
 Gazi Üniversitesi Gazi University

Fen Bilimleri Dergisi Journal of Science

PART C: TASARIM VE

TEKNOLOJİ

PART C: DESIGN AND

TECHNOLOGY

GU J Sci, Part C, 13(4): 1680-1698 (2025)

*Corresponding author, e-mail: halithulako@hakkari.edu.tr DOI: 10.29109/gujsc.1653403

Simulation of Evolutionary Reinforcement Learning-Based Self-Balancing

Throwable One-Legged Robot with a Reaction Wheel

Halit HÜLAKO1*

1Hakkari University, Engineering Faculty, Mechanical Engineering Department, Hakkari, Turkey

Article Info

Research article

Received: 07/03/2025

Revision: 21/08/2025
Accepted: 23/08/2025

Keywords

Self balance

ERL Learning

Simscape Multibody M.

Makale Bilgisi

Araştırma makalesi

Başvuru: 07/03/2025

Düzeltme: 21/08/2025

Kabul: 23/08/2025

Anahtar Kelimeler

Kendi kendine dengeleme

ERL Öğrenme
Simscape Multibody M.

Graphical/Tabular Abstract (Grafik Özet)

In this paper, the One-Legged robot is designed to stabilize itself and stand upright at the desired

location after being thrown from a different heights. The 5-DOF planar underactuated main body

is driven by Reaction wheels, and adaptive Cartesian impedance control has been implemented to

effectively manage hard impacts. Evolutionary Reinforcement Learning based AI Agent has been

used to adapt to different launch conditions, such as varying speed and altitude. / Bu makalede,

Tek Bacaklı robot farklı yüksekliklerden fırlatıldıktan sonra kendini dengeleyip istenilen konumda

dik duracak şekilde tasarlanmıştır. 5 serbestlik dereceli düzlemsel ve eksik tahrikli ana gövde,

reaksiyon tekerlekleriyle sürülmekte olup sert darbelere karşı etkin bir şekilde başa çıkmak için

adaptif kartezyen empedans kontrolü uygulanmıştır. Farklı hız ve irtifa gibi fırlatma koşullarına

uyum sağlamak için Evrimsel Pekiştirmeli Öğrenme tabanlı bir Yapay Zekâ Ajanı kullanılmıştır.

Figure A: Screenshots of the robot’s launch and upright standing for Test 1 were taken using

MSM. /Şekil A: Test 1 için robotun fırlatılması ve dik durma anına ait ekran görüntüleri MSM

kullanılarak alınmıştır.

Highlights (Önemli noktalar)

➢ Tek bacaklı robot, fırlatıldıktan sonra Reaksiyon tekerleği ve uyarlamalı Kartezyen

empedans kontrolü sayesinde dengede kalabilmektedir. / The one-legged robot can

maintain balance after being thrown using the Reaction Wheel and adaptive Cartesian

impedance control.

➢ Evrimsel Pekiştirmeli Öğrenme (ERL) ile robot, farklı hız ve yüksekliklerdeki fırlatma

testleri üzerinden kendi kendine dengelemeyi öğrenebilmektedir. / With Evolutionary

Reinforcement Learning (ERL), the robot can learn self-balancing through launch tests

at different speeds and heights.)

Aim (Amaç): It addresses the control of a one-legged robot that can learn to balance itself after

being thrown. / Fırlatıldıktan sonra dengesini sağlamayı öğrenebilen tek bacaklı bir robotun

kontrolünü ele alıyor.

Originality (Özgünlük): An agent was created using the ERL method, the robot was subjected to

training to achieve self-balance, and learning was accomplished through this process. / ERL

yöntemi kullanılarak bir ajan oluşturulmuştur, robotun kendi kendini dengeleyebilmesi için eğitime

tabi tutulmuş ve bu süreçte öğrenme sağlanmıştır.

Results (Bulgular): Atıştan sonra robot dengelenmeyi sağlamış ve π/2 konumunda sabitlenmiştir.

/ After the launch, the robot achieved balance and stabilized at π/2.

