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Graphical/Tabular Abstract (Grafik Özet) 

In this paper, the One-Legged robot is designed to stabilize itself and stand upright at the desired 

location after being thrown from a different heights. The 5-DOF planar underactuated main body 

is driven by Reaction wheels, and adaptive Cartesian impedance control has been implemented to 

effectively manage hard impacts. Evolutionary Reinforcement Learning based AI Agent has been 

used to adapt to different launch conditions, such as varying speed and altitude. / Bu makalede, 

Tek Bacaklı robot farklı yüksekliklerden fırlatıldıktan sonra kendini dengeleyip istenilen konumda 

dik duracak şekilde tasarlanmıştır. 5 serbestlik dereceli düzlemsel ve eksik tahrikli ana gövde, 

reaksiyon tekerlekleriyle sürülmekte olup sert darbelere karşı etkin bir şekilde başa çıkmak için 

adaptif kartezyen empedans kontrolü uygulanmıştır. Farklı hız ve irtifa gibi fırlatma koşullarına 

uyum sağlamak için Evrimsel Pekiştirmeli Öğrenme tabanlı bir Yapay Zekâ Ajanı kullanılmıştır.  

 

Figure A: Screenshots of the robot’s launch and upright standing for Test 1 were taken using 

MSM. /Şekil A: Test 1 için robotun fırlatılması ve dik durma anına ait ekran görüntüleri MSM 

kullanılarak alınmıştır.  

Highlights (Önemli noktalar)  

➢ Tek bacaklı robot, fırlatıldıktan sonra Reaksiyon tekerleği ve uyarlamalı Kartezyen 

empedans kontrolü sayesinde dengede kalabilmektedir. / The one-legged robot can 

maintain balance after being thrown using the Reaction Wheel and adaptive Cartesian 

impedance control. 

➢ Evrimsel Pekiştirmeli Öğrenme (ERL) ile robot, farklı hız ve yüksekliklerdeki fırlatma 

testleri üzerinden kendi kendine dengelemeyi öğrenebilmektedir. / With Evolutionary 

Reinforcement Learning (ERL), the robot can learn self-balancing through launch tests 

at different speeds and heights.) 

Aim (Amaç): It addresses the control of a one-legged robot that can learn to balance itself after 

being thrown. / Fırlatıldıktan sonra dengesini sağlamayı öğrenebilen tek bacaklı bir robotun 

kontrolünü ele alıyor.  

Originality (Özgünlük): An agent was created using the ERL method, the robot was subjected to 

training to achieve self-balance, and learning was accomplished through this process. / ERL 

yöntemi kullanılarak bir ajan oluşturulmuştur, robotun kendi kendini dengeleyebilmesi için eğitime 

tabi tutulmuş ve bu süreçte öğrenme sağlanmıştır.  

Results (Bulgular): Atıştan sonra robot dengelenmeyi sağlamış ve π/2 konumunda sabitlenmiştir. 

/ After the launch, the robot achieved balance and stabilized at π/2. 

Conclusion (Sonuç): After training and learning the control process, the robot has successfully 

maintained its balance in the MSM environment. While the planar motion has been effectively 

controlled in the simulation, there will be numerous parameters to consider when transitioning to 

a real-world application. / Robot, eğitim ve kontrol sürecini öğrendikten sonra, MSM ortamında 

dengesini başarıyla korumuştur. Düzlemsel hareket simülasyonda etkili bir şekilde kontrol edilmiş 

olsa da, gerçek dünya uygulamasına geçişte dikkate alınması gereken birçok parametre olacaktır. 

https://orcid.org/0000-0001-8194-5433


 

*Corresponding author, e-mail: halithulako@hakkari.edu.tr                                                                                   DOI: 10.29109/gujsc.1653403 

 

GU J Sci, Part C, 13(4): 1680-1698 (2025) 

 Gazi Üniversitesi Gazi University  

Fen Bilimleri Dergisi Journal of Science 

PART C: TASARIM VE 

TEKNOLOJİ 

PART C: DESIGN AND 

TECHNOLOGY 

http://dergipark.gov.tr/gujsc 

Simulation of Evolutionary Reinforcement Learning-Based Self-Balancing 

Throwable One-Legged Robot with a Reaction Wheel 

Halit HÜLAKO1*   

1Hakkari University, Engineering Faculty, Mechanical Engineering Department, Hakkari, Turkey 

Article Info 

Research article 
Received: 07/03/2025 

Revision: 21/08/2025 

Accepted: 23/08/2025 

Keywords 

Self balance 

ERL Learning  

Simscape Multibody M.  

 
Abstract 

In this paper, the One-Legged robot is designed to stabilize itself and stand upright at the desired 

location after being thrown from a different heights. The 5-DOF planar underactuated main body 

is driven by Reaction wheels, and adaptive Cartesian impedance control has been implemented 

to effectively manage hard impacts. Evolutionary Reinforcement Learning based AI Agent has 

been used to adapt to different launch conditions, such as varying speed and altitude. The learning 

process was performed as online learning within the Matlab simulation environment, which 

models the system dynamics of the robot. The graphical results of the simulation confirm that, 

with the assistance of the AI agent, the dynamic robot has successfully maintained its stability 

without tipping over after the launch and has been able to make the desired correction.  

 

Evrimsel Pekiştirmeli Öğrenme Tabanlı Kendini Dengeleyebilen, 

Fırlatılabilir Reaksiyon Tekerli Tek Bacaklı Robotun Simülasyonu 
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Öz 

Bu makalede, Tek Bacaklı robot farklı yüksekliklerden fırlatıldıktan sonra kendini dengeleyip 

istenilen konumda dik duracak şekilde tasarlanmıştır. 5 serbestlik dereceli düzlemsel ve eksik 

tahrikli ana gövde, reaksiyon tekerlekleriyle sürülmekte olup sert darbelere karşı etkin bir şekilde 

başa çıkmak için adaptif kartezyen empedans kontrolü uygulanmıştır. Farklı hız ve irtifa gibi 

fırlatma koşullarına uyum sağlamak için Evrimsel Pekiştirmeli Öğrenme tabanlı bir Yapay Zekâ 

Ajanı kullanılmıştır. Öğrenme süreci, robotun sistem dinamiklerini modelleyen Matlab 

simülasyon ortamında eşzamanlı olarak gerçekleştirilmiştir. Simülasyonun grafiksel sonuçları, 

Yapay Zekâ ajanının yardımıyla dinamik robotun fırlatma sonrası devrilmeden dengesini 

başarıyla koruduğunu ve istenilen düzeltmeyi yapabildiğini doğrulamaktadır. 

 

1. INTRODUCTION (GİRİŞ) 

In the modern world, people expect the availability 

of machines and devices that can be quickly used or 

set up without much effort. This is primarily driven 

by the need for simplification and time-saving, 

particularly with the advancement of technology. 

This can be an example of how a tripod or a 

monopod can be effortlessly prepared and deployed 

by simply throwing it, making it immediately ready 

for use. 

In static stability criteria, if the projection of the 

robot's center of mass falls within the support 

polygon, the robot can maintain a balanced stance 

without tipping. However, in dynamic systems 

where no support polygon is defined, the robot must 

continuously move to maintain balance. In a 

dynamic system, especially for one-legged robot, 

where the leg contacts the ground at a single point, 

the robot must continuously perform hopping 

motions to maintain stability. When the robot is 

stationary, it tends to tip over. A planar robot has 

been developed to achieve and control balance after 

being thrown to a desired location. The robot is 

composed of a body and a single leg, and is capable 

of performing underactuated main body movements 

through the Reaction Wheel placed on it. The robot 

controls the impact effect using the Reaction Wheel 

and the leg actuator to maintain balance.  

In general, Reaction wheels are an important 

method preferred in axis sets where direct 

connection and actuation are not possible. While 

robots in continuous contact with their environment 

can control their orientation, Reaction wheels are 

the preferred method in places with insufficient 

https://orcid.org/0000-0001-8194-5433
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actuation. Today, reaction wheels are widely used 

in space technology to control the orientation of 

free-floating satellites [1], [2]. Yang used magnetic 

torque coils, which are also used as actuators in 

satellites, to manage the amount of momentum that 

reaction wheels need to apply (saturation control) 

[3]. Zhang et al. attempted to control the roll angle 

of a robotic fish using a reaction wheel [4]. 

Gajamohan et al. managed to control a three-axis 

cube (Cubli), which can change direction, jump and 

stand at precise angles on its corners, with reaction 

wheels [5], [6]. Due to their common use in the 

control of underactuated systems, reaction wheels 

can be used to achieve balance control of single-

wheeled mobile vehicles, referred to in the literature 

as unicycles [7], [8]. Additionally, Trentin et al. 

modelled and performed balance control of an 

inverted pendulum system using reaction wheels on 

both sides [9].   

Kim et al. introduced a compact and lightweight Air 

Reaction Wheel (ARW) for small-scale legged 

jumping robots. The ARW generates high torque 

through air push and motor angular acceleration. 

