

Subclinical Mastitis in Dairy Cattle in Kayseri, Türkiye: Bacteriological Analysis and Antibiotic Susceptibilities*

Emre KARAKAYA^{1,a}, Murat ABAY^{2,b}

¹Erciyes University, Faculty of Veterinary Medicine, Department of Microbiology, Kayseri-TÜRKİYE

²Erciyes University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, Kayseri-TÜRKİYE

ORCID: ^a0000-0003-2390-6190; ^b0000-0003-2457-1919

Corresponding author: Emre KARAKAYA; E-mail: emrekarakaya@erciyes.edu.tr

How to Cite: Karakaya E, Abay M. Subclinical mastitis in dairy cattle in Kayseri, Türkiye: bacteriological analysis and antibiotic susceptibilities. Erciyes Univ Vet Fak Derg 2025; 22(2): 103-111

Abstract: Mastitis is a disease that causes significant economic losses in dairy farms and is caused by many microorganisms and physical trauma. In this study, it was aimed to detect subclinical mastitis (SCM) using the California Mastitis Test (CMT) and bacteriological analysis in dairy cattle and to determine the antibiotic susceptibilities of the obtained isolates. For this purpose, a total of 400 milk samples from 100 cattle were screened with CMT. The CMT-positive samples were subjected to bacteriological analysis. The samples were inoculated onto 7% sheep blood agar and incubated at 37°C for 24-96 h in aerobic/microaerobic/anaerobic atmospheres. Colonies grown were evaluated. The identification of the obtained isolates was performed by phenotypic tests, MALDI-TOF MS, and 16S rRNA gene sequencing. The susceptibilities of the isolates to nine antibiotics were determined by the disk diffusion method. The prevalence of SCM was detected as 25.75% (103/400) for the CMT results. In the bacteriological analysis, 74 (71.8%) of 103 milk samples from 60 CMT-positive animals were detected as positive, and 75 isolates were obtained. The most frequently defined bacteria were coagulase-negative *Staphylococcus* (n=25), *Staphylococcus aureus* (n=17), and *Trueperella pyogenes* (n=8). The highest antibiotic resistance among all isolates was detected to gentamicin (48%) and tetracycline (32%), while *Staphylococcus* spp. isolates were determined to be highest penicillin (45.2%) and gentamicin (38.1%). In conclusion, the current study revealed that there may be a need for dairy farms in this region to develop useful strategies for the treatment/control of SCM, considering the pathogenic bacteria and high antibiotic resistance.

Keywords: Antibiotic susceptibility testing, bacteriological analysis, MALDI-TOF MS, sequencing, subclinical mastitis

Kayseri'deki Süt Sığırlarında Subklinik Mastitis: Bakteriyolojik Analiz ve Antibiyotik Duyarlılıklar

Öz: Mastitis, süt sıgırlığı çiftliklerinde önemli ekonomik kayıplara yol açan ve birçok mikroorganizma ve fiziksel travmanın neden olduğu bir hastalıktır. Bu çalışmada, süt sıgırlarında subklinik mastitisin (SKM), California Mastitis Test (CMT) ve bakteriyolojik analiz kullanılarak tespit edilmesi ve elde edilen izolatların antibiyotik duyarlılıklarının belirlenmesi amaçlandı. Bu amaçla, 100 sığırдан alınan toplam 400 süt örneği, CMT ile tarandı. CMT-pozitif örnekler bakteriyolojik analize tabi tutuldu. Örneklerden %7 lik koynun kanlı agarlara ekim yapıldı ve besiyerleri 37°C'de, 24-96 saat, aerobik/mikroaerobik/anaerobik atmosferlerde inkübe edildi. Besiyerlerinde üreyen koloniler değerlendirildi. Elde edilen izolatların tanımlanması fenotipik testler, MALDI-TOF MS ve 16S rRNA sekans analizi ile gerçekleştirildi. Izolatların dokuz antibiyotiğe duyarlılıklarını, disk difüzyon yöntemi ile belirlendi. CMT sonuçlarına göre, SKM prevalansı %25.75 (103/400) olarak saptandı. Bakteriyolojik analizde, 60 CMT pozitif hayvana ait 103 süt örneğinin 74'ü (%71.8) pozitif olarak saptandı ve 75 izolat elde edildi. En sık tanımlanan bakteriler koagülaz negatif *Staphylococcus* (n=25), *Staphylococcus aureus* (n=17) ve *Trueperella pyogenes* (n=8) idi. Tüm izolatlar arasında en yüksek antibiyotik direnci gentamisin (%48) ve tetrasikline (%32) karşı tespit edilirken, *Staphylococcus* spp. izolatları arasında en yüksek penisilin (% 45.2) ve gentamisine (%38.1) karşı saptandı. Sonuç olarak, bu çalışma, patojen bakteriler ve yüksek antibiyotik direnci göz önünde bulundurulduğunda, bölgedeki süt çiftliklerinin SKM'nin tedavisi/kontrolü için yararlı stratejiler geliştirmelereine ihtiyaç olabileceğini ortaya koymaktadır.

Anahtar kelimeler: Antibiyotik duyarlılık testi, bakteriyolojik analiz, dizileme, MALDI-TOF MS, subklinik mastitis

Introduction

Mastitis is defined as the inflammation of the mammary glands and causes physical and chemical alter-

ations in the gland tissue and glandular secretions (Kour et al., 2023). It is one of the most important diseases seen in dairy cattle worldwide and is also responsible for huge financial problems, such as treatment costs and losses in milk production/quality (Tommasoni et al., 2023).

