinary glucose excretion and reducing glucose reabsorption. This metabolic shift enhances cerebral glucose metabolism by favoring a transition from carbohydrate utilization to fatty acid oxidation in the brain 3. SGLT-2 inhibitors enhance synaptic plasticity by increasing the expression of neurotrophic factors such as BDNF and NGF 4. By activating adenosine monophosphate-activated protein kinase (AMPK) through liver kinase B1 (LKB1) and modulating the expression of α - and β -secretases, SGLT-2 inhibitors effectively reduce the production of amyloid-beta (A β) from amyloid precursor protein (APP), thereby potentially mitigating the accumulation of amyloid plaques associated with neurodegenerative diseases. 5. SGLT-2 inhibitors promote the polarization of macrophages towards the M2 phenotype, which plays a key role in supporting nerve regeneration. These inhibitors also significantly elevate tissue levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF).

BDNF enhances mRNA expression, thereby increasing the intrinsic regenerative capacity of neurons, while NGF binds to the pro-myosin receptor kinase A (TrkA), triggering a cascade of biochemical pathways that promote neural repair and regeneration (63).

CONCLUSION AND DISCUSSION

SGLT-2 inhibitors, originally developed for the management of T2DM, have recently attracted attention for their potential neuroprotective effects in neurodegenerative diseases such as PD. Preclinical studies have demonstrated that these agents can improve cerebral glucose metabolism, enhance neuronal plasticity, and reduce oxidative stress and neuroinflammation processes central to PD pathogenesis (47, 52). In addition, their ability to modulate mitochondrial function and attenuate microglial activation may contribute to slowing disease progression (73). Despite these promising findings, the current body of literature is both limited and, in certain aspects, contradictory. While some studies report significant neuroprotective effects (54), others have found minimal benefit or raised concerns about potential off-target actions that could diminish their therapeutic value (74).

These inconsistencies may result from heterogeneity in experimental models, dosing regimens, treatment durations, and study populations, underlining the need for standardized and reproducible research protocols. Given the pharmacodynamic overlap between the mechanisms of SGLT-2 inhibitors and the pathophysiological processes underlying PD such as impaired energy metabolism, oxidative stress, and chronic inflammation repurposing these agents as neuroprotective drugs represents a compelling research avenue. Future studies should aim to address current evidence gaps through well-designed longitudinal animal models and large-scale randomized clinical trials. As a result, SGLT-2 inhibitors are considered one of the promising therapeutic options of the future not only in the treatment of diabetes but also in the management of neurodegenerative diseases.