Conclusion (Sonuç): After training and learning the control process, the robot has successfully

maintained its balance in the MSM environment. While the planar motion has been effectively

controlled in the simulation, there will be numerous parameters to consider when transitioning to

a real-world application. / Robot, eğitim ve kontrol sürecini öğrendikten sonra, MSM ortamında

dengesini başarıyla korumuştur. Düzlemsel hareket simülasyonda etkili bir şekilde kontrol edilmiş

olsa da, gerçek dünya uygulamasına geçişte dikkate alınması gereken birçok parametre olacaktır.

https://orcid.org/0000-0001-8194-5433

*Corresponding author, e-mail: halithulako@hakkari.edu.tr DOI: 10.29109/gujsc.1653403

GU J Sci, Part C, 13(4): 1680-1698 (2025)

 Gazi Üniversitesi Gazi University

Fen Bilimleri Dergisi Journal of Science

PART C: TASARIM VE

TEKNOLOJİ

PART C: DESIGN AND

TECHNOLOGY

http://dergipark.gov.tr/gujsc

Simulation of Evolutionary Reinforcement Learning-Based Self-Balancing

Throwable One-Legged Robot with a Reaction Wheel

Halit HÜLAKO1*

1Hakkari University, Engineering Faculty, Mechanical Engineering Department, Hakkari, Turkey

Article Info

Research article
Received: 07/03/2025

Revision: 21/08/2025

Accepted: 23/08/2025

Keywords

Self balance

ERL Learning

Simscape Multibody M.

Abstract

In this paper, the One-Legged robot is designed to stabilize itself and stand upright at the desired

location after being thrown from a different heights. The 5-DOF planar underactuated main body

is driven by Reaction wheels, and adaptive Cartesian impedance control has been implemented

to effectively manage hard impacts. Evolutionary Reinforcement Learning based AI Agent has

been used to adapt to different launch conditions, such as varying speed and altitude. The learning

process was performed as online learning within the Matlab simulation environment, which

models the system dynamics of the robot. The graphical results of the simulation confirm that,

with the assistance of the AI agent, the dynamic robot has successfully maintained its stability

without tipping over after the launch and has been able to make the desired correction.

Evrimsel Pekiştirmeli Öğrenme Tabanlı Kendini Dengeleyebilen,

Fırlatılabilir Reaksiyon Tekerli Tek Bacaklı Robotun Simülasyonu

Makale Bilgisi

Araştırma makalesi

Başvuru: 07/03/2025
Düzeltme: 21/08/2025

Kabul: 23/08/2025

Anahtar Kelimeler

Kendi kendine dengeleme

ERL Öğrenme

Simscape Multibody M.

Öz

Bu makalede, Tek Bacaklı robot farklı yüksekliklerden fırlatıldıktan sonra kendini dengeleyip

istenilen konumda dik duracak şekilde tasarlanmıştır. 5 serbestlik dereceli düzlemsel ve eksik

tahrikli ana gövde, reaksiyon tekerlekleriyle sürülmekte olup sert darbelere karşı etkin bir şekilde

başa çıkmak için adaptif kartezyen empedans kontrolü uygulanmıştır. Farklı hız ve irtifa gibi

fırlatma koşullarına uyum sağlamak için Evrimsel Pekiştirmeli Öğrenme tabanlı bir Yapay Zekâ

Ajanı kullanılmıştır. Öğrenme süreci, robotun sistem dinamiklerini modelleyen Matlab

simülasyon ortamında eşzamanlı olarak gerçekleştirilmiştir. Simülasyonun grafiksel sonuçları,

Yapay Zekâ ajanının yardımıyla dinamik robotun fırlatma sonrası devrilmeden dengesini

başarıyla koruduğunu ve istenilen düzeltmeyi yapabildiğini doğrulamaktadır.

1. INTRODUCTION (GİRİŞ)

In the modern world, people expect the availability

of machines and devices that can be quickly used or

set up without much effort. This is primarily driven

by the need for simplification and time-saving,

particularly with the advancement of technology.