Simulations and experiments validate its superior 

torque performance and stability, making it ideal for 

maneuvering rough terrains[10]. Zabihi and Alasty 

introduced a novel one-legged handspringing robot 

capable of hopping with both springy sides. This 

robot, featuring a single rotary actuator and two 

reaction wheels, considers slipping phases and 

demonstrates superior obstacle-clearing abilities 

compared to traditional hopping robots. The 

reaction wheels contribute to the dynamic stability 

by providing necessary torque to control the robot's 

orientation during flight and stance phases[11]. 

Haoran et al. presented Marsbot, a monopod robot 

designed for stable and precise 3D jumping. 

Utilizing the SLIP dynamics model for take-off 

control and the RWP model for attitude control, 

Marsbot employs three inertial tails as reaction 

wheels to achieve dynamic balance and accurate 3D 

positioning. These reaction wheels provide 

necessary torque adjustments to maintain stability 

and control during flight. Simulations confirm 

Marsbot's ability for continuous jumping and stable 

perching, validating the control algorithms and 

models[12]. Anzai et al. developed the MH-1, a 

monopod robot equipped with a reaction wheel to 

achieve hopping and posture stabilization. The 

reaction wheel provides necessary torque for 

upright posture control and recovery from falls. 

Experimental results demonstrate the robot's ability 

to hop in a constrained vertical direction and 

stabilize its posture using the reaction wheel. This 

study highlights the effectiveness of integrating 

reaction wheels in legged robots for dynamic 

balance and control [13]. In some studies of legged 

robots, dynamic models with reaction wheels were 

created to achieve the desired orientations on the 

underactuated main body and support balanced 

walking [14].  Roscia et al. presented an Orientation 

Control System (OCS) for quadruped robots, 

designed to improve aerial maneuvers during 

jumps. The system utilizes two rotating and actuated 

flywheels to control the robot's orientation by 

adjusting its angular momentum, addressing 

challenges in maintaining stability during the flight 

phase. Simulations on the Solo12 robot demonstrate 

the OCS's effectiveness in controlling roll and pitch 

angles, rejecting disturbances, and stabilizing post-

landing. This compact OCS enhances the robot's 

maneuverability in complex environments [15]. 

Zhu et al. introduced TERL, which combines 
Evolutionary Algorithms (EA) and Reinforcement 
Learning (RL). TERL enhances exploration through 
RL and Particle Swarm Optimization (PSO), and 
focuses on the best individual for refinement. It 
outperforms existing RL and ERL methods in 
continuous control tasks [16].  Deng et al.  presented 
QLJAYA, which integrates Q-learning and gradient 
search into the JAYA algorithm. QLJAYA 
improves convergence, local exploitation, and 
rotational invariance. Experiments show it 
outperforms standard JAYA and other 
metaheuristics [17]. The same group also 
introduced the Snow Ablation Optimizer (SAO), 
inspired by snow sublimation and melting. SAO 
balances exploration and exploitation, 
outperforming other metaheuristics on CEC2017 
and CEC2020 benchmarks [18]. The use of 
Evolutionary Reinforcement Learning (ERL) in this 
work is motivated by its ability to optimize 
complex, high-dimensional problems where 
traditional methods struggle. ERL provides a robust 
framework that combines the exploratory power of 
evolutionary algorithms with the reinforcement 
learning. The decision to use a combination of 
genetic algorithm (GA) and artificial neural 
networks (ANN) is based on their complementary 
strengths. GA is effective in exploring the solution 
space and avoiding local optima, while ANN excels 
in modeling non-linear relationships and learning 
from large datasets. While many evolutionary 
algorithms are available, the combination of GA and 
ANN was chosen due to its demonstrated 
effectiveness in similar robotic control tasks. 

The motion equations for dynamic systems are 
usually derived using the Lagrange or Newton-
Euler methods. One approach to obtaining the 
dynamic model of complex systems with high 
degrees of freedom is through the use of 'Multibody 
Dynamics' simulations. To obtain a system's 
dynamic model, one can use block structures with 
Matlab Simscape MultiBody. Additionally, Matlab 
Simscape MultiBody provides a physical 
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environment and visual animations of the system's 
operation. 

This article is divided into several sections, 

including the modeling of the robot and the 

successful implementation of the throw and balance 

mission. The second section covers the kinematic 

and dynamic modeling of the robot, as well as the 

construction of the corresponding Multi-Body 

System Model (MSM) structure. The ground has 

been modeled using spring and damper elements. 

The third section gives details of the procedure 

followed in the implementation of the throw and 

balance mission, including the impedance control 

applied. Additionally, it presents the specifics of the 

learning algorithm applied to maintain balance 

without tipping during the collision with the ground. 

Section four provides numerical simulations and 

discusses graphical results. In Chapter 5, conclusion 

and various recommendations for researchers are 

presented. 

2. KINEMATIC AND DYNAMIC MODELING 
(KİNEMATİK VE DİNAMİK MODELLEME) 

Figure 1 shows the placements of the kinematic and 

dynamic representations of the Reaction Wheel 

Robot model. The robot is composed of three rigid 

bodies: the main body, the reaction wheel, and a leg 

with one degree of freedom (DOF), denoted by 

𝑖 𝜖 {1, 2, 3}. The reaction wheel and the leg are 

connected to the two ends of the main body using 

revolute joints. Figure 1 shows that in the model, 

point 𝐴0 represents the connection point of the main 

body and the reaction wheel, while 𝐴1 represents the 

connection point of the main body and the leg. The 

planar dynamic robot model has a total of 5 DOF 

and moves freely in space. The constructed robot 

model uses the generalized coordinates 𝑞 𝜖 ℜ𝑛+3, 

where the term ‘𝑛’ represents the actuated joints. In 

its general form, the nonlinear equation of motion is 

as follows: 

𝑀(𝑞)𝑞̈  + ℎ(𝑞, 𝑞̇) = 𝑆𝑇𝜏 + 𝙹𝑇𝑓𝑐 (1) 

The inertia matrix is represented by 

𝑀 𝜖 ℜ(𝑛+3)𝑥(𝑛+3), and ℎ 𝜖 ℜ𝑛+3 includes gravity, 

Coriolis, and centripetal terms. The expression 𝙹 

provides the Jacobian matrix obtained for the 

contact point, while 𝑓𝑐 represents the contact forces 

that arise when the robot's leg is in contact with the 

ground. The torque values in the actuated joints, 

excluding the underactuated base, are represented 

by 𝜏 𝜖 ℜ𝑛. The selection matrix 𝑆𝑇 is a boolean 

matrix used to choose n torque values. 

Figure 1. Kinematic and dynamic representations of the robot model. (Robot modelinin kinematik ve dinamik 

gösterimleri) 

 

𝐿1 represents the distance from the center of the 

main body to joint 𝐴1, while 𝐿2 represents the 

distance from the center of the leg to end of the leg. 

Point 𝑃 represents the point located on the lower 

part of the leg that makes contact with the ground. 

𝒲(𝑥, 𝑦) is defined as the inertial frame, while the 

floating base axis 𝔅(𝑥1, 𝑦1) positioned at the center 

of mass of the robot's main body. The position of 

the floating base 𝔅 with respect to the fixed 

reference frame is denoted by the expression 

𝑟𝔅 𝜖 ℜ
2. The angular displacement of the base axis 

is represented by 𝜃1. The angular displacements of 

the 𝐴1  and 𝐴0 joints are represented by 𝑞 𝜖 ℜ𝑛 =
(𝜃2, 𝜃3), respectively. 𝜃1 is measured from the 

horizontal axis, while 𝜃2 and 𝜃3 are measured 

relative to 𝜃1. The mass and moments of inertia for 

centroids are respectively represented by 𝑚𝑖  𝜖 ℜ
3 

and 𝐼𝑖 𝜖 ℜ
3. (𝑥1, 𝑦1, 𝜃1) represents the 

underactuated position and orientation of the 

floating base. To indirectly control the 
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underactuated base, it is necessary to apply torques 
𝜏 𝜖 ℜ𝑛 to the 𝐴0 and 𝐴1 joints. 

The dynamic robot model shown in Figure 1 is 

obtained using MSM to produce the same results as 

the equations of motion given in Appendix. The 

MSM structure is modeled using Simulink and 

Simscape block diagrams as shown in Figure 2.  

Solid objects can be created using solid modelling 

software, such as CAD programs or directly added 

from the ready library of MSM. The MSM 

simulation program is primarily composed of 

interconnected block diagrams that represent joint 

types, solid object models, and Rigid Transform 

blocks used to define axes to desired points.  For the 

3-DOF body “𝔅” located at the center of the robot's 

body uses a planar joint named “Base”.  