REFERENCES

1. Acar N, Parlak H, Ozkan A, Soylu H, Avcı S, Ustunel I, et al. The effect of docosahexaenoic acid on apelin distribution of nervous system in the experimental mouse model of Parkinson's disease. *Tissue and Cell*. 2019;56:41-51.
2. Hasan R, Lasker S, Hasan A, Zerin F, Zamila M, Chowdhury FI, et al. Canagliflozin attenuates isoprenaline-induced cardiac oxidative stress by stimulating multiple antioxidant and anti-inflammatory signaling pathways. *Scientific reports*. 2020;10(1):14459.
3. Piras F, Vecchio D, Assogna F, Pellicano C, Ciullo V, Banaj N, et al. Cerebellar GABA levels and cognitive interference in Parkinson's disease and healthy comparators. *Journal of Personalized Medicine*. 2020;11(1):16.
4. Balestrassi LS, Silva SMCA. Descriptive epidemiological study on patients with movement disorders, with emphasis on Parkinson's disease. *Sao Paulo Medical Journal*. 2021;139(01):30-7.
5. Recasens A, Dehay B, Bové J, Carballo-Carbajal I, Dovero S, Pérez-Villalba A, et al. Lewy body extracts from Parkinson disease brains trigger α -synuclein pathology and neurodegeneration in mice and monkeys. *Annals of neurology*. 2014;75(3):351-62.
6. Dodson MW, Guo M. Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson's disease. *Current opinion in neurobiology*. 2007;17(3):331-7.
7. Hwang O. Role of oxidative stress in Parkinson's disease. *Experimental neurobiology*. 2013;22(1):11.
8. Nakabeppu Y, Tsuchimoto D, Yamaguchi H, Sakumi K. Oxidative damage in nucleic acids and Parkinson's disease. *Journal of neuroscience research*. 2007;85(5):919-34.
9. Wei Z, Li X, Li X, Liu Q, Cheng Y. Oxidative stress in Parkinson's disease: a systematic review and meta-analysis. *Frontiers in molecular neuroscience*. 2018;11:236.
10. Goldstein DS. The catecholaldehyde hypothesis: where MAO fits in. *Journal of Neural Transmission*. 2020;127(2):169-77.
11. Kalampokini S, Becker A, Fassbender K, Lyros E, Unger MM. Nonpharmacological modulation of chronic inflammation in Parkinson's disease: role of diet interventions. *Parkinson's Disease*. 2019;2019(1):7535472.
12. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. *Diabetes research and clinical practice*. 2019;157:107843.
13. Luc K, Schramm-Luc A, Guzik T, Mikolajczyk T. Oxidative stress and inflammatory markers in prediabetes and diabetes. *Journal of Physiology & Pharmacology*. 2019;70(6).
14. Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin C-T, et al. Mitochondrial H₂O₂ emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. *The Journal of clinical investigation*. 2009;119(3):573-81.
15. Jansen F, Yang X, Franklin BS, Hoelscher M, Schmitz T, Bedorf J, et al. High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. *Cardiovascular research*. 2013;98(1):94-106.

16. Wan A, Rodrigues B. Endothelial cell–cardiomyocyte crosstalk in diabetic cardiomyopathy. *Cardiovascular research*. 2016;111(3):172-83.
17. Wenclewska S, Szymczak-Pajor I, Drzewoski J, Bunk M, Śliwińska A. Vitamin D supplementation reduces both oxidative DNA damage and insulin resistance in the elderly with metabolic disorders. *International journal of molecular sciences*. 2019;20(12):2891.
18. He L, Zhang G, Wei M, Zhao Y, Chen W, Peng Q, et al. Effect of individualized dietary intervention on oxidative stress in patients with type 2 diabetes complicated by tuberculosis in xinjiang, china. *Diabetes Therapy*. 2019;10(6):2095-105.
19. Bordalo Tonucci L, Dos Santos KMO, De Luces Fortes Ferreira CL, Ribeiro SMR, De Oliveira LL, Martino HSD. Gut microbiota and probiotics: Focus on diabetes mellitus. *Critical Reviews in Food Science and Nutrition*. 2017;57(11):2296-309.
20. Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. *Nature Reviews Cardiology*. 2020;17(12):761-72.
21. Lin K-J, Wang T-J, Chen S-D, Lin K-L, Liou C-W, Lan M-Y, et al. Two birds one stone: the neuroprotective effect of antidiabetic agents on Parkinson disease—focus on sodium-glucose cotransporter 2 (SGLT2) inhibitors. *Antioxidants*. 2021;10(12):1935.
22. Esterline R, Oscarsson J, Burns J. A role for sodium glucose cotransporter 2 inhibitors (SGLT2is) in the treatment of Alzheimer's disease? *International review of neurobiology*. 2020;155:113-40.
23. Motawi TK, Al-Kady RH, Abdelraouf SM, Senousy MA. Empagliflozin alleviates endoplasmic reticulum stress and augments autophagy in rotenone-induced Parkinson's disease in rats: Targeting the GRP78/PERK/eIF2 α /CHOP pathway and miR-211-5p. *Chemico-Biological Interactions*. 2022;362:110002.
24. Mousa HH, Sharawy MH, Nader MA. Empagliflozin enhances neuroplasticity in rotenone-induced parkinsonism: Role of BDNF, CREB and Npas4. *Life Sciences*. 2023;312:121258.
25. Yue X, Li H, Yan H, Zhang P, Chang L, Li T. Risk of Parkinson disease in diabetes mellitus: an updated meta-analysis of population-based cohort studies. *Medicine*. 2016;95(18):e3549.
26. Santiago JA, Potashkin JA. Network-based metaanalysis identifies HNF4A and PTBP1 as longitudinally dynamic biomarkers for Parkinson's disease. *Proceedings of the National Academy of Sciences*. 2015;112(7):2257-62.
27. Craft S, Watson GS. Insulin and neurodegenerative disease: shared and specific mechanisms. *The lancet neurology*. 2004;3(3):169-78.
28. Moran C, Beare R, Phan TG, Bruce DG, Callisaya ML, Srikanth V, et al. Type 2 diabetes mellitus and biomarkers of neurodegeneration. *Neurology*. 2015;85(13):1123-30.
29. Li W, Risacher SL, Huang E, Saykin AJ, Initiative AsDN. Type 2 diabetes mellitus is associated with brain atrophy and hypometabolism in the ADNI cohort. *Neurology*. 2016;87(6):595-600.
30. AM E, EI K. Studies on the Carbohydrate metabolism in Parkinsonism.(Relation of Carbohydrate metabolism disorders to the clinical picture of the disease). *Zhurnal nevropatologii i psichiatrii imeni SS Korsakova* (Moscow, Russia: 1952). 1965;65:46-50.
31. Lipman IJ, Boykin ME, Flora RE. Glucose intolerance in Parkinson's disease. *Journal of chronic diseases*. 1974;27(11-12):573-9.