Mastitis, according to symptoms, inflammation, and milk quality changes, is divided into two: clinical mas-

Geliş Tarihi/Submission Date : 06.03.2025
Kabul Tarihi/Accepted Date : 30.05.2025

* The study was supported by the Scientific Research Projects Coordination Unit of Erciyes University, Kayseri, Türkiye (Project No: THD-2024-13751).

titis (CM) and subclinical mastitis (SCM) (Cao et al., 2023). Clinical mastitis shows several symptoms, such as red-swollen udder, fever, and milk clots, and subdivides into peracute, acute, and subacute based on the inflammation degree (Cheng and Han, 2020). Subclinical mastitis diagnosis is more difficult according to CM, and dairy cattle with SCM might be overlooked since the animals may not present any clinical signs. In addition, SCM increases the somatic (inflammatory) cell count (SCC) in milk and leads to prolonged losses in milk performance, physiological changes, and rises in the therapy cost (Tommasoni et al., 2023; Michira et al., 2023; Cao et al., 2023). The California Mastitis Test (CMT) is a practical, inexpensive, and cow-side test that indirectly determines SCC in milk in SCM. When the SCC in milk increases, the CMT score also increases proportionally. This is associated with the probability and severity of intramammary infection (Alkan et al., 2014).

Mastitis is a disease with multi-etiological features, but many cases are of bacterial origin worldwide. A wide range of bacteria are responsible for bovine mastitis cases. The species primarily isolated in most cases of mastitis are *Staphylococcus aureus*, *Streptococcus* spp. (*Str. agalactiae*, *Str. dysgalactiae* and *Str. uberis*), *Escherichia coli*, *Klebsiella pneumoniae* and *Mycoplasmosis bovis* (Kasa et al., 2020; Huma et al., 2022; Kour et al., 2023; Rifatbegović et al., 2024). On the other hand, the bacteria show differences in relative prevalence between several geographies (regions/countries). Therefore, the identification of common bacteria is important for the diagnosis of mastitis, appropriate treatment, inhibition of recurrent infections, and successful mastitis control programs (Al-Harbi et al., 2021; Rifatbegović et al., 2024).

The prevention and control programs for mastitis are generally based on antibiotic therapy. However, antimicrobial resistance (AMR) is a rising concern globally because of the extensive empirical use of antimicrobials (Cheng et al., 2019; Al-Harbi et al., 2021). In recent years, the resistance to various antimicrobials (penicillin, amoxicillin, tetracycline, amikacin, gentamicin, erythromycin, piperacillin, ceftazidime, cefquinome, tigecycline, colistin, vancomycin, etc.) has been observed to increase. Furthermore, the drug residue is another threat (Campos et al., 2022). Therefore, the performance of the antibacterial susceptibility test is important to provide the selection of the most appropriate therapy approach in mastitis cases (Cheng et al., 2019; Al-Harbi et al., 2021).

In the present study, we aimed to determine SCM using CMT and bacteriological analysis in four dairy farms and to evaluate the antibiotic susceptibilities of the recovered isolates.

Material and Methods

Milk Samples

The present study analyzed 400 milk samples from 100 dairy cattle during routine CMT screenings to diagnose SCM in 4 dairy farms (25 animals from each) in Kayseri province of Türkiye. CMT-positive milk samples were collected in sterile falcon tubes, transported under cold conditions to Erciyes University, Faculty of Veterinary Medicine, Microbiology Laboratory, and subjected to bacteriological analysis.

California Mastitis Test

The SCM was detected using the CMT and carried out in line with the method previously reported by Bastan (2013). The first two/three streams of milk were discarded, and approximately 2-3 ml of milk samples were milked from each quarter into four cups of the CMT paddle. Afterwards, an equal amount of CMT solution was added to each cup of the CMT paddle, including milk. The solution was provided to interact with the milk by mixing lightly for 15 seconds. The obtained CMT results based on gel formation were categorized as 0 and trace (negative), trace, 1 (weak positive), 2 (evident positive), and 3 (strong positive). Zero and trace of CMT scores were accepted as negative, but 1, 2, and 3 of CMT scores were evaluated as positive for SCM.

Bacteriological Analysis

Ten μ L of the milk samples for bacteriological analysis were inoculated on 7% sheep blood agar (Neogen NCM2013A, USA), and the plates were incubated at 37°C in aerobic (for 24-48 h), microaerobic (for 48-72 h) and anaerobic (for 72-96 h) atmospheres. At the end of the incubation period, the colonies grown on the media were evaluated, and the pure cultures were obtained on 7% sheep blood agar.

The identification of the recovered isolates was performed by phenotypic tests, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and molecular analysis. In the phenotypic identification, Gram staining, motility test, and biochemical tests were used. For MALDI-TOF MS analysis, the sample preparation of the whole cell was done as described by Dieckmann et al. (2008). In addition, Ultraflex II MALDI-TOF/TOF mass spectrometer (Bruker Daltonics, USA) equipped with an all-solid-state SmartBeam™ laser (Nd: YAG laser), operated at 100 Hz in the positive linear mode (100 ns, 25 kV, and 2.2-20 kDa) under the control of the Flex Control software version 3.0 (Bruker Daltonics), was used to determine all mass spectra. According to the manufacturer's specified criteria, the score results of ≥ 2.00 , 1.70-1.99, and <1.70 were assigned as the correct species, low consistency, and no consistency, respectively (Sogawa et al., 2011).