Figure 2. The block diagram illustrates the MSM dynamic model of the robot. (Blok diyagramı, robotun MSM dinamik 

modelini göstermektedir) 

 

The upper end of main body 𝐴0 is connected to the 

Reaction Wheel using a single DOF revolute joint, 

while the Leg block is connected to the lower end 

of the main body 𝐴1 using a single degree-of-

freedom revolute joint. In MSM, a structural 

damping amount of 0.005 𝑁𝑚
𝑑𝑒𝑔

𝑠
⁄  defined for the 

revolute joint A_1. The dynamic parameters for 

these components are entered in the Main Body, 

Reaction Wheel, and Leg blocks. The Contact 

Forces function block calculates the contact forces 

that arise when the robot's leg comes into contact 

with the ground. The resulting torque control 

signals are then sent to the A_0 and A_1 joint 

blocks, which are connected to the reaction wheel 

and the leg respectively. Once the main structure 

providing the dynamics is completed and the system 

analysis is initiated, animation of the mechanic 

model operating in the physical environment are 

provided. In MSM, it is possible to create a 

feedback system within the same environment by 

adding controller functions in addition to the main 

structure that gives the robot’s dynamics. Torque 

signals obtained from all phases are collected and 

fed into the inputs of the A_0 and A_1 joints. The 

Stop Actuation (SA) block was added to terminate 

unsuccessful balancing attempts during real-time 

(in simulation) training. 

2.1 Jacobian and Contact Modeling (Jakobyan ve 

Kontak Modelleme) 

It is assumed that the contact surface of the robot leg 

with the ground is a point. The position of the point 

𝑃 = [𝑃𝑥  𝑃𝑦]
𝑇
 𝜖 ℜ2 relative to the inertial axis, 𝑃𝑥 

and 𝑃𝑦 values are given in 2.a and 2.b, respectively.  

𝑃𝑥 = 𝑥1−𝐿1 𝑐𝑜𝑠(𝜃1) + 2𝐿2 𝑐𝑜𝑠(𝜃1 + 𝜃2) 

𝑃𝑦 = 𝑦1 − 𝐿1 𝑠𝑖𝑛(𝜃1) + 2𝐿2 𝑠𝑖𝑛(𝜃1 + 𝜃2) 

(2.a) 

(2.b) 

The Jacobian expression 𝙹𝑃 , which is obtained for 

the position vector 𝑃, is given below; 

𝙹𝑃 = 

(
1 0 𝐿1 𝑠𝑖𝑛(𝜃1) − 2𝐿2 𝑠𝑖𝑛(𝜃1 + 𝜃2) −2𝐿2 𝑠𝑖𝑛(𝜃1 + 𝜃2)

0 1 −𝐿1 𝑐𝑜𝑠(𝜃1) + 2𝐿2 𝑐𝑜𝑠(𝜃1 + 𝜃2) 2𝐿2 𝑐𝑜𝑠(𝜃1 + 𝜃2)
) 

(3) 
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The vertical and horizontal contact forces acting at 
point P are given in equation (4). 

𝑓𝑐 = 

{
[𝑘(𝑐

𝑥(𝑃𝑥
ℎ𝑖𝑡 − 𝑃𝑥) − 𝑏𝑐

𝑥𝑃𝑥)̇   (−𝑘𝑐
𝑦
𝑃𝑦 − 𝑏𝑐

𝑦
𝑃𝑦̇)] if        𝑃𝑦 < 0 

[0 0] if        𝑃𝑦 ≥ 0
  

(4) 

The contact forces occurring at point P are 

represented by 𝑓𝑐 = [𝑓𝑐
𝑥 𝑓𝑐

𝑦
] 𝜖 ℜ2. The mechanics 

of the ground in the horizontal and vertical 

directions are modelled as damping and spring 

elements. The position of the foot tip on the x-axis 

relative to the inertial axis at the moment of contact 

with the ground is denoted by 𝑃𝑥
ℎ𝑖𝑡. The stiffness of 

the ground is represented by the term 𝑘𝑐𝜖 ℜ
2 =

(𝑘𝑐
𝑥 𝑘𝑐

𝑦
), while the damping coefficient of the 

ground is represented by 𝑏𝑐𝜖 ℜ
2 = (𝑏𝑐

𝑥, 𝑏𝑐
𝑦
). The 

values of 𝑘𝑐 and 𝑏𝑐 were determined through drop 

tests. 𝑃̇𝜖 ℜ2, the first derivative of the toe point 𝑃 

with respect to time, is given in (5). 

𝑃̇ = 𝙹𝑃[𝑥1 𝑦1 𝜃1 𝜃2]
𝑇 (5) 

 If point 𝑃 touchs the ground, it is assumed that there 

is no slip and 𝑃̇(𝑡) = 0. 

3. ONE-LEGGED ROBOT BALANCE 

CONTROL PROCEDURE (TEK-BACAKLI 

ROBOT DENGE KONTROL PROSEDÜRÜ) 

Balance control procedure is divided into three main 

phases. The first phase, known as the ‘Flight Phase’ 

covers the period from when the robot is launched 

until it makes contact with the ground. During this 

stage, the robot is in mid-air, guided towards its 

intended destination and preparing for landing. The 

second phase is the ‘Transition Phase’. In this phase, 

we focus on the moment the robot touches the 

ground. During this phase, an online real-time 

learning in simulation structure is developed to 

prevent the robot from tipping over upon impact and 

to maintain a balanced posture. The structure is 

designed to effectively absorb the impact forces of 

a hard landing while simultaneously learning to 

maintain the robot's equilibrium, ensuring that it 

remains upright without falling. This stage is 

considered the most crucial component of the 

balance control procedure. The final phase is the 

‘Ground Phase’. During this stage, the robot 

completes its full upright position while 

maintaining control. The robot then proceeds to its 

final location while the complete control structure 

of the learning and phases created by Matlab 

Simulink, including the robot and its environment, 

is shown in Figure 3. This integrated structure 

manages an effective control and learning process 

during the flight, transition, and grounding stages. 

 

Figure 3. Main MS and MSM control architecture for Robot. (Robot için temel MS ve MSM kontrol mimarisi) 
 

Figure 3 shows the Robot Dynamic (RD) block, 

which models the robot and the environment. The 

blocks for the Flight Phase (FP), Transition and 

Ground Phase (TGP) are presented in that order 

and have been thoroughly discussed. The Learning 

System (LS) performs the learning and determines 

the control coefficients. The LS subblock contains 

block structures for the Neural Network and aim 

function, referred to as ANN and Aim Function 

(AF) respectively. State observations taken from the 

RD block feed the other block structures. While, 

control actions obtained from the FP and TGP 

blocks enter the RD block. 

3.1. Flight Phase (Uçuş Fazı)  

The Flight Phase covers the period during which the 

robot launches and travels towards the targeted 

landing area.  During this stage, Flight phase 

controllers track the desired references and adjust 

the robot’s orientation during the flight. It is 

proposed that, when the robot leg makes contact 

with the ground, the direction of the velocity vector 

aligns in parallel between the total center of mass 

and point 𝑃. Thus, the direction of the planar vector 
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belonging to the total center of mass of the robot is 

desired to pass through point P during flight. It will 

be aligned in the direction of the 𝐿⃗ 4 vector, defined 

between point 𝑃 and 𝐶𝑜𝑀, which is controlled by 

impedance control, starting when the robot touches 

the ground and throughout the transition phase. In 

other words, this desired situation is achieved by 

minimizing 𝜃𝑒𝑟𝑟. 𝑃′ is the desired reference 

endpoint of the robot leg. As seen in Figure 4, the 

angular difference between 𝑃 and 𝑃′ was modeled 

and controlled as a torsional spring and damper, 

with the balance point being 𝑃′. 

Equation (6) provides the 𝛿 value obtained through 

geometric methods for generating the reference 

value 𝜃2
𝑟𝑒𝑓

. During the flight phase, after launching 

the robot, a variable reference orbit 𝜃2
𝑟𝑒𝑓

 is 

produced depending on 𝜃𝑣𝑒𝑙, which is the angle of 

the velocity vector of the total center of mass. 𝜏2
𝐹𝑃 

controls the angle 𝜃2 to follow the variable 

reference trajectory during the flight phase. The 

equations are given in Equations 7 and 8.a, 8.b, 

respectively. 

𝛿 = sin−1 (
𝐿𝐺 sin(𝜃1 − 𝜃𝑣𝑒𝑙)

2𝐿2
) (6) 

𝜃2
𝑟𝑒𝑓

= (𝛿 − 𝜃1 + 𝜃𝑣𝑒𝑙) + 2𝜋 

𝜏2
𝐹𝑃 = (𝜃2

𝑟𝑒𝑓
− 𝜃2)𝐾2

𝑓𝑙
− 𝜃̇2𝐵2

𝑓𝑙
,    

 𝜏3
𝐹𝑃 = (𝜃1

𝐹𝑃 − 𝜃1)𝐾3
𝑓𝑙
− 𝜃̇1𝐵3

𝑓𝑙
 

(7) 

(8.a) 

(8.b) 

The calculation of the total center of mass excludes 

the robot leg due to its significantly lighter weight 

compared to other parts. The distance from the total 

center of mass to 𝐴1 is denoted as 𝐿𝐺. The velocity 

vector of the total center of mass is represented by 

𝑉⃗ 𝐺, and its angle is denoted as 𝜃𝑣𝑒𝑙. The transform 

sensor is used in the RD block to obtain the 𝜃𝑣𝑒𝑙 

value of the CoG. 𝐾2
𝑓𝑙

 and 𝐵2
𝑓𝑙

 represent the virtual 

spring and damper values used to control 𝜃2 during 

the flight phase. A control torque is applied to the 

Reaction Wheel to maintain the 𝜃1 angle of the 

Main Axis at the desired value throughout the flight 

duration. Therefore, equation (8) applies torsional 

impedance control between the desired reference 

angle 𝜃1
𝐹𝑃 and 𝜃1. Applying torque to the reaction 

wheel creates a reverse moment that affects the 

orientation of the main axis, specifically 𝜃1. 