This can be an example of how a tripod or a

monopod can be effortlessly prepared and deployed

by simply throwing it, making it immediately ready

for use.

In static stability criteria, if the projection of the

robot's center of mass falls within the support

polygon, the robot can maintain a balanced stance

without tipping. However, in dynamic systems

where no support polygon is defined, the robot must

continuously move to maintain balance. In a

dynamic system, especially for one-legged robot,

where the leg contacts the ground at a single point,

the robot must continuously perform hopping

motions to maintain stability. When the robot is

stationary, it tends to tip over. A planar robot has

been developed to achieve and control balance after

being thrown to a desired location. The robot is

composed of a body and a single leg, and is capable

of performing underactuated main body movements

through the Reaction Wheel placed on it. The robot

controls the impact effect using the Reaction Wheel

and the leg actuator to maintain balance.

In general, Reaction wheels are an important

method preferred in axis sets where direct

connection and actuation are not possible. While

robots in continuous contact with their environment

can control their orientation, Reaction wheels are

the preferred method in places with insufficient

https://orcid.org/0000-0001-8194-5433

Hülako / GU J Sci, Part C, 13(4): 1680-1698 (2025)

1681

actuation. Today, reaction wheels are widely used

in space technology to control the orientation of

free-floating satellites [1], [2]. Yang used magnetic

torque coils, which are also used as actuators in

satellites, to manage the amount of momentum that

reaction wheels need to apply (saturation control)

[3]. Zhang et al. attempted to control the roll angle

of a robotic fish using a reaction wheel [4].

Gajamohan et al. managed to control a three-axis

cube (Cubli), which can change direction, jump and

stand at precise angles on its corners, with reaction

wheels [5], [6]. Due to their common use in the

control of underactuated systems, reaction wheels

can be used to achieve balance control of single-

wheeled mobile vehicles, referred to in the literature

as unicycles [7], [8]. Additionally, Trentin et al.

modelled and performed balance control of an

inverted pendulum system using reaction wheels on

both sides [9].

Kim et al. introduced a compact and lightweight Air

Reaction Wheel (ARW) for small-scale legged

jumping robots. The ARW generates high torque

through air push and motor angular acceleration.

Simulations and experiments validate its superior

torque performance and stability, making it ideal for

maneuvering rough terrains[10]. Zabihi and Alasty

introduced a novel one-legged handspringing robot

capable of hopping with both springy sides. This

robot, featuring a single rotary actuator and two

reaction wheels, considers slipping phases and

demonstrates superior obstacle-clearing abilities

compared to traditional hopping robots. The

reaction wheels contribute to the dynamic stability

by providing necessary torque to control the robot's

orientation during flight and stance phases[11].

Haoran et al. presented Marsbot, a monopod robot

designed for stable and precise 3D jumping.

Utilizing the SLIP dynamics model for take-off

control and the RWP model for attitude control,

Marsbot employs three inertial tails as reaction

wheels to achieve dynamic balance and accurate 3D

positioning. These reaction wheels provide

necessary torque adjustments to maintain stability

and control during flight. Simulations confirm

Marsbot's ability for continuous jumping and stable

perching, validating the control algorithms and

models[12]. Anzai et al. developed the MH-1, a

monopod robot equipped with a reaction wheel to

achieve hopping and posture stabilization. The

reaction wheel provides necessary torque for

upright posture control and recovery from falls.

Experimental results demonstrate the robot's ability

to hop in a constrained vertical direction and

stabilize its posture using the reaction wheel. This

study highlights the effectiveness of integrating

reaction wheels in legged robots for dynamic

balance and control [13]. In some studies of legged

robots, dynamic models with reaction wheels were

created to achieve the desired orientations on the

underactuated main body and support balanced

walking [14]. Roscia et al. presented an Orientation

Control System (OCS) for quadruped robots,

designed to improve aerial maneuvers during

jumps. The system utilizes two rotating and actuated

flywheels to control the robot's orientation by

adjusting its angular momentum, addressing

challenges in maintaining stability during the flight

phase. Simulations on the Solo12 robot demonstrate

the OCS's effectiveness in controlling roll and pitch

angles, rejecting disturbances, and stabilizing post-

landing. This compact OCS enhances the robot's

maneuverability in complex environments [15].