The molecular analysis (16S rRNA gene sequencing) was performed for the identification of the isolates not identified via MALDI-TOF MS. DNA extraction from the recovered isolates was carried out with the classical single-cell lysis buffer (SCLB) protocol (Olah et al., 2006). The universal 27F and 1492R primers were used for amplification and sequence analysis of a near-complete (1465 bp) portion of the 16S rRNA gene region (Lane, 1991). The obtained chromatograms as a result of sequence analysis were evaluated using Finch TV (version V1.4) and aligned. It was identified in the BLAST (Basic Local Alignment Search Tool) rRNA/ITS database of the National Center for Biotechnology Information (NCBI) and deposited in the National Institutes of Health (NIH) GenBank the 16S rRNA gene sequence results.

Results

The Results of CMT

The 103 udder lobes belonging to 60 dairy cattle were found to be positive for SCM. The prevalence of SCM was detected to be 25.75% (103/400). According to CMT results, there are no significant differences between the rates of mastitis in farms ($P=0.365$) (Table 1).

The Bacteriological Analysis Results

The rate of 71.8% of milk samples (74/103) belonging to 52 dairy cattle (52/60) were found to be positive. There are no significant differences between the rates of mastitis in farms in the bacteriological analysis results ($P=0.344$) (Table 1).

Table 1. The detailed results of the California Mastitis Test and the bacteriological analysis

Dairy Farm	CMT		Bacteriological analysis	
	No. of dairy cattle screening	Positive result n (%)	No. of milk samples taken	Positive result n (%)
A	25	13 (52)	23	15 (65.2)
B	25	17 (68)	32	23 (71.8)
C	25	18 (72)	26	22 (84.6)
D	25	12 (48)	22	14 (58.3)
Total	100	60 (60)	103	74 (71.8)
		P=0.365		
			P=0.344	

n (%): Number (percentage) of CMT-positive dairy cattle, and number (percentage) of positive milk samples (in the result of bacteriological analysis)

Antibiotic Susceptibility Testing

The susceptibilities to ampicillin (AM, 10 µg), amoxicillin/clavulanic acid (AMC, 30 µg), cefotaxime (CTX, 30 µg), ciprofloxacin (CIP, 10 µg), erythromycin (E, 15 µg), gentamicin (CN, 10 µg), penicillin (P, 10 µg), tetracycline (TE, 30 µg) and trimethoprim/sulfamethoxazole (SXT, 25µg) (Bioanalyse, Türkiye) of the isolates were determined by the disk diffusion method (Bauer et al., 1966). *E. coli* ATCC 25922 was used as the standard control strain. The results were interpreted according to the breakpoints specified in the European Committee on Antimicrobial Susceptibility Testing (EUCAST, 2025) guidelines.

Statistical Analysis

The SCM prevalence was calculated according to CMT results in milk samples collected within the scope of the study. Prevalence data were represented by n (%). The chi-square test was used to analyze the statistical significance of differences in mastitis diagnosis according to the farms where milk samples were collected for CMT and the bacteriological analysis and the significance level was determined as $P < 0.05$. Statistical analyses were performed with the SPSS 30.01 package program.

A total of 75 isolates (2 isolates from one milk sample) were obtained (Table 2). As a result of phenotypic tests, 61 and 14 of the 75 isolates were defined as Gram-positive and Gram-negative bacteria. Six isolates were positive in the motility test. In addition, 17, 58, and 4 of the isolates were coagulase-positive, catalase-positive, and oxidase-positive, respectively. In the MALDI-TOF MS analysis, two and 66 of 75 isolates were identified at the genus level (*Psychrobacter* sp.) and the species level, respectively, but the remaining 7 isolates were not identified at the genus/species level. 16S rRNA gene sequencing was performed to identify 9 isolates (including two isolates identified at the genus level by MALDI-TOF MS). Five and 4 isolates were identified at the genus level (3 *Staphylococcus* sp. and 2 *Acinetobacter* sp.) and the species level (2 *Psychrobacter pulmonis*, 1 *Staphylococcus borealis* and 1 *Streptococcus pluranimalium*), respectively. The data of the 16S rRNA gene sequence of 9 isolates were deposited in GenBank under accession numbers from PQ870726 to PQ870734.

The most frequently identified genera at the genus level within 75 isolates were *Staphylococcus* (42/75),

Trueperella (8/75), *Escherichia* (5/75), and *Aerococcus* (5/75). The most identified *Staphylococcus* species at the species level were *S. aureus* (n=17), *S. haemolyticus* (n=13), *S. epidermidis* (n=4) and *S. chromogenes* (n=4), while the other most frequently identified species were *Trueperella pyogenes* (n=8), *Escherichia coli* (n=5), and *Aerococcus viridans* (n=5). In addition, two isolates recovered from one milk sample were defined as *T. pyogenes* and *S. aureus*. The distribution of the bacteria is presented in Table 2.