 

Figure 4. Flight Phase control. (Uçuş Fazı Kontrolü) 

 

𝜏3
𝐹𝑃 is the control torque used to control the angle 

𝜃1, 𝐾3
𝑓𝑙

 and 𝐵3
𝑓𝑙

 are the virtual spring damping 

coefficients used to control 𝜃1 in the flight phase, 

respectively. Virtual control coefficients are 

optimized by trial and error technique. 𝜏3
𝐹𝑃 controls 

the angle 𝜃1, while 𝐾3
𝑓𝑙

 and 𝐵3
𝑓𝑙

 are virtual spring 

damping coefficients used for controlling 𝜃1 during 

the flight phase. The virtual control coefficients 

have been optimized using a trial and error 

technique. 

3.2. Transition and Ground Phase (Geçiş ve Yer 

Fazı) 

Adaptive impedance control has been implemented 

to enable the robot to absorb the effects of hard 

impacts, prevent tipping over, and recover balance. 

This approach offers a versatile method for 

controlling the robot's response to external forces, 

ensuring stability, and adjusting oscillation 

characteristics as needed. Figure 5 shows that the 

length and angle of vector 𝐿4 are controlled by 

springs and dampers defined on the horizontal and 

vertical axes. These forces act on the robot, allowing 

it to imitate spring damping movement [19]. The 

stiffness value and damping coefficient of the spring 

can be adjusted to achieve the desired type of 

oscillation. The vector loop closure equation for the 

𝐿4𝜖 ℜ
2 vector shown in Figure 5 can be written with 

complex numbers in exponential form as in (9) and 

this yield two explicit equation. The length of the 

vector and its first derivative are provided in (10.a 

and 10.b) and (11.a and 11.b), respectively, while 

the angle 𝜃4 is given in equation (12). 
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𝐺𝐴1⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝐴1𝑃⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑃𝐺⃗⃗⃗⃗  ⃗ = 0 (9) 

𝑃𝐺⃗⃗⃗⃗  ⃗ = −𝐿𝐺𝑒
𝑖(𝜃1+𝜋) − 2𝐿2𝑒

𝑖(𝜃1+𝜃2) 

𝐿4
𝑥(𝜃1, 𝜃2) = 𝐿𝐺 cos(𝜃1) − 2𝐿2 cos(𝜃1 + 𝜃2)                                              
𝐿4
𝑦(𝜃1, 𝜃2) = 𝐿𝐺 𝑠𝑖𝑛(𝜃1) − 2𝐿2 𝑠𝑖𝑛(𝜃1 + 𝜃2) 

(10) 

(10.a) 

(10.b) 

𝑉4 = 𝑖𝐿𝐺 𝜃̇1𝑒
𝑖(𝜃1) + 𝑖2𝐿2(𝜃̇1 + 𝜃̇2)𝑒

𝑖(𝜃1+𝜃2) 

𝐿4
𝑦̇
= 𝐿𝐺𝜃̇1 cos(𝜃1) − 2𝐿2(𝜃̇1 + 𝜃̇2) cos(𝜃1 + 𝜃2) 

𝐿4
𝑥̇ = −𝐿𝐺𝜃̇1 𝑠𝑖𝑛(𝜃1)

+ 2𝐿2(𝜃̇1 + 𝜃̇2) 𝑠𝑖𝑛(𝜃1 + 𝜃2) 

(11) 

(11.a) 

(11.b) 

𝜃4

= cos−1 (
𝐿𝐺 cos(𝜃1) − 2𝐿2 cos(𝜃1 + 𝜃2) 

𝐿4
) 

(12) 
 

𝐿4
𝑥 and 𝐿4

𝑦
 represent the components on the 

horizontal and vertical axes, respectively. During 

the transition phase, the objective is to stabilize the 

angle 𝜃4 at π/2 radians and maintain the length of 𝐿4 

at a predetermined value during impact. Control is 

achieved by learning the system through 

experimentation using a learning algorithm. Once a 

stable posture is achieved in the transition phase, the 

system moves to the ground phase and attempts to 

maintain the angle 𝜃4 at the same value. The 𝐿4 

value is controlled to follow a trajectory until the 

robot is fully upright. Equations 13 and 14 provide 

the force components applied in the horizontal and 

vertical axes by impedance control. 

𝐹𝑖𝑐
𝑥 = (𝐿4

𝑥𝑒𝑞
− 𝐿4

𝑥). 𝐾𝑖𝑐 − 𝐿4
𝑥̇𝐵𝑖𝑐  (13) 

𝐹𝑖𝑐
𝑦
= {  𝐿𝑒𝑟𝑟

𝑦
𝐾𝑖𝑐 − 𝐿̇4

𝑦
𝐵𝑖𝑐    𝑖𝑓,   𝐿4

𝑦
< (𝐿𝑔 + 2𝐿2 )    (14) 

𝐿4
𝑑𝑒𝑠 = {  𝐿4

𝑦
(𝑡𝑖𝑚𝑝)  𝑖𝑓,   𝑠𝑖𝑔𝑛(𝑓𝑐) > 0     (15) 

𝑐1
+ =

{
 
 

 
 

   ∑ 𝑡𝑖𝑛𝑡

𝑇

𝑡𝑖𝑛𝑡
−1

𝛼=0

    𝑖𝑓,       (−𝜂 < 𝐿4
𝑥 < 𝜂)

 0                      ,        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(16) 

𝐿𝑒𝑟𝑟
𝑦

= {    
(𝐿4
𝑑𝑒𝑠 + (𝑇 − 𝑡𝑖𝑚𝑝). 𝓏) − 𝐿4

𝑦
        𝑖𝑓, (−𝜂 < 𝐿4

𝑥 < 𝜂) 𝑎𝑛𝑑 (𝑐1
+ ≥ 𝑡𝑟𝑒𝑓)

(𝐿4
𝑑𝑒𝑠 − 𝐿4

𝑦
)                      ,                    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(17) 

The virtual impedance control coefficients, 𝐵𝑖𝑐 and 

𝐾𝑖𝑐, are obtained from artificial neural networks in 

both horizontal and vertical directions. These 

coefficients were trained and determined by ANN 

with random initial conditions, such as the robot's 

height from the ground and speeds in the horizontal 

and vertical axes. During the transition phase, the 

desired reference values for the x and y directions 

are 𝐿4
𝑥𝑒𝑞

 and 𝐿4
𝑑𝑒𝑠, respectively. 𝐿4

𝑥𝑒𝑞
 is determined 

in advance, and 𝐿4
𝑑𝑒𝑠 is equal to the length 𝐿4

𝑦
 at the 

time of impact 𝑡𝑖𝑚𝑝 as stated in equation (15). The 

fixed solver interval is denoted as 𝑡𝑖𝑛𝑡. When the 

condition specified in (16) is met, control for the 

robot's straightening during the Ground phase is 

ensured with the time-dependent trajectory given in 

(17). T represents the total operational time until the 

process is completed, while z adjusts the rate of 

change in the velocity of the reference value. In the 

steady state, the goal is to achieve equilibrium 

within the ±𝜂 limits in the 𝐿4
𝑥 direction, and at the 

same time, the 𝑐1
+ value is expected to remain in 

equilibrium for the desired time 𝑡𝑟𝑒𝑓. The 

representations of the Cartesian impedance control 

applied to the body center are shown in Figure 5. 

The resulting impedance forces are converted into 

torque action signals, which drive the reaction 

wheel and the second limb. These signals are 

derived from the equations presented in (18.a-b). 

  

Figure 5. Cartesian Impedance Control used in 

Transition and Ground Phase. (Geçiş ve zemin 

fazlarında kullanılan Kartezyen empedans kontrolü.) 