32.Sandyk R. The relationship between diabetes mellitus and Parkinson's disease. International Journal of Neuroscience. 1993;69(1-4):125-30.

33.Hu G, Jousilahti P, Bidel S, Antikainen R, Tuomilehto J. Type 2 diabetes and the risk of Parkinson's disease. Diabetes care. 2007;30(4):842-7.

34.Becker C, Brobert GP, Johansson S, Jick SS, Meier CR. Diabetes in patients with idiopathic Parkinson's disease. Diabetes care. 2008;31(9):1808-12.

35.Scigliano G, Musicco M, Soliveri P, Piccolo I, Ronchetti G, Girotti F. Reduced risk factors for vascular disorders in Parkinson disease patients: a case-control study. Stroke. 2006;37(5):1184-8.

36.Chalmanov V, Vúrbanova M. Diabetes mellitus in parkinsonism patients. Vutreshni bolesti. 1987;26(1):68-73.

37.Pressley J, Louis E, Tang M-X, Cote L, Cohen P, Glied S, et al. The impact of comorbid disease and injuries on resource use and expenditures in parkinsonism. Neurology. 2003;60(1):87-93.

38.Jones J, Malaty I, Price C, Okun M, Bowers D. Health comorbidities and cognition in 1948 patients with idiopathic Parkinson's disease. Parkinsonism & Related Disorders. 2012;18(10):1073-8.

39.R Ashraghi M, Pagano G, Polychronis S, Niccolini F, Politis M. Parkinson's disease, diabetes and cognitive impairment. Recent patents on endocrine, metabolic & immune drug discovery. 2016;10(1):11-21.

40.Giuntini M, Baldacci F, Del Prete E, Bonuccelli U, Ceravolo R. Diabetes is associated with postural and cognitive domains in Parkinson's disease. Results from a single-center study. Parkinsonism & related disorders. 2014;20(6):671-2.

41.Ong M, Foo H, Chander RJ, Wen M-C, Au WL, Sitoh YY, et al. Influence of diabetes mellitus on longitudinal atrophy and cognition in Parkinson's disease. Journal of the Neurological Sciences. 2017;377:122-6.

42.Xu Q, Park Y, Huang X, Hollenbeck A, Blair A, Schatzkin A, et al. Diabetes and risk of Parkinson's disease. Diabetes care. 2011;34(4):910-5.