20%, 16%, and 8% of 25 coagulase-negative *Staphylococcus* (CNS) isolates were found to be resistant to P, AM, SXT, CN, CTX, and E, respectively. The CN, SXT, and TE resistance rate of 8 *T. pyogenes* isolates was 62.5%. While the highest antibiotic resistance in 5 *E. coli* isolates was observed to CN (60%), AM (40%), and AMC (40%), the resistance in 5 *A. viridans* isolates was determined to CIP (100%) and CN (80%). In addition, *T. pyogenes* and *S. aureus* isolates recovered from one udder lobe were detected to be resistant to CN but susceptible to AM,

Table 2. The distribution of the recovered bacteria from milk samples

Genus	Species	No. of the isolates (n)	Percentage (%)	GenBank Accession Number
<i>Staphylococcus</i>	<i>S. aureus</i>	17	23	-
	<i>S. haemolyticus</i>	13	17.3	-
	<i>S. chromogenes</i>	4	5.3	-
	<i>S. epidermidis</i>	4	5.3	-
	<i>S. borealis</i>	1	1.3	PQ870733
	<i>Staphylococcus</i> sp.	3	4	PQ870727 PQ870730 PQ870731
<i>Trueperella</i>	<i>T. pyogenes</i>	8	10.7	-
<i>Escherichia</i>	<i>E. coli</i>	5	6.7	-
<i>Aerococcus</i>	<i>A. viridans</i>	5	6.7	-
<i>Acinetobacter</i>	<i>A. baumannii</i>	1	1.3	-
	<i>A. johnsonii</i>	1	1.3	-
<i>Streptococcus</i>	<i>Acinetobacter</i> sp.	2	2.7	PQ870728 PQ870732
	<i>S. agalactiae</i>	1	1.3	-
	<i>S. uberis</i>	1	1.3	-
<i>Psychrobacter</i>	<i>S. pluranimalium</i>	1	1.3	PQ870726
	<i>P. pulmonis</i>	2	2.7	PQ870729 PQ870734
	<i>C. pseudotuberculosis</i>	1	1.3	-
<i>Arkanobacterium</i>	<i>A. pluranimalium</i>	1	1.3	-
<i>Lactococcus</i>	<i>L. lactis</i>	1	1.3	-
<i>Pasteurella</i>	<i>P. multocida</i>	1	1.3	-
<i>Pseudomonas</i>	<i>P. aeruginosa</i>	1	1.3	-
<i>Klebsiella</i>	<i>K. oxytoca</i>	1	1.3	-

n: No. of the isolates, %: Percentage of the isolates, CNS: Coagulase-negative *Staphylococcus*.

The Results of the Antibiotic Susceptibility Testing

In the test, 48%, 32%, 30.6%, 26.7%, 22.7%, 17.6%, 14.7%, 9.3%, and 5.3% of the isolates were found to be resistant to CN, TE, P, AM, SXT, E, CIP, CTX, and AMC, respectively. The antibiotic resistance in 42 *Staphylococcus* spp. isolates was mostly detected to P (45.2%), CN (38.1%), and AM (35.7%). Of the 17 *S. aureus* isolates, 70.6%, 64.7%, 17.6%, 17.6%, 11.8%, 5.9%, and 5.9% were resistant to TE, CN, P, AM, E, AMC, and SXT, respectively. 64%, 48%, 24%,

AMC, CIP, CTX, and P. The detailed antibiotic susceptibility test results belonging to all isolates (n=75) are given in Table 3.

Table 3. The results of antibiotic susceptibility testing of the isolates obtained from milk samples

Isolates	Antibiotic											
	AM	AMC	CIP	CN	CTX	E	P	SXT	TE	S	R	S
R	S	R	S	R	S	R	S	R	S	R	I	S
<i>S. aureus</i>	3 (17.6)*	14 (82.4)	1 (5.9)	16 (94.1)	- (100)	11 (64.7)	6 (35.3)	- (100)	2 (11.8)	15 (88.2)	3 (82.4)	14 (17.6)
<i>CNS</i>	12 (48)	13 (52)	- (100)	25 (20)	4 (16)	21 (84)	2 (8)	23 (92)	16 (64)	9 (36)	2 (24)	6 (8)
<i>T. pyogenes</i>	- (100)	8 (60)	- (100)	25 (75)	3 (62.5)	- (100)	5 (50)	4 (50)	- (100)	8 (50)	- (62.5)	- (37.5)
<i>E. coli</i>	2 (40)	3 (60)	2 (40)	1 (20)	4 (80)	3 (60)	2 (40)	- (100)	5 (ND)	ND (ND)	1 (20)	- (80)
<i>A. viridans</i>	- (100)	5 (100)	- (100)	5 (100)	- (80)	4 (20)	1 (20)	- (100)	5 (ND)	ND (ND)	1 (ND)	- (100)
<i>Acinetobacter spp.</i>	- (100)	4 (100)	- (100)	4 (25)	3 (75)	2 (50)	2 (50)	- (25)	3 (75)	2 (50)	2 (50)	- (100)
<i>Streptococcus spp.</i>	1 (33.3)	2 (66.7)	- (100)	3 (100)	- (100)	3 (100)	- (33.3)	2 (66.7)	1 (33.3)	2 (66.7)	- (100)	- (100)
<i>P. pulmonis</i>	- (100)	2 (100)	- (100)	2 (100)	- (50)	1 (50)	- (50)	2 (50)	1 (50)	1 (50)	ND (ND)	- (50)
<i>C. pseudotuberculosis</i>	- (100)	1 (100)	- (100)	1 (100)	- (100)	1 (100)	- (100)	1 (100)	- (100)	1 (100)	- (100)	- (100)
<i>A. pluranimatum</i>	- (100)	1 (100)	- (100)	1 (100)	- (100)	1 (100)	- (100)	1 (100)	- (100)	1 (100)	- (100)	- (100)
<i>L. lactis</i>	- (100)	1 (100)	- (100)	1 (100)	- (100)	1 (100)	- (100)	1 (100)	- (100)	1 (100)	- (100)	- (100)
<i>P. multocida</i>	- (100)	1 (100)	- (100)	1 (100)	- (100)	1 (100)	- (100)	1 (100)	- (100)	1 (100)	- (100)	- (100)
<i>P. aeruginosa</i>	1 (100)	- (100)	1 (100)	- (100)	1 (100)	- (100)	1 (100)	- (100)	ND (ND)	ND (ND)	1 (ND)	- (100)
<i>K. oxytoca</i>	1 (100)	- (100)	1 (100)	- (100)	1 (100)	- (100)	1 (100)	- (100)	ND (ND)	ND (ND)	- (100)	- (100)
Total (n=75)	20 (26.7)	55 (73.3)	4 (5.3)	71 (94.7)	11 (14.7)	64 (85.3)	36 (48)	39 (52)	7 (9.3)	68 (90.7)	12 (17.6)	56 (82.4)
											43 (69.4)	19 (30.6)
											17 (22.7)	6 (8)
											52 (69.3)	51 (68)