 

𝜏2
𝑇𝐺𝑃 = 𝐹𝑖𝑐

𝑥𝐿𝐺 𝑠𝑖𝑛(𝜃1) + 𝐹𝑖𝑐
𝑦
𝐿𝐺 𝑐𝑜𝑠(𝜃1),   

𝜏3
𝑇𝐺𝑃 = 𝐹𝑖𝑐

𝑥𝐿4
𝑦
+ 𝐹𝑖𝑐

𝑦
𝐿4
𝑥     

(18.a) 

(18.b) 

In the TG phases, 𝜏2
𝑇𝐺𝑃 and 𝜏3

𝑇𝐺𝑃 apply torques to 

𝐴1 and 𝐴0, respectively. Figure 6 shows the sub-

functions of TGP. The impedance control block 

receives the output variables 𝐾𝑖𝑐 and 𝐵𝑖𝑐from the 

ANN block and converts them into control torques 

in the Force-Torque Converter (FTC) block. 
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Figure 6. TGP subsystem block structure. (TGB Alt 

Bloğu) 

 

3.3. Learning Balance Control During Impact 
(Çarpma Anında Denge Kontrolünün Öğrenimi) 

To effectively absorb the effects of high-energy 

collisions, the terms 𝐵𝑖𝑐 and 𝐾𝑖𝑐 are determined 

using Evolutionary Reinforcement Learning. In this 

system, the genetic algorithm and ANN work 

together to enable the agent's continuous learning 

and improvement of its performance. In model-free 

and continous system, the agent interacts with its 

environment to learn its task. The Artificial Neural 

Network or Policy generates actions based on the 

observation data obtained by the agent's interaction 

with the environment. The artificial neural network 

weight parameters are optimized by the genetic 

algorithm, evolving towards the best parameter set 

to increase the agent's performance. In contrast to 

Reinforcement Learning, where the agent tries to 

maximise the reward value, in our system the agent 

works towards minimising the Aim function, 

bringing it closer to zero. Furthermore, the agent is 

only provided with critical data rather than all 

observation data. The policy, acting as an actor, 

utilizes a neural network structure consisting of five 

inputs, five hidden layers, and two output cells. The 

neural network structure created for the Critic 

Network is disabled in this method. The neural 

network structure created for the actor has an input 

vector 𝐼𝑛𝑝 𝜖 ℜ5, a weight matrix for the first and 

second layers 𝑤𝑖𝑙  𝜖 ℜ
5𝑥5 and 𝑤𝑜𝑙  𝜖 ℜ

5𝑥5, and a bias 

vector for the first and second layers 𝑏𝑖𝑙  𝜖 ℜ
5 and 

𝑏𝑜𝑙  𝜖 ℜ
2 as given Eq. 19.a-c 

 𝐼𝑛𝑝 =

(

 
 

𝑦1
𝑦̇1
𝑥̇1
𝐿4
𝑦

𝐿4
𝑑𝑒𝑠)

 
 

,   𝑤𝑖𝑙 =

[
 
 
 
 
𝑤1
𝑤6

𝑤2
𝑤7

𝑤11 𝑤12

…
…

𝑤5
𝑤10

… 𝑤15
𝑤16 𝑤17
𝑤21 𝑤22

… 𝑤20
… 𝑤25]

 
 
 
 

,   

 

(19.a) 

 

 

 

 

  𝑏𝑖𝑙 = (

𝑤36
𝑤37
⋮
𝑤40

) 

𝑤𝑜𝑙 = [
𝑤26 𝑤27
𝑤31 𝑤32

… 𝑤30
… 𝑤35

],  𝑏𝑜𝑙 = (
𝑤41
𝑤42

) 

(19.b) 

 

 

(19.c) 

The ANN architecture used in this study (Eq. 19–

20) was selected based on preliminary empirical 

trials, aiming to balance learning capacity with 

computational efficiency. The weight coefficients, 

represented by 𝑤𝑛 where 𝑛 𝜖 {1, . . ,42}, are updated 

in real-time after each shot through the Genetic 

algorithm. The activation function used in the cells 

is ‘tansig’. During the training phase, the ANN input 

receives the state variables 𝑥̇1, 𝑦1, 𝑦̇1, 𝐿4
𝑦

, and 𝐿4
𝑑𝑒𝑠 

of the dynamic model, and the output provides the 

necessary terms for 𝐵𝑖𝑐 and 𝐾𝑖𝑐 impedance control. 

The formulation is given Eq. 20.a and 20.b; Figure 

7 shows the learning structure used for this purpose. 

The simulation uses the Matlab Genetic Algorithm 

Toolbox to determine the ANN weight coefficients. 

The objective function targeted for our system is 

given by equation (21). The term ψ is added during 

training to penalise falling due to collision effects in 

shooting trials. The term θ1
h is equal to the value of 

𝜃1(𝑡𝑖𝑚𝑝) at the moment of the robot contact with the 

ground and 𝐿4
𝑑𝑒𝑠, 𝐿4

𝑥𝑒𝑞
 represents the vertical and 

horizontal clearance of the robot at that moment. 

Although the state variables given to the ANN input 

have changed, after the impact, the robot is required 

to balance 𝐿4
𝑦

 and 𝐿4
𝑥, around the value of 𝐿4

𝑑𝑒𝑠, 𝐿4
𝑥𝑒𝑞

 

respectively. 

𝑓:ℜ5  → ℜ2 

𝑓𝑜𝑙,𝑘 = 𝜎𝑎𝑐𝑡 (∑𝑤𝑜𝑙,𝑘𝑗 .

5

𝑗=1

𝜎𝑎𝑐𝑡 (∑𝑤𝑖𝑙,𝑗𝑖 .

5

𝑖=1

𝐼𝑛𝑝𝑖 + 𝑏𝑖𝑙,𝑗)

+ 𝑏𝑜𝑙,𝑘), 

  𝑘 = 1,2 

Where; 

𝜎𝑎𝑐𝑡(𝑥) = 2. (
1

1 + 𝑒−2.𝑥
) − 1 

(20.a) 

 

 

 

 

 

(20.b) 
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Figure 7. Real-time in simulation robot training cycle. (Simülasyonda gerçek zamanlı robot eğitim döngüsü) 

 

Despite the large collision force, it is desired to 

allow a displacement in the horizontal direction up 

to a maximum of ξ and punishment starts when this 

limit is exceeded. The first term, 𝑚𝑎𝑥 (0, |𝐿4
𝑑𝑒𝑠 −

ξ − 𝐿4
𝑦
|
2
), begins to receive high penalty points 

when it exceeds ξ, which is the maximum leg 

closing amount, due to the impact effect at the 

moment of contact with the ground. While the 

expression |𝐿4
𝑑𝑒𝑠 − 𝐿4

𝑦
| helps the robot returns to the 

balance point, (𝐿4
𝑑𝑒𝑠 − 𝐿4

𝑦
)
2
 minimises the 

difference between it and the target height. The 

terms (𝑃𝑥
ℎ𝑖𝑡 − 𝑃𝑥)

2
 and 𝜆6𝑃𝑦

2 are added to prevent 

bouncing and displacement after collisions. 𝜆𝑗  

𝑗 𝜖 {1, . . ,6} are the weighting factors and their 

values were determined by trial and error. The 

maximum control torque 𝜏𝑘
𝑇𝐺𝑃, 𝑘 𝜖 {2, 3} is limited 

to ±𝑢𝑘
𝑚𝑎𝑥. Therefore, the conditions given in (23) 

have been applied. To ensure that the initial 

conditions are within controllable limits during 

robot launch, the initial values for 𝜃1 in the launch 

simulations are assumed to be in the range of 
𝜋

3
<

𝜃1 <
13𝜋

18
. The initial values for 𝑦̇1 are assumed to 

be in the range 𝑦̇𝑚𝑖𝑛1 < 𝑦̇1 < 𝑦̇
𝑚𝑎𝑥

1

𝑚

𝑠
. For 𝑦1 and 

𝑥̇1 are  𝑦1
𝑚𝑖𝑛 < 𝑦1 < 𝑦1

𝑚𝑎𝑥  𝑥̇𝑚𝑖𝑛1 < 𝑥̇1 <

𝑥̇𝑚𝑎𝑥1  
𝑚

𝑠
 respectively. In the initial state, link 2 is 

assumed to start almost parallel to the base, and 𝜃2 

starts at angles close to zero radians. 

Εrr = 𝑚𝑖𝑛 ∑ (𝜆1. 𝑚𝑎𝑥 (0, |𝐿4
𝑑𝑒𝑠 − ξ − 𝐿4

𝑦
|
2
) + 𝜆2|𝐿4

𝑑𝑒𝑠 − 𝐿4
𝑦
| + 𝜆3(𝐿4

𝑑𝑒𝑠 − 𝐿4
𝑦
)
2
+ 𝜆4ψ

𝑇𝑡𝑟𝑎𝑖𝑛
𝑡𝑙𝑛

−1

𝜗=0

+ 𝜆5(𝑃𝑥
ℎ𝑖𝑡 − 𝑃𝑥)

2+𝜆6𝑃𝑦
2) 

(21) 

 

ψ = {(𝜃1 − 𝜃1
ℎ)2,

𝑖𝑓 (𝜃1
ℎ <

𝜋

2
) 𝑎𝑛𝑑 (−

𝜋

5
> 𝜃1 >

𝜋

2
) 𝑎𝑛𝑑 (𝐿4

𝑑𝑒𝑠 > 0)

𝑖𝑓 (𝜃1
ℎ >

𝜋

2
)𝑎𝑛𝑑 (−

5𝜋

6
> 𝜃1 <

𝜋

2
) 𝑎𝑛𝑑 (𝐿4

𝑑𝑒𝑠 > 0)
 

(22) 

𝑠. 𝑡.      