43.De Pablo-Fernandez E, Goldacre R, Pakpoor J, Noyce AJ, Warner TT. Association between diabetes and subsequent Parkinson disease: a record-linkage cohort study. Neurology. 2018;91(2):e139-e42.

44.Cereda E, Barichella M, Pedrolli C, Klersy C, Cassani E, Caccialanza R, et al. Diabetes and risk of Parkinson's disease: a systematic review and meta-analysis. Diabetes care. 2011;34(12):2614-23.

45.Sun Y, Chang Y-H, Chen H-F, Su Y-H, Su H-F, Li C-Y. Risk of Parkinson Disease Onset in Patients With DiabetesA 9-year population-based cohort study with age and sex stratifications. Diabetes care. 2012;35(5):1047-9.

46.Schernhammer E, Hansen J, Røgbjerg K, Wermuth L, Ritz B. Diabetes and the risk of developing Parkinson's disease in Denmark. Diabetes care. 2011;34(5):1102-8.

47.Pawlos A, Broncel M, Woźniak E, Gorzelak-Pabiś P. Neuroprotective effect of SGLT2 inhibitors. Molecules. 2021;26(23):7213.

48.Scisciola L, Cataldo V, Taktaz F, Fontanella RA, Pesapane A, Ghosh P, et al. Anti-inflammatory role of SGLT2 inhibitors as part of their anti-atherosclerotic activity: data from basic science and clinical trials. *Frontiers in cardiovascular medicine*. 2022;9:1008922.

49.Lin B, Koibuchi N, Hasegawa Y, Sueta D, Toyama K, Uekawa K, et al. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. *Cardiovascular diabetology*. 2014;13(1):148.

50.Amin EF, Rifaai RA, Abdel-latif RG. Empagliflozin attenuates transient cerebral ischemia/reperfusion injury in hyperglycemic rats via repressing oxidative–inflammatory–apoptotic pathway. *Fundamental & Clinical Pharmacology*. 2020;34(5):548-58.

51.Ahmed S, El-Sayed MM, Kandeil MA, Khalaf MM. Empagliflozin attenuates neurodegeneration through antioxidant, anti-inflammatory, and modulation of α -synuclein and Parkin levels in rotenone-induced Parkinson's disease in rats. *Saudi Pharmaceutical Journal*. 2022;30(6):863-73.

52.Mohammed NN, Tadros MG, George MY. Empagliflozin repurposing in Parkinson's disease; modulation of oxidative stress, neuroinflammation, AMPK/SIRT-1/PGC-1 α , and wnt/ β -catenin pathways: NN Mohammed et al. *Inflammopharmacology*. 2024;32(1):777-94.

53.Arab HH, Safar MM, Shahin NN. Targeting ROS-dependent AKT/GSK-3 β /NF- κ B and DJ-1/Nrf2 pathways by dapagliflozin attenuates neuronal injury and motor dysfunction in rotenone-induced Parkinson's disease rat model. *ACS chemical neuroscience*. 2021;12(4):689-703.

54.Tanvir A, Jo J, Park SM. Targeting glucose metabolism: a novel therapeutic approach for Parkinson's disease. *Cells*. 2024;13(22):1876.

55.Siesjö B. Brain energy metabolism and catecholaminergic activity in hypoxia, hypercapnia and ischemia. *Journal of neural transmission Supplementum*. 1978(14):17-22.

56.Manolescu AR, Witkowska K, Kinnaird A, Cessford T, Cheeseman C. Facilitated hexose transporters: new perspectives on form and function. *Physiology*. 2007;22(4):234-40.

57.Duelli R, Kuschinsky W. Brain glucose transporters: relationship to local energy demand. *Physiology*. 2001;16(2):71-6.

58.Wright EM. Renal Na⁺-glucose cotransporters. *American Journal of Physiology-Renal Physiology*. 2001;280(1):F10-F8.