*n (%): No. of the isolates (%), CNS: Coagulase-negative *Staphylococcus*, ND: Not Determined, R: Resistant, I: Intermediate, S: Susceptible, AMC: Ampicillin, AMC: Amoxicillin/clavulanic acid, CIP: Ciprofloxacin, CN: Gentamicin, CTX: Cefotaxime, E: Erythromycin, P: Penicillin, SXT: Trimethoprim/sulfamethoxazole, TE: Tetracycline.

Discussion and Conclusion

Mastitis, one of the leading diseases affecting milk capacity in dairy cattle, causes significant economic losses in dairy cattle farms in Türkiye and around the world (Tel et al., 2009; Tommasoni et al., 2023). CMT is an inexpensive, practical, and reliable test used to detect SCM cases in dairy cattle. The bacteriological analysis is performed to detect and identify bacteria that lead to SCM. As a result of the analysis, many bacteria, primarily *Staphylococcus* spp. are obtained in SCM cases (Tel et al., 2009). In the current study, 75 isolates were obtained as a result of bacteriological analysis of the milk samples from dairy cattle detected SCM after screening with CMT, and the most frequently identified species were *S. aureus* (23%), *S. haemolyticus* (17.3%), and *T. pyogenes* (10.7%). In the studies conducted in Türkiye, Tel et al. (2009) detected the most *S. aureus* (32.5%), CNS (27.5%), and *Streptococcus* spp. (8.9%) in the result of bacteriological analysis of 332 milk samples from cattle with SCM. Buyukcangaz et al. (2012) reported that the highest rates of *S. aureus* (31.45%), CNS (23.88%), and *Streptococcus* spp. (26.36%) were isolated and identified from 480 milk samples. Alkan et al. (2014) defined frequently *S. aureus* (20/34) and *Bacillus* spp. (7/34) in 109 CMT-positive/negative milk samples. Ozavci et al. (2017) noted that it was mostly identified *Aeromonas hydrophila* (17.24%), *Corynebacterium* spp. (13.79%), *Lactobacillus* spp. (12.06%), *E. coli* (10.34%), *Shigella* sp. (10.34%), CNS (10.34%), and *S. aureus* (4.59%) from 238 milk samples. Kenar et al. (2019) obtained *E. coli* (13/61), *S. epidermidis* (8/61), *S. haemolyticus* (5/61), and *S. aureus* (4/61) as the most dominant species from 61 milk samples. Kahya Demirbilek (2020) detected the most frequent *Streptococcus* spp. (28.5%), *S. aureus* (23.1%), CNS (11.5%), and *E. coli* (11.5%) from 394 milk samples. Kurt and Eski (2021) analyzed 103 milk samples and determined that *E. coli* (19.9%), *S. aureus* (13.7%), and *Mycoplasma bovis* (8.2%) were the dominant species. Delikanlı Kiyak et al. (2024) reported that it was identified *E. coli* (26.10%), *S. aureus* (21.29%), *Str. agalactiae* (20.08%), and *S. epidermidis* (12.05%) in the analysis of the milk samples. In the studies conducted worldwide, Barreiro et al. (2010) noted that it was obtained 33 isolates from milk samples from cattle with SCM, and 42.4%, 30.3%, and 27.3% of them were identified as *S. aureus*, *Str. agalactiae* and CNS, respectively. Persson et al. (2011) reported that the most common species identified in 583 milk samples were *S. aureus* (19%), CNS (16%), and *Str. dysgalactiae* (9%). Dieser et al. (2014) detected mostly CNS (52.1%) and *S. aureus* (21.3%) in 1201 milk samples. Abed et al. (2021) defined the most frequently *E. coli* (49.8%), *S. aureus* (44.9%), *Streptococcus* spp. (44.1%) and non-aureus staphylococci (37.1%) in 488 milk samples. Al-Harbi et al. (2021) announced that it was identified com-

monly non-aureus staphylococci (10%), *Str. uberis* (7%), and *S. aureus* (5%) in milk samples. Chung et al. (2021) determined by a majority of CNS (44.7%), *Bacillus* spp. (30.3%), and *S. aureus* (20.45%) in 132 milk samples. Huma et al. (2022) identified the most *S. aureus* (34.45%), *E. coli* (21.36%), and CNS (13.54%) in 235 milk samples. Michira et al. (2023) declared that it was defined frequently CNS (40.1%), *S. aureus* (15.8%), and *Micrococcus* spp. (10.4%) in milk samples. Cao et al. (2023) noted that the most common isolates from 208 milk samples were *K. pneumoniae* (15.35%), *E. coli* (13.70%), and *P. aeruginosa* (12.33%). Rifatbegović et al. (2024) obtained the highest *S. aureus* (17.1%), CNS (17.1%), *Str. uberis* (12.2%), *Streptococcus* spp. (12.2%), and *T. pyogenes* (9.8%) from 111 milk samples. In the majority of the studies mentioned above, *S. aureus* and non-aureus staphylococci were the most commonly identified bacteria in dairy cattle with SCM, which is consistent with our study's results. It is thought that minor differences in the distribution of the most frequently identified species may be due to geography, nutrition, farm management, hygienic conditions, milking practices, and isolation/identification methods (Kasa et al., 2020).