{
  
 

  
 

𝑦1
𝑚𝑖𝑛 ≤ 𝑦1 ≤ 𝑦1

𝑚𝑎𝑥 

𝑦̇𝑚𝑖𝑛1 ≤ 𝑦̇1 ≤ 𝑦̇
𝑚𝑎𝑥

1 

𝑥̇𝑚𝑖𝑛1 ≤ 𝑥̇1 ≤ 𝑥̇
𝑚𝑎𝑥

1  

  𝜏𝑘 = {
𝑢𝑘
𝑚𝑎𝑥

|𝜏𝑘|

𝜏𝑘
, if   |𝜏𝑘| > 𝑢𝑘

𝑚𝑎𝑥

𝜏𝑘 , if   |𝜏𝑘| ≤ 𝑢𝑘
𝑚𝑎𝑥

   

 

(23) 
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The AF sub-block, modelled with Simulink blocks, 
is shown in Figure 8 (on the right). In each launch 
trial, the Genetic Algorithm, transfers new ANN 
weight coefficients to the MS environment for 
testing, as shown in Figure 8 (left). Throughout the 
simulation, the total error obtained from the AF is 
given to the Genetic Algorithm through the Err 
block. Therefore, as the objective function 

approaches zero during each simulation, the balance 
process is learned and the next simulation is tested 
with new coefficients to obtain better results. This 
real-time (in simulation) learning cycle continues 
until the number of iterations is reached or the 
desired performance range is achieved. The 
sampling time interval selected for training is 
entered in the Err block. 

 

Figure 8. ANN (Left), AF (Right) subsystem block structures (YSA (Sol) ve AF (Sağ) alt sistem blok yapıları) 

 
The genetic Algorithm is set up with 60 iterations 

and a population size of 10. The simulation initial 

conditions for 𝑦1, 𝑦̇1, 𝑥̇1 are chosen randomly 

within the range specified in Eq. (23). The solver 

constant sampling time for the simulation is set to 

𝑡𝑖𝑛𝑡 = 0.0001 𝑠, and the solver is selected as "ode4 

(Runge-Kutta) ". The sampling interval for training 

is chosen as 𝑡𝑙𝑛 = 0.01 𝑠 sec. The total simulation 

time for each training is 𝑇𝑡𝑟𝑎𝑖𝑛 = 1.40 seconds.  

 

Figure 9. Learning State of Dynamic Systems During 

Iterations (Yinelemeler sırasında dinamik sistemlerin öğrenme 

durumu) 

The training procedure was executed on a system 

equipped with an Intel Core i7 processor using 

Matlab 2022. A total of 600 launch trials were 

performed to complete the learning process. Figure 

9 illustrates the Genetic Algorithm, listing the 

performance values while predicting the ANN 

parameters. Here, 'Best' refers to the best solution or 

the lowest objective function value found by the 

genetic algorithm at each iteration or generation. 

'Mean' refers to the average value of all solutions in 

the population at each iteration or generation, which 

can be expressed as the average of the objective 

function or the fitness values. 'Fitness value' 

represents the fitness level of each individual or 

solution, typically measured based on an objective 

or fitness function. 'Iteration' can also be referred to 

as a generation. Each generation is a phase where 

individuals derived from the previous generation 

evolve and new individuals are created. Best and 

mean values are particularly important for 

evaluating the algorithm's performance, as they 

indicate the optimization progress and the quality of 

the solutions. It can be seen from the graph that the 

learning is completed after the 37th generation. 

4. NUMERICAL SIMULATION (NÜMERİK 

SİMÜLASYON) 

The results of the numerical simulations carried out 
using the Simulink model include all the control 
structures developed to test the launch and balance 
stages. The parameters required to control the robot 
and the initial values for the simulations performed 
are given in Tables 1 and 2, and these parameters 
are defined in the relevant blocks in the Simulink 
model. 
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Table 1. Parameters of Control and Robot dynamics (Kontrol ve robot dinamiklerinin parametreleri) 

To ensure compatibility with a potential real-world 

application, the system parameters were selected 

within realistic and practical limits. As introduced 

in the context of a throwable tripod, the robot’s total 

height was set to 0.4 meters, and the body weight 

was chosen as 700 grams, which is sufficient to 

accommodate brushless motors, motor driver 

boards, and a battery for three axes. Similarly, the 

mass values of the reaction wheel and leg segment 

were assigned based on physically feasible 

dimensions. The initial x and y positions and 

velocities were determined by referencing average 

human dimensions, ensuring that the launch heights 

and speeds reflect normal throwing conditions 

while excluding highly aggressive scenarios. Three 

launch tests were performed to evaluate the 

performance of the system on the robot. While 

random initial values were chosen for launch Test 1, 

the other two tests examined the pre-defined 

maximum and minimum starting conditions for the 

launch. The initial values of positions and velocities 

for 3 different launch tests are given in Table 2. At 

the beginning of the simulation (t = 0), while the 

reaction wheel was at rest, the robot was started at 

the initial angular and linear positions and velocities 

given below. After the robot is launched, it is 

expected to stabilize in both [𝜃1, 𝜃̇1](𝑡 = ∞) =

[
𝜋

2
 𝑟𝑎𝑑, 0

𝑟𝑎𝑑

𝑠
] and [𝜃2, 𝜃̇2](𝑡 = ∞) = [

𝜋

2
 𝑟𝑎𝑑, 0

𝑟𝑎𝑑

𝑠
]. 

During the simulations, the maximum control 

torques 𝜏3 and 𝜏2 were constrained, as given in 

equation (23). The simulation screenshot taken 

during the launch and installation of the robot of 

launch Test 1 is given in Figure 10. Again, for Test 

1, the 8-second test graphs of the outputs of the 

robot's MSM model are presented in Figures 11 to 

17.In the graphs, it can be seen that control is 

achieved with negligible differences in the MSMB 

model and the robot balances steadily during the 

verification process. 

 

 

 

Table 2. Initial values for simulations (Simülasyon için ilk Değerler)

(𝑡 = 0) (Test 1)Random 

Initial Values 

(Test 2)Max 

Initial Values 

(Test 3)Min Initial 

Values 𝑥1 0 𝑚 0 𝑚 0 𝑚 

𝑦1 1.7 𝑚 2.2 𝑚 1.2 𝑚 

𝑥̇1 2𝑚 𝑠⁄  2.7 m/s 0.0 m/s 

𝑦̇1 1.2𝑚 𝑠⁄  2.5 m/s 0.0 m/s 

𝜃1 1.832 𝑟𝑎𝑑 1.832 rad 1.832 rad 

𝜃2 6.109 𝑟𝑎𝑑 6.109 rad 6.109 𝑟𝑎𝑑 

𝜃̇2, 𝜃3, 𝜃̇3, 𝜃̇1 [0,0,0,0] [0,0,0,0] [0,0,0,0] 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒 

𝐿1(𝑚) 0.2 𝜆1 1.5 𝑦1
𝑚𝑖𝑛(𝑚) 1.2 

𝐿2(𝑚) 0.2 𝜆2 0.7 𝑦1
𝑚𝑎𝑥(𝑚) 2.2 

𝐿𝐺(𝑚) 0.142 𝜆3 1 𝑦̇𝑚𝑖𝑛1(𝑚/𝑠) 0 

𝑚1(𝑘𝑔) 0.70 𝜆4 2 𝑦̇𝑚𝑎𝑥1(𝑚/𝑠) 2.5 

𝑚2(𝑘𝑔) 3𝑥10−2 𝜆5 2 𝑥̇𝑚𝑖𝑛1(𝑚/𝑠) 0 

𝑚3(𝑘𝑔)  7𝑥10−2 𝜆6 2 𝑥̇𝑚𝑎𝑥1(𝑚/𝑠) 2.7 

𝑔(𝑚/𝑠2) 9.80665 ξ(𝑚) 0.1 𝐾2
𝑓𝑙
(𝑁/𝑚) 3.5 

𝐼1(𝑘𝑔𝑚
2) 2.47917𝑥10−3 𝐾3

𝑓𝑙
(𝑁/𝑚) 1 𝐵2

𝑓𝑙
(𝑁/𝑚) 1𝑥10−2 

𝐼2(𝑘𝑔𝑚
2) 1.00563𝑥10−4 𝐵3

𝑓𝑙
(𝑁/𝑚) 0.1 𝑢2

𝑚𝑎𝑥(𝑁𝑚) 20 

𝐼3(𝑘𝑔𝑚
2) 1.5931𝑥10−4 η(𝑚) 2𝑥10−2 𝑢3

𝑚𝑎𝑥(𝑁𝑚) 15 

𝑘𝑐
𝑥(𝑁/𝑚) 103 𝑡𝑟𝑒𝑓(𝑠𝑒𝑐. ) 2 𝐿4

𝑥𝑒𝑞
(𝑚) 0 

𝑏𝑐
𝑥(𝑁/𝑚𝑠−1) 102 𝑧 1.5𝑥10−2 𝜃1

𝐹𝑃(𝑟𝑎𝑑) 1.832 

𝑘𝑐
𝑦
(𝑁/𝑚) 105 𝑏𝑐

𝑦
(𝑁/𝑚𝑠−1) 2𝑥102   
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Figure 10.  Screenshots of the robot’s launch and upright standing for Test 1 were taken using MSM (Test 1 için robotun 

kalkış ve dik duruş anına ait ekran görüntüleri MSM kullanılarak alınmıştır.) 