Zhu et al. introduced TERL, which combines
Evolutionary Algorithms (EA) and Reinforcement
Learning (RL). TERL enhances exploration through
RL and Particle Swarm Optimization (PSO), and
focuses on the best individual for refinement. It
outperforms existing RL and ERL methods in
continuous control tasks [16]. Deng et al. presented
QLJAYA, which integrates Q-learning and gradient
search into the JAYA algorithm. QLJAYA
improves convergence, local exploitation, and
rotational invariance. Experiments show it
outperforms standard JAYA and other
metaheuristics [17]. The same group also
introduced the Snow Ablation Optimizer (SAO),
inspired by snow sublimation and melting. SAO
balances exploration and exploitation,
outperforming other metaheuristics on CEC2017
and CEC2020 benchmarks [18]. The use of
Evolutionary Reinforcement Learning (ERL) in this
work is motivated by its ability to optimize
complex, high-dimensional problems where
traditional methods struggle. ERL provides a robust
framework that combines the exploratory power of
evolutionary algorithms with the reinforcement
learning. The decision to use a combination of
genetic algorithm (GA) and artificial neural
networks (ANN) is based on their complementary
strengths. GA is effective in exploring the solution
space and avoiding local optima, while ANN excels
in modeling non-linear relationships and learning
from large datasets. While many evolutionary
algorithms are available, the combination of GA and
ANN was chosen due to its demonstrated
effectiveness in similar robotic control tasks.

The motion equations for dynamic systems are
usually derived using the Lagrange or Newton-
Euler methods. One approach to obtaining the
dynamic model of complex systems with high
degrees of freedom is through the use of 'Multibody
Dynamics' simulations. To obtain a system's
dynamic model, one can use block structures with
Matlab Simscape MultiBody. Additionally, Matlab
Simscape MultiBody provides a physical

Hülako / GU J Sci, Part C, 13(4): 1680-1698 (2025)

1682

environment and visual animations of the system's
operation.

This article is divided into several sections,

including the modeling of the robot and the

successful implementation of the throw and balance

mission. The second section covers the kinematic

and dynamic modeling of the robot, as well as the

construction of the corresponding Multi-Body

System Model (MSM) structure. The ground has

been modeled using spring and damper elements.

The third section gives details of the procedure

followed in the implementation of the throw and

balance mission, including the impedance control

applied. Additionally, it presents the specifics of the

learning algorithm applied to maintain balance

without tipping during the collision with the ground.

Section four provides numerical simulations and

discusses graphical results. In Chapter 5, conclusion

and various recommendations for researchers are

presented.

2. KINEMATIC AND DYNAMIC MODELING
(KİNEMATİK VE DİNAMİK MODELLEME)

Figure 1 shows the placements of the kinematic and

dynamic representations of the Reaction Wheel

Robot model. The robot is composed of three rigid

bodies: the main body, the reaction wheel, and a leg

with one degree of freedom (DOF), denoted by

𝑖 𝜖 {1, 2, 3}. The reaction wheel and the leg are

connected to the two ends of the main body using

revolute joints. Figure 1 shows that in the model,

point 𝐴0 represents the connection point of the main

body and the reaction wheel, while 𝐴1 represents the

connection point of the main body and the leg. The

planar dynamic robot model has a total of 5 DOF

and moves freely in space. The constructed robot

model uses the generalized coordinates 𝑞 𝜖 ℜ𝑛+3,

where the term ‘𝑛’ represents the actuated joints. In

its general form, the nonlinear equation of motion is

as follows:

𝑀(𝑞)𝑞̈ + ℎ(𝑞, 𝑞̇) = 𝑆𝑇𝜏 + 𝙹𝑇𝑓𝑐 (1)

The inertia matrix is represented by

𝑀 𝜖 ℜ(𝑛+3)𝑥(𝑛+3), and ℎ 𝜖 ℜ𝑛+3 includes gravity,

Coriolis, and centripetal terms. The expression 𝙹

provides the Jacobian matrix obtained for the

contact point, while 𝑓𝑐 represents the contact forces

that arise when the robot's leg is in contact with the

ground. The torque values in the actuated joints,

excluding the underactuated base, are represented

by 𝜏 𝜖 ℜ𝑛. The selection matrix 𝑆𝑇 is a boolean

matrix used to choose n torque values.