Antibiotic treatment is an important therapy for the prevention and control of mastitis cases. On the other hand, the extensive empirical use of antibiotics is known to be the primary cause of AMR (Abed et al., 2021). There are many studies on determining the antibiotics to be used in the treatment of SCM cases, and the antibiotic resistance profiles show differences in these studies. The resistance rates of *S. aureus* isolates recovered from dairy cattle with SCM in Türkiye to AM, AMC, CIP, CN, CTX, E, P, SXT, and TE ranged between 10.5%-77.3%, 10%-66.5%, 0%-50%, 0%-59.5%, 2.9%-25%, 0%-63%, 0%-75.8%, 3.6%-12.6%, and 17.9%-23.3%, respectively (Tel et al., 2009; Ozavci et al., 2017; Gulmez Saglam et al., 2018; Kenar et al., 2019; Kahya Demirbilek, 2020; Gokdag and Ciftci, 2021; Tavsanli and Cibik, 2022). It is observed that the resistance rates of *S. aureus* isolates worldwide to AM, AMC, CIP, CN, CTX, E, P, SXT, and TE varied between 45.7%-96%, 0%-78%, 0%-16%, 0%-32.1%, 0%-46%, 0%-44.6%, 4%-92.7%, 0%-26%, and 0%-18.6%, respectively (Persson et al., 2011; Xu et al., 2015; Ren et al., 2020; Abed et al., 2021; Al-Harbi et al., 2021; Chung et al., 2021; Michira et al., 2023; Silva et al., 2023; Rodriguez et al., 2023; Haq et al., 2024). In our study, it is detected that 70.6%, 64.7%, 17.6%, 17.6%, 11.8%, 5.9%, and 5.9% of the 17 *S. aureus* isolates were resistant to TE, CN, P, AM, E, AMC, and SXT, respectively (Table 3). TE and CN resistance rates in *S. aureus* isolates are higher than the antibiotic resistance rates mentioned above.

Of the CNS or non-aureus staphylococci isolates obtained from dairy cattle with SCM in Türkiye, the

resistance rates against AM, AMC, CIP, CN, CTX, E, P, SXT, and TE were found to vary between 8.5%-58%, 8.6%-89%, 0%-56%, 0%-66.2%, 2.9%-47.4%, 5.6%-46.8%, 11.4%-55.3%, 2.8%-6.4%, and 0%-40.4%, respectively (Tel et al., 2009; Buyukcangaz et al., 2012; Ozavci et al., 2017; Gulmez Saglam et al., 2018; Kenar et al., 2019; Kahya Demirbilek, 2020; Gokdag and Ciftci, 2021). It was determined that the resistance rates of CNS or non-aureus staphylococci isolates worldwide to AM, AMC, CIP, CN, CTX, E, P, SXT, and TE ranged between 27%-90%, 0%-76%, 0%-12%, 0%-18%, 0%-42%, 2%-49%, 12%-86.8%, 0%-16.1%, and 1%-39.5%, respectively (Botrel et al., 2010; Persson et al., 2011; Xu et al., 2015; Phophi et al., 2019; Abed et al., 2021; Al-Harbi et al., 2021; Chung et al., 2021; Michira et al., 2023; Rodríguez et al., 2023). In the present study, it determined that 64%, 48%, 24%, 20%, 16%, and 8% of 25 CNS isolates were resistant to P, AM, SXT, CN, CTX, and E, respectively (Table 3). The resistance rate of SXT in CNS isolates was detected to be higher than those mentioned above. It is thought that these differences in antibiotic resistance profiles of both *S. aureus* and CNS isolates in our study may be related to geographic location, climate, population characteristics, nutrition, hygienic conditions, study design, the number of isolates, etc. (Haq et al., 2024).

In conclusion, the subclinical mastitis rate in dairy cattle in Kayseri province of Türkiye, for the CMT results was detected to be 25.75%, and 71.8% positivity (74/103) was detected as a result of bacteriological analysis. The most commonly identified genus and species among the recovered 75 isolates were *Staphylococcus* (56%) and *S. aureus* (22.7%), respectively. The gentamicin (48%) and tetracycline (32%) resistance were detected at a high rate in the 75 isolates analyzed according to the antibiotic susceptibility testing results. Due to antibiotic resistance, it is thought that it may be appropriate to take various precautions to prevent the emergence/spread of the resistance in dairy cattle farms in the region. In addition, the present study showed that there may be a need for dairy farms in this region to develop useful strategies for the treatment/control of SCM, according to the recovered bacteria from SCM cases and antibiotic resistance profiles.