 

The linear position and velocity components of 𝑥1 

and 𝑦1 when the robot falls during launch are given 

in Figure 11 and Figure 12, respectively. In Figure 

12, the value of 𝑦1 indicates that the robot stabilises 

at about 0.3 meters, which is its most upright 

position, after about 7 seconds. During the flight 

phase, until the moment of contact with the ground, 

in Figure 13 (Left), it can be observed that 𝜃1  
closely follows the desired reference angle with 

negligible errors. As can be seen from the graph, 

within the 7-second duration, the value of 𝜃1  
stabilises at the π/2 radians with negligible 

deviation. Similarly, 𝜃̇1 shows small oscillations 

around 0 rad/s, ensuring the successful stabilisation 

of the robot. In Figure 14, it is observed that 𝜃2 

closely follows the desired variable trajectory (on 

the left) with negligible errors. In Figure 15 (on the 

left), it can be seen that the difference in the value 

of 𝐿4
𝑥 quickly closes as the transition phase begins. 

In Figure 15 (on the right), the difference in the 

value of 𝐿4
𝑦

 due to the impact when the transition 

phase begins immediately closes and approaches 

the value of 𝐿4
𝑑𝑒𝑠. When the balance state is 

achieved for a duration of 𝑡𝑟𝑒𝑓, the robot follows the 

variable trajectory 𝐿4
𝑑𝑒𝑠 to straighten its posture. 

After approximately 6 seconds, balance is fully 

achieved at 𝐿4
𝑦
= 0.342 𝑚. As seen in Figure 16 (on 

the right), In order for the robot body to maintain 

balance in the desired position, the torque action 

signal applied to the reaction wheel joint is seen. As 

shown in Figure 16, despite the impact, the control 

torques 𝜏2 and 𝜏3 have managed to stabilise the 

robot within the desired range. Figure 16 shows that 

in the transition phase, within a period of 1 second, 

θ4 is fixed at the desired reference value of π/2 

radians. In the transition phase, within a 1-second 

duration, it can be observed in Figure 17 that 𝜃4 is 

stabilised at the desired reference value of π/2 

radians. Figure 18 shows that the maximum and 

minimum initial values were tested for Test 2 and 

Test 3, for θ1 (left), it follows the reference values 

𝜃1
𝐹𝑃 for both 2 test and is fixed at π/2. Similarly, in 

the flight phase, the variable reference trajectory 

𝜃2
𝑟𝑒𝑓

derived for 𝜃2 (Right) follows with negligible 

error, and the robot stabilises at π/2 in the balanced 

state. In Figure 19, more deflection occurred at the 

maximum initial values due to the effect of a larger 

impact. Here, the torque limits of the actuators 

driving 𝐴0 and 𝐴1 are reached, and the maximum 

value of ξ in the vertical direction is exceeded. 

Despite this, it is observed that the system has 

recovered and successfully reached balance. For 

both cases, after the ground contact occurs, it is 

observed that 𝐿4
𝑥 is balanced around the reference 

point and 𝐿4
𝑦

 is balanced around the 𝐿4
𝑑𝑒𝑠 value, 

which occurs gradually. Figure 19 shows that the 

main desired balanced upright posture was 

successfully achieved and maintained around the 

π/2 value throughout the ground phase. 
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Figure 11. The graph shows the changes in the position of x1 (left), its velocity ẋ1 (right) during Test 1. (Grafik, Test 

1 sırasında x1’in konumundaki (sol) ve hızındaki (sağ) değişimleri göstermektedir) 

Figure 12. The graph shows the changes in the position of y1(left), its velocity ẏ1(right) during Test 1. (Grafik, Test 1 

sırasında y₁’in konumundaki (sol) ve hızındaki (sağ) değişimleri göstermektedir) 

 

Figure 13. The graph shows the changes in the angular position of θ1 (left) and angular velocity θ̇1 (right) during Test 

1. (Grafik, Test 1 sırasında θ₁’in açısal konumundaki (sol) ve açısal hızındaki (sağ) değişimleri göstermektedir) 

 

Figure 14. The graph shows the changes in the angular position of θ2 (left) and angular velocity θ̇2 (right) during Test 

1. (Grafik, Test 1 sırasında θ₂’nin açısal konumundaki (sol) ve açısal hızındaki (sağ) değişimleri göstermektedir) 
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Figure 15. The graph shows the changes in the L4
x  (left) and L4

y
 (right) during Test 1. (Grafik, Test 1 sırasında L₄ˣ’in (sol) 

ve L₄ʸ’in (sağ) değişimlerini göstermektedir) 

 

Figure 16. The graph shows the changes in the τ2 and τ3  during Test 1. (Grafik, Test 1 sırasında τ₂ ve τ₃’teki değişimleri 

göstermektedir) 

Figure 17. The graph shows the changes in the  θ4  for Test 1. (Grafik, Test 1 için θ₄’teki değişimleri göstermektedir) 

 

Figure 18. The graph shows the variation in the angular position of θ1 (on the left) and  θ2 (on the right) during Test 

2 and Test 3. (Grafik, Test 2 ve Test 3 sırasında θ₁’in açısal konumundaki (sol) ve θ₂’nin açısal konumundaki (sağ) değişimleri 

göstermektedir)
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Figure 19. The graph shows the variation for L4
x  (left) and L4

y
 (right) during Test 2 and Test 3 (Grafik, Test 2 ve Test 3 

sırasında L₄ˣ’in (sol) ve L₄ʸ’in (sağ) değişimlerini göstermektedir) 

Figure 20. The graph shows the variation for θ4 during Test 2 and Test 3. (Grafik, Test 2 ve Test 3 sırasında θ₄’teki 

değişimleri göstermektedir) 

 

5. CONCLUSION AND 

RECOMMENDATIONS (SONUÇ VE ÖNERİLER) 

After training and learning the control process, 

the robot has successfully maintained its balance in 

the MSM environment. While the planar motion has 

been effectively controlled in the simulation, there 

will be numerous parameters to consider when 

transitioning to a real-world application. Future 

work will therefore focus on the hardware 

implementation and experimental validation of the 

proposed control architecture. Our plan involves a 

Sim-to-Real transfer strategy. The ANN weights, 

optimized within the Simscape simulation, will be 

deployed onto a low-cost, powerful microcontroller 

such as an ESP32. This embedded controller will be 

responsible for real-time execution of the control 

loop. It will process data from onboard sensors for 

example Inertial Measurement Unit (IMU) for body 

orientation and motor encoders for joint angles and 

feed these states into the trained ANN. The network 

will then output the virtual impedance coefficients 

𝐵𝑖𝑐 and 𝐾𝑖𝑐, which the controller will use to 

calculate and command the necessary torques to the 

reaction wheel and leg motors. We anticipate 

challenges inherent to the sim-to-real gap, such as 

unmodeled dynamics, sensor noise, and actuator 

delays. To mitigate these issues, we plan to first 

refine the system identification of the physical 

prototype to improve the simulation's fidelity. 

Subsequently, if necessary, the pretrained ANN 

policy may undergo further online fine-tuning on 

the physical robot using reinforcement learning 

techniques to adapt to the nuances of the real world. 

Additional weights that will come in 3D 

application will have costs in terms of 

controllability. This study was intentionally 

conducted in a 2D planar environment to reduce 

modeling complexity and computational cost during 

the development of the control and learning 

architecture. Extending the system to 3D presents 

additional challenges such as more degrees of 

freedom, increased dynamic instability, and 

complex interactions during landing impacts. 

Despite these difficulties, the proposed method was 

designed with extendibility in mind, and future 

work will focus on adapting the current structure to 

a 3D robotic system. As another potential solution, 

the use of brushless motors and propellers to 

actively drive the underactuated base axes for the 

mission can facilitate control. Since high thrust 

powers can be achieved in a short time, the desired 

robot balance will be easily allowed, control can be 

more easily achieved. However, we acknowledge 
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the importance of experimental validation and have 

outlined plans for comprehensive real-world testing 

in future work to confirm the practical applicability 

and effectiveness of the system. 
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6. APPENDIX (EK) 

The equations of motion are derived from 

Lagrange’s equation, given in Eq. a1, where 𝐿 is the 

Lagrangian function and 𝜏𝑖 are the input torques 

applied to the system. The dissipative energy in the 

robot mechanism can be disregarded, as there is no 

contribution from viscous torque. 