Figure 1. Kinematic and dynamic representations of the robot model. (Robot modelinin kinematik ve dinamik

gösterimleri)

𝐿1 represents the distance from the center of the

main body to joint 𝐴1, while 𝐿2 represents the

distance from the center of the leg to end of the leg.

Point 𝑃 represents the point located on the lower

part of the leg that makes contact with the ground.

𝒲(𝑥, 𝑦) is defined as the inertial frame, while the

floating base axis 𝔅(𝑥1, 𝑦1) positioned at the center

of mass of the robot's main body. The position of

the floating base 𝔅 with respect to the fixed

reference frame is denoted by the expression

𝑟𝔅 𝜖 ℜ
2. The angular displacement of the base axis

is represented by 𝜃1. The angular displacements of

the 𝐴1 and 𝐴0 joints are represented by 𝑞 𝜖 ℜ𝑛 =
(𝜃2, 𝜃3), respectively. 𝜃1 is measured from the

horizontal axis, while 𝜃2 and 𝜃3 are measured

relative to 𝜃1. The mass and moments of inertia for

centroids are respectively represented by 𝑚𝑖 𝜖 ℜ
3

and 𝐼𝑖 𝜖 ℜ
3. (𝑥1, 𝑦1, 𝜃1) represents the

underactuated position and orientation of the

floating base. To indirectly control the

Hülako / GU J Sci, Part C, 13(4): 1680-1698 (2025)

1683

underactuated base, it is necessary to apply torques
𝜏 𝜖 ℜ𝑛 to the 𝐴0 and 𝐴1 joints.

The dynamic robot model shown in Figure 1 is

obtained using MSM to produce the same results as

the equations of motion given in Appendix. The

MSM structure is modeled using Simulink and

Simscape block diagrams as shown in Figure 2.

Solid objects can be created using solid modelling

software, such as CAD programs or directly added

from the ready library of MSM. The MSM

simulation program is primarily composed of

interconnected block diagrams that represent joint

types, solid object models, and Rigid Transform

blocks used to define axes to desired points. For the

3-DOF body “𝔅” located at the center of the robot's

body uses a planar joint named “Base”.

Figure 2. The block diagram illustrates the MSM dynamic model of the robot. (Blok diyagramı, robotun MSM dinamik

modelini göstermektedir)

The upper end of main body 𝐴0 is connected to the

Reaction Wheel using a single DOF revolute joint,

while the Leg block is connected to the lower end

of the main body 𝐴1 using a single degree-of-

freedom revolute joint. In MSM, a structural

damping amount of 0.005 𝑁𝑚
𝑑𝑒𝑔

𝑠
⁄ defined for the

revolute joint A_1. The dynamic parameters for

these components are entered in the Main Body,

Reaction Wheel, and Leg blocks. The Contact

Forces function block calculates the contact forces

that arise when the robot's leg comes into contact

with the ground. The resulting torque control

signals are then sent to the A_0 and A_1 joint

blocks, which are connected to the reaction wheel

and the leg respectively. Once the main structure

providing the dynamics is completed and the system

analysis is initiated, animation of the mechanic

model operating in the physical environment are

provided. In MSM, it is possible to create a

feedback system within the same environment by

adding controller functions in addition to the main

structure that gives the robot’s dynamics. Torque

signals obtained from all phases are collected and

fed into the inputs of the A_0 and A_1 joints. The

Stop Actuation (SA) block was added to terminate

unsuccessful balancing attempts during real-time

(in simulation) training.