Acknowledgments

The current study (the identification of the isolates and determination of their antibiotic susceptibilities) was supported by the Scientific Research Projects Coordination Unit of Erciyes University, Kayseri, Türkiye (Project No: THD-2024-13751). The authors would like to thank the Scientific Research Projects Coordination Unit of Erciyes University for providing financial support. In addition, we thank Dr. Aytaç Akçay (Ankara University, Faculty of Veterinary Medicine, Department of Biostatistics, Ankara, Türkiye) for

contributing to the statistical analyses of our findings.

Competing Interest

The authors declare that they have no conflict of interest.

Ethical Statement

Ethics committee approval is not required within the scope of this study.

References

Abed AH, Menshawy AMS, Zeinhom MMA, Hossain D, Khalifa E, Wareh G, Awad MF. Subclinical mastitis in selected bovine dairy herds in North Upper Egypt: Assessment of prevalence, causative bacterial pathogens, antimicrobial resistance and virulence-associated genes. Microorganisms 2021; 9(6): 1175.

Al-Harbi H, Ranjbar S, Moore RJ, Alawneh JI. Bacteria isolated from milk of dairy cows with and without clinical mastitis in different regions of Australia and their AMR profiles. Front Vet Sci 2021; 8: 743725.

Alkan H, Baştan A, Salar S, Özdal M, Kaymaz M. Comparision of results of California Mastitis Test, somatic cell counts and microbiological examination in healthy and infected quarter in cows at dry-off. Ankara Üniv Vet Fak Derg 2014; 61: 179-83.

Barreiro JR, Ferreira CR, Sanvido GB, Kostrzewa M, Maier T, Wegemann B, Böttcher V, Eberlin MN, dos Santos MV. Short communication: Identification of subclinical cow mastitis pathogens in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Dairy Sci 2010; 93(12): 5661-7.

Bastan A: İneklerde meme sağlığı ve sorunları. 2nd ed., Kardelen Ofset, Ankara, Türkiye, 2013.

Bauer AW, Kirby WMM, Sherris JC, Turek M. Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol 1966; 45: 493-6.

Botrel MA, Haenni M, Mornignat E, Sulpice P, Madec JY, Calavas D. Distribution and antimicrobial resistance of clinical and subclinical mastitis pathogens in dairy cows in Rhône-Alpes, France. Foodborne Pathog Dis 2010; 7: 479-87.

Buyukcangaz E, Mat B, Ahmed MKKA. Subklinik mastitisli sığır sütlerinin mikrobiyolojik analizi ve izolatların antimikrobiyal direnç profili. Uludag Univ Vet Fak Derg 2012; 31(2), 35-44.

Campos FC, Castilho IG, Rossi BF, Bonsaglia ÉCR, Dantas STA, Dias RCB, Fernandes Júnior A, Hernandes RT, Camargo CH, Ribeiro MG, Pantoja JCF, Langoni H, Rall VLM. Genetic and antimicrobial resistance profiles of mammary pathogenic *E. coli* (MPEC) isolates from bovine clinical mastitis. *Pathogens* 2022; 11(12): 1435.

Cao W, Xu Y, Huang Y, Xu T. Isolation of pathogenic bacteria from dairy cow mastitis and correlation of biofilm formation and drug resistance of *Klebsiella pneumoniae* in Jiangsu, China. *Agriculture* 2023; 13(10): 1984.

Cheng J, Qu W, Barkema HW, Nobrega DB, Gao J, Liu G, De Buck J, Kastelic JP, Sun H, Han B. Antimicrobial resistance profiles of 5 common bovine mastitis pathogens in large Chinese dairy herds. *J Dairy Sci* 2019; 102(3): 2416-26.

Cheng WN, Han SG. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments—A review. *Asian-Australas J Anim Sci* 2020; 33 (11): 1699-713.

Chung LK, Sahibzada S, Annandale HC, Robertson ID, Waichigo FW, Tufail MS, Aleri JA. Bacterial pathogens associated with clinical and subclinical mastitis in a Mediterranean pasture-based dairy production system of Australia. *Res Vet Sci* 2021; 141:103-9.

Delikanlı Kiyak B, Günaydin E, Goncagül G. Evaluation of aerobic bacteriology of subclinical mastitis in cows. *Turk Hij Den Biyol Derg* 2024; 81 (3): 369-78.

Dieckmann R, Helmuth R, Erhard M, Malorny B. Rapid classification and identification of salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. *Appl Environ Microbiol* 2008; 74(24): 7767-78.

Dieser SA, C Vissio, MC Lasagno, CI Bogni, Larriestra AJ, Odierno LM. Prevalence of pathogens causing subclinical mastitis in Argentinean dairy herds. *Pak Vet J* 2014; 34(1): 124-6.

Gokdag MO, Ciftci A. Antibiotic resistance and virulence gene profiles in *Staphylococci* isolated from cattle with mastitis. *JAES* 2021; 6(3): 395-402.

Gulmez Saglam A, Otu S, Coskun MR, Celik E, Buyuk F, Sahin M. Prevalence of subclinical mastitis in cows, isolation of agents and determination of their antibiotic susceptibility. *Eurasian J Vet Sci* 2018; 34(2): 92-8.

Haq IU, Kamal M, Swelum AA, Khan S, Ríos-Escalante PRL, Usman T. Alarming multidrug resistance in *Staphylococcus aureus* isolated from raw milk of cows with subclinical mastitis: Antibiotic resistance patterns and occurrence of selected resistance genes. *PLoS One* 2024; 19(5): e0301200.