59.Wright EM, Turk E. The sodium/glucose cotransport family SLC5. *Pflügers Archiv*. 2004;447(5):510-8.

60.Yu AS, Hirayama BA, Timbol G, Liu J, Diez-Sampedro A, Kepe V, et al. Regional distribution of SGLT activity in rat brain in vivo. *American Journal of Physiology-Cell Physiology*. 2013;304(3):C240-C7.

61.O'Malley D, Reimann F, Simpson AK, Gribble FM. Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing. *Diabetes*. 2006;55(12):3381-6.

62.Wiciński M, Wódkiewicz E, Górska K, Walczak M, Malinowski B. Perspective of SGLT2 inhibition in treatment of conditions connected to neuronal loss: focus on Alzheimer's disease and ischemia-related brain injury. *Pharmaceuticals*. 2020;13(11):379.

63. Mei J, Li Y, Niu L, Liang R, Tang M, Cai Q, et al. SGLT2 inhibitors: a novel therapy for cognitive impairment via multifaceted effects on the nervous system. *Translational neurodegeneration*. 2024;13(1):41.

64. Hasan R, Lasker S, Hasan A, Zerin F, Zamila M, Parvez F, et al. Canagliflozin ameliorates renal oxidative stress and inflammation by stimulating AMPK–Akt–eNOS pathway in the isoprenaline-induced oxidative stress model. *Scientific Reports*. 2020;10(1):14659.

65. Osorio H, Coronel I, Arellano A, Pacheco U, Bautista R, Franco M, et al. Sodium-glucose cotransporter inhibition prevents oxidative stress in the kidney of diabetic rats. *Oxidative medicine and cellular longevity*. 2012;2012(1):542042.

66. Shin SJ, Chung S, Kim SJ, Lee E-M, Yoo Y-H, Kim J-W, et al. Effect of sodium-glucose co-transporter 2 inhibitor, dapagliflozin, on renal renin-angiotensin system in an animal model of type 2 diabetes. *PLoS one*. 2016;11(11):e0165703.

67. Sugizaki T, Zhu S, Guo G, Matsumoto A, Zhao J, Endo M, et al. Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality. *npj Aging and Mechanisms of Disease*. 2017;3(1):12.

68. Ishibashi Y, Matsui T, Yamagishi S. Tofogliflozin, a highly selective inhibitor of SGLT2 blocks proinflammatory and proapoptotic effects of glucose overload on proximal tubular cells partly by suppressing oxidative stress generation. *Hormone and Metabolic Research*. 2016;48(03):191-5.

69. Terami N, Ogawa D, Tachibana H, Hatanaka T, Wada J, Nakatsuka A, et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. *PLoS one*. 2014;9(6):e100777.

70. Maki T, Maeno S, Maeda Y, Yamato M, Sonoda N, Ogawa Y, et al. Amelioration of diabetic nephropathy by SGLT2 inhibitors independent of its glucose-lowering effect: A possible role of SGLT2 in mesangial cells. *Scientific reports*. 2019;9(1):4703.

71. Chang K-H, Chen C-M. The role of oxidative stress in Parkinson's disease. *Antioxidants*. 2020;9(7):597.

72. Khan Z, Ali SA. Oxidative stress-related biomarkers in Parkinson's disease: A systematic review and meta-analysis. *Iranian journal of neurology*. 2018;17(3):137.

73. Gholami M, Coleman-Fuller N, Salehirad M, Darbeheshti S, Motaghinejad M. Neuroprotective Effects of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors (Gliflozins) on Diabetes-Induced Neurodegeneration and Neurotoxicity: A Graphical Review. *International Journal of Preventive Medicine*. 2024;15:28.

74. Hu L, Dong M-X, Huang Y-L, Lu C-Q, Qian Q, Zhang C-C, et al. Integrated metabolomics and proteomics analysis reveals plasma lipid metabolic disturbance in patients with Parkinson's disease. *Frontiers in Molecular Neuroscience*. 2020;13:80.