2.1 Jacobian and Contact Modeling (Jakobyan ve

Kontak Modelleme)

It is assumed that the contact surface of the robot leg

with the ground is a point. The position of the point

𝑃 = [𝑃𝑥 𝑃𝑦]
𝑇
 𝜖 ℜ2 relative to the inertial axis, 𝑃𝑥

and 𝑃𝑦 values are given in 2.a and 2.b, respectively.

𝑃𝑥 = 𝑥1−𝐿1 𝑐𝑜𝑠(𝜃1) + 2𝐿2 𝑐𝑜𝑠(𝜃1 + 𝜃2)

𝑃𝑦 = 𝑦1 − 𝐿1 𝑠𝑖𝑛(𝜃1) + 2𝐿2 𝑠𝑖𝑛(𝜃1 + 𝜃2)

(2.a)

(2.b)

The Jacobian expression 𝙹𝑃 , which is obtained for

the position vector 𝑃, is given below;

𝙹𝑃 =

(
1 0 𝐿1 𝑠𝑖𝑛(𝜃1) − 2𝐿2 𝑠𝑖𝑛(𝜃1 + 𝜃2) −2𝐿2 𝑠𝑖𝑛(𝜃1 + 𝜃2)

0 1 −𝐿1 𝑐𝑜𝑠(𝜃1) + 2𝐿2 𝑐𝑜𝑠(𝜃1 + 𝜃2) 2𝐿2 𝑐𝑜𝑠(𝜃1 + 𝜃2)
)

(3)

Hülako / GU J Sci, Part C, 13(4): 1680-1698 (2025)

1684

The vertical and horizontal contact forces acting at
point P are given in equation (4).

𝑓𝑐 =

{
[𝑘(𝑐

𝑥(𝑃𝑥
ℎ𝑖𝑡 − 𝑃𝑥) − 𝑏𝑐

𝑥𝑃𝑥)̇ (−𝑘𝑐
𝑦
𝑃𝑦 − 𝑏𝑐

𝑦
𝑃𝑦̇)] if 𝑃𝑦 < 0

[0 0] if 𝑃𝑦 ≥ 0

(4)

The contact forces occurring at point P are

represented by 𝑓𝑐 = [𝑓𝑐
𝑥 𝑓𝑐

𝑦
] 𝜖 ℜ2. The mechanics

of the ground in the horizontal and vertical

directions are modelled as damping and spring

elements. The position of the foot tip on the x-axis

relative to the inertial axis at the moment of contact

with the ground is denoted by 𝑃𝑥
ℎ𝑖𝑡. The stiffness of

the ground is represented by the term 𝑘𝑐𝜖 ℜ
2 =

(𝑘𝑐
𝑥 𝑘𝑐

𝑦
), while the damping coefficient of the

ground is represented by 𝑏𝑐𝜖 ℜ
2 = (𝑏𝑐

𝑥, 𝑏𝑐
𝑦
). The

values of 𝑘𝑐 and 𝑏𝑐 were determined through drop

tests. 𝑃̇𝜖 ℜ2, the first derivative of the toe point 𝑃

with respect to time, is given in (5).

𝑃̇ = 𝙹𝑃[𝑥1 𝑦1 𝜃1 𝜃2]
𝑇 (5)

 If point 𝑃 touchs the ground, it is assumed that there

is no slip and 𝑃̇(𝑡) = 0.

3. ONE-LEGGED ROBOT BALANCE

CONTROL PROCEDURE (TEK-BACAKLI

ROBOT DENGE KONTROL PROSEDÜRÜ)

Balance control procedure is divided into three main

phases. The first phase, known as the ‘Flight Phase’

covers the period from when the robot is launched

until it makes contact with the ground. During this

stage, the robot is in mid-air, guided towards its

intended destination and preparing for landing. The

second phase is the ‘Transition Phase’. In this phase,

we focus on the moment the robot touches the

ground. During this phase, an online real-time

learning in simulation structure is developed to

prevent the robot from tipping over upon impact and

to maintain a balanced posture. The structure is

designed to effectively absorb the impact forces of

a hard landing while simultaneously learning to

maintain the robot's equilibrium, ensuring that it

remains upright without falling. This stage is

considered the most crucial component of the

balance control procedure. The final phase is the

‘Ground Phase’. During this stage, the robot

completes its full upright position while

maintaining control. The robot then proceeds to its

final location while the complete control structure

of the learning and phases created by Matlab

Simulink, including the robot and its environment,

is shown in Figure 3. This integrated structure

manages an effective control and learning process

during the flight, transition, and grounding stages.