Huma ZI, Sharma N, Kour S, Lee SJ. Phenotypic and Molecular Characterization of bovine mastitis milk origin bacteria and linkage of intramammary infection with milk quality. *Front Vet Sci* 2022; 9: 885134.

Kahya Demirbilek S. Isolation of aerobic bacteria in cow with subclinical mastitis in Turkey and evaluation of their antimicrobial susceptibility. *Assiut Vet Med J* 2020; 66(167): 100-8.

Kasa G, Tegegne B, Tadesse B. Isolation and Identification of major pathogenic bacteria from clinical mastitic cows in Asella Town, Ethiopia. *Vet Med Int* 2020; 2020: 6656755.

Kenar B, Aksoy A, Köse Z. The new mastitis agents emerged in cattle in Turkey and an investigation of their antimicrobial susceptibility. *Kocatepe Vet J* 2019; 12(4): 400-6.

Kour S, Sharma N, N B, Kumar P, Soodan JS, Santos MVD, Son YO. Advances in diagnostic approaches and therapeutic management in bovine mastitis. *Vet Sci* 2023; 10(7): 449.

Kurt S, Eski F. Pathogen isolation and antibiogram analysis in dairy cows with clinical mastitis in Adana region, Turkey. *Etilik Vet Mikrobiyol Derg* 2021; 32(1): 20-6.

Lane DJ. 16S/23S rRNA Sequencing. In: Stackebrandt E and Goodfellow M (eds). *Nucleic Acid Techniques in Bacterial Systematic*. John Wiley and Sons, New York, 1991. pp. 115-175.

Michira L, Kagira J, Maina N, Waititu K, Kiboi D, Ongera E, Ngotto M. Prevalence of subclinical mastitis, associated risk factors and antimicrobial susceptibility pattern of bacteria isolated from milk of dairy cattle in Kajiado Central sub-county, Kenya. *Vet Med Sci* 2023; 9(6): 2885-92.

Olah PA, Doetkott C, Fakhr MK, Logue CM. Prevalence of the *Campylobacter* multi-drug efflux pump (CmeABC) in *Campylobacter* spp. isolated from freshly processed Turkeys. *Food Microbiol* 2006; 23(5): 453-60.

Ozavci V, Parin U, Yüksel HT, Kirkan S. Identification of pathogen bacteria from bovine mastitis in Yozgat province and determination of antimicrobial susceptibility. *Animal Health Prod and Hyg* 2017; 6

(1), 454-8.

Persson Y, Nyman AK, Grönlund-Andersson U. Etiology and antimicrobial susceptibility of udder pathogens from cases of subclinical mastitis in dairy cows in Sweden. *Acta Vet Scand* 2011; 53 (1): 36.

Phophi L, Petzer IM, Qekwana DN. Antimicrobial resistance patterns and biofilm formation of coagulase-negative *Staphylococcus* species isolated from subclinical mastitis cow milk samples submitted to the Onderstepoort Milk Laboratory. *BMC Vet Res* 2019; 15(1): 420.

Ren Q, Liao G, Wu Z, Lv J, Chen W. Prevalence and characterization of *Staphylococcus aureus* isolates from subclinical bovine mastitis in southern Xinjiang, China. *J Dairy Sci* 2020; 103(4): 3368-80.

Rifatbegović M, Nicholas RAJ, Mutevelić T, Hadžiomerović M, Maksimović Z. Pathogens associated with bovine mastitis: The experience of Bosnia and Herzegovina. *Vet Sci* 2024; 11(2): 63.

Rodríguez MF, Gomez AP, Ceballos-Garzon A. Antimicrobial resistance profiles of *Staphylococcus* isolated from cows with subclinical mastitis: Do strains from the environment and from humans contribute to the dissemination of resistance among bacteria on dairy farms in Colombia? *Antibiotics (Basel)* 2023; 12(11): 1574.

Silva ATF, Gonçalves JL, Dantas STA, Rall VLM, de Oliveira PRF, Dos Santos MV, Peixoto RM, Mota RA. Genetic and phenotypic characterization of subclinical mastitis-causing multidrug-resistant *Staphylococcus aureus*. *Antibiotics (Basel)* 2023; 12(9): 1353.

Sogawa K, Watanabe M, Sato K, Segawa S, Ishii C, Miyabe A, Murata S, Saito T, Nomura F. Use of the MALDI BioTyper system with MALDI-TOF mass spectrometry for rapid identification of microorganisms. *Anal Bioanal Chem* 2011; 400(7): 1905-11.

Tavsanlı H, Cibik R. The prevalence, genetic diversity and antibiotic resistance of *Staphylococcus aureus* associated with subclinical bovine mastitis in Balıkesir, Turkey. *Vet Arhiv* 2022; 92(1): 17-25.

Tel OY, Keskin O, Zonturlu AK, Arserim Kaya NB. Şanlıurfa yöresinde subklinik mastitislerin görülme oranı, aerobik bakteri izolasyonu ve duyarlı antibiyotiklerin belirlenmesi. *F Ü Sağ Bil Vet Derg* 2009; 23(2): 101-6.

The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters Version 15.0, 2025.

Tommasoni C, Fiore E, Lisuzzo A, Ganesella M. Mastitis in dairy cattle: On-farm diagnostics and future perspectives. *Animals* 2023; 13(15): 2538.

Xu J, Tan X, Zhang X, Xia X, Sun H. The diversities of staphylococcal species, virulence and antibiotic resistance genes in the subclinical mastitis milk from a single Chinese cow herd. *Microb Pathog* 2015; 88: 29-38.