𝑑

𝑑𝑡
(
∂𝐿

∂θ̇𝑖
) −

∂𝐿

∂θ𝑖
= τ𝑖  (a1) 

Positions and velocites of the center of mass of part 

2 given in Eq. a2; 

𝑥2 = 𝑥𝐵 − 𝐿1  cos(Θ1)
+ 𝐿2  cos(Θ1 +Θ2) 

(a2) 

𝑦2 = 𝑦𝐵 + 𝐿2  sin(Θ1 + Θ2) − 𝐿1  sin(Θ1) 

𝑥̇2 =
𝜕

𝜕𝑡
 𝑥𝐵 + 𝐿1  sin(Θ1) 

𝜕

𝜕𝑡
 Θ1

− 𝐿2  sin(Θ1

+ Θ2) (
𝜕

𝜕𝑡
 Θ1 +

𝜕

𝜕𝑡
 Θ2) 

𝑦̇2 =
𝜕

𝜕𝑡
 𝑦𝐵 − 𝐿1  cos(Θ1) 

𝜕

𝜕𝑡
 Θ1

+ 𝐿2  cos(Θ1

+ Θ2) (
𝜕

𝜕𝑡
 Θ1 +

𝜕

𝜕𝑡
 Θ2) 

Positions and velocites of the center of mass of disk 

given in Eq. a3; 

𝑥3 = 𝑥𝐵 + 𝐿1  cos(Θ1) 
𝑦3 = 𝑦𝐵 + 𝐿1  sin(Θ1) 

𝑥̇3 =
∂

∂𝑡
 𝑥𝐵 − 𝐿1  sin(Θ1) 

∂

∂𝑡
 Θ1 

𝑦̇3 =
∂

∂𝑡
 𝑦𝐵 + 𝐿1  cos(Θ1) 

∂

∂𝑡
 Θ1 

(a3) 

The moments of inertia for all three limbs are given 

in Eq. a4. In Simscape Multibody, the inertia of a 

disk is calculated automatically. Here, the inner and 

outer dimensions of the disk are 𝑅𝑖 = 80 𝑚𝑚 and 

𝑅𝑜 = 120 𝑚𝑚, respectively. 

𝐼1 =
𝐿1
2 𝑚1

3
, 𝐼2 =

𝐿2
2 𝑚2

3
, 𝐼3 =

𝑚3 (𝑅𝑖
2+𝑅𝑜

2)

2
 (a4) 

The Lagrangian represents the difference between 

the kinetic energy and potential energy of the 

system and general formulation given in Eq. a5. The 

Lagrange function of the robotic system is given in 

the Eq. a6. 

𝐿 =∑[
1

2
𝑚𝑖(𝑥𝑖

2̇ + 𝑦𝑖
2̇) +

1

2
𝐼𝑖θ𝑖

2̇]

3

𝑖=1

−∑[𝑚𝑖𝑔ℎ𝑖]

3

𝑖=1

 

(a5) 

𝐿 =
𝑚3 ((𝑥̇𝐵 − σ2)

2 + (𝑦̇𝐵 + σ3)
2)

2

+
𝑚2 (( 𝑦̇𝐵 − σ3 + 𝐿2  cos(Θ1 + Θ2) σ1)

2 + (𝑥̇𝐵 + σ2 − 𝐿2  sin(Θ1 + Θ2)  σ1)
2)

2

+
𝑚1 𝑥̇𝐵

2

2
+
𝑚1 𝑦̇𝐵

2

2
− 𝑔 𝑚1 𝑦𝐵 − 𝑔 𝑚3 (𝑦𝐵 + 𝐿1  sin(Θ1))

− 𝑔 𝑚2 (𝑦𝐵 + 𝐿2  sin(Θ1 + Θ2) − 𝐿1  sin(Θ1)) +
𝐿1

2 𝑚1 Θ̇1
2

6
+
𝐿2

2 𝑚2 σ1
2

6

+
𝑚3 (Θ̇1 + Θ̇3)

2
 (𝑅𝑖

2 + 𝑅𝑜
2)

4
 

(a6) 
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𝑤ℎ𝑒𝑟𝑒 

  σ1 = Θ̇1 + Θ̇2 
  σ2 = 𝐿1  sin(Θ1) Θ̇1 
  σ3 = 𝐿1  cos(Θ1) Θ̇1 

Thus, the resulting equations of motion for 

generalized coordinates are listed in Eq. a7- a11. 

Applying the Lagrange equation for coordinate 𝑥𝐵: 

(𝑚1 +𝑚2 +𝑚3) 𝑥̈𝐵 −
𝑚2  (2 𝐿2  sin(σ3) (Θ̈1 + Θ̈2) − σ1 − σ2 + 2 𝐿2  cos(σ3) (Θ̇1 + Θ̇2)

2
)

2

−
𝑚3 (σ2 + σ1)

2
= 0 

𝑤ℎ𝑒𝑟𝑒 

  σ1 = 2 𝐿1  cos(Θ1) (
∂

∂𝑡
 Θ1)

2

 

  σ2 = 2 𝐿1  sin(Θ1) 
∂2

∂𝑡2
 Θ1 

  σ3 = Θ1 +Θ2 

(a7) 

Applying the Lagrange equation for coordinate 𝑦𝐵: 

(𝑚1 +𝑚2 +𝑚3) 𝑦̈𝐵 + 𝑔 𝑚1 + 𝑔 𝑚2 + 𝑔 𝑚3

−
𝑚2  (2 𝐿2  sin(Θ1 +Θ2) (Θ̇1 + Θ̇2)

2
− 2 𝐿2  cos(Θ1 +Θ2) (Θ̈1 + Θ̈2) − σ1 + σ2)

2

−
𝑚3 (σ1 − σ2)

2
= 0 

𝑤ℎ𝑒𝑟𝑒 

  σ1 = 2 𝐿1  sin(Θ1) Θ̇1
2

 
  σ2 = 2 𝐿1  cos(Θ1) Θ̈1 

(a8) 

Applying the Lagrange equation for coordinate Θ1: 

(
𝐿1
2 𝑚1

3
+ 𝐿1

2 𝑚2 + 𝐿1
2 𝑚3 +

4 𝐿2
2 𝑚2

3
+
𝑅𝑖
2 𝑚3

2
+
𝑅𝑜

2 𝑚3

2
− 2 𝐿1 𝐿2 𝑚2  cos(Θ2)) Θ̈1

+
4 𝐿2

2 𝑚2 Θ̈2
3

+
𝑅𝑖
2 𝑚3 Θ̈3
2

+
𝑅𝑜

2 𝑚3 Θ̈3
2

− 𝐿1 𝑚2  cos(Θ1) 𝑦̈𝐵

+ 𝐿1 𝑚3  cos(Θ1) 𝑦̈𝐵 + 𝐿1 𝑚2  sin(Θ1) 𝑥̈𝐵 − 𝐿1 𝑚3  sin(Θ1) 𝑥̈𝐵
+ 𝐿2 𝑚2  cos(Θ1 + Θ2) 𝑦̈𝐵 − 𝐿1 𝑔 𝑚2  cos(Θ1) + 𝐿1 𝑔 𝑚3  cos(Θ1)

− 𝐿2 𝑚2  sin(Θ1 +Θ2) 𝑥̈𝐵 + 𝐿2 𝑔 𝑚2  cos(Θ1 + Θ2) + 𝐿1 𝐿2 𝑚2  sin(Θ2) Θ̇2
2

− 𝐿1 𝐿2 𝑚2  cos(Θ2) Θ̈2 + 2 𝐿1 𝐿2 𝑚2  sin(Θ2) Θ̇2 Θ̇1 = 0 

(a9) 

Applying the Lagrange equation for coordinate Θ2: 
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4 𝐿2
2 𝑚2

3
 Θ̈2 +

4 𝐿2
2 𝑚2 Θ̈1
3

+ 𝐿2 𝑚2  cos(Θ1 + Θ2) 𝑦̈𝐵 − 𝐿2 𝑚2  sin(Θ1 + Θ2) 𝑥̈𝐵

+ 𝐿2 𝑔 𝑚2  cos(Θ1 + Θ2) − 𝐿1 𝐿2 𝑚2  sin(Θ2) (Θ̇1)
2
− 𝐿1 𝐿2 𝑚2  cos(Θ2) Θ̈1

= τ2 

(a10) 

Here, the actuated generalized coordinates are the 

3rd and 2nd coordinates. In the equation of motion 

where the disk is present, it is clearly seen in Eq. a11 

that the acceleration of Θ̈1 is directly affected by the 

actuation. Applying the Lagrange equation for 

coordinate Θ3: 

𝑚3 (Θ̈1 + Θ̈3) (𝑅𝑖𝑛
2 + 𝑅𝑜𝑢𝑡

2)

2
= τ3 (a11) 
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