Figure 3. Main MS and MSM control architecture for Robot. (Robot için temel MS ve MSM kontrol mimarisi)

Figure 3 shows the Robot Dynamic (RD) block,

which models the robot and the environment. The

blocks for the Flight Phase (FP), Transition and

Ground Phase (TGP) are presented in that order

and have been thoroughly discussed. The Learning

System (LS) performs the learning and determines

the control coefficients. The LS subblock contains

block structures for the Neural Network and aim

function, referred to as ANN and Aim Function

(AF) respectively. State observations taken from the

RD block feed the other block structures. While,

control actions obtained from the FP and TGP

blocks enter the RD block.

3.1. Flight Phase (Uçuş Fazı)

The Flight Phase covers the period during which the

robot launches and travels towards the targeted

landing area. During this stage, Flight phase

controllers track the desired references and adjust

the robot’s orientation during the flight. It is

proposed that, when the robot leg makes contact

with the ground, the direction of the velocity vector

aligns in parallel between the total center of mass

and point 𝑃. Thus, the direction of the planar vector

Hülako / GU J Sci, Part C, 13(4): 1680-1698 (2025)

1685

belonging to the total center of mass of the robot is

desired to pass through point P during flight. It will

be aligned in the direction of the 𝐿⃗ 4 vector, defined

between point 𝑃 and 𝐶𝑜𝑀, which is controlled by

impedance control, starting when the robot touches

the ground and throughout the transition phase. In

other words, this desired situation is achieved by

minimizing 𝜃𝑒𝑟𝑟. 𝑃′ is the desired reference

endpoint of the robot leg. As seen in Figure 4, the

angular difference between 𝑃 and 𝑃′ was modeled

and controlled as a torsional spring and damper,

with the balance point being 𝑃′.

Equation (6) provides the 𝛿 value obtained through

geometric methods for generating the reference

value 𝜃2
𝑟𝑒𝑓

. During the flight phase, after launching

the robot, a variable reference orbit 𝜃2
𝑟𝑒𝑓

 is

produced depending on 𝜃𝑣𝑒𝑙, which is the angle of

the velocity vector of the total center of mass. 𝜏2
𝐹𝑃

controls the angle 𝜃2 to follow the variable

reference trajectory during the flight phase. The

equations are given in Equations 7 and 8.a, 8.b,

respectively.

𝛿 = sin−1 (
𝐿𝐺 sin(𝜃1 − 𝜃𝑣𝑒𝑙)

2𝐿2
) (6)

𝜃2
𝑟𝑒𝑓

= (𝛿 − 𝜃1 + 𝜃𝑣𝑒𝑙) + 2𝜋

𝜏2
𝐹𝑃 = (𝜃2

𝑟𝑒𝑓
− 𝜃2)𝐾2

𝑓𝑙
− 𝜃̇2𝐵2

𝑓𝑙
,

 𝜏3
𝐹𝑃 = (𝜃1

𝐹𝑃 − 𝜃1)𝐾3
𝑓𝑙
− 𝜃̇1𝐵3

𝑓𝑙

(7)

(8.a)

(8.b)

The calculation of the total center of mass excludes

the robot leg due to its significantly lighter weight

compared to other parts. The distance from the total

center of mass to 𝐴1 is denoted as 𝐿𝐺. The velocity

vector of the total center of mass is represented by

𝑉⃗ 𝐺, and its angle is denoted as 𝜃𝑣𝑒𝑙. The transform

sensor is used in the RD block to obtain the 𝜃𝑣𝑒𝑙

value of the CoG. 𝐾2
𝑓𝑙

 and 𝐵2
𝑓𝑙

 represent the virtual

spring and damper values used to control 𝜃2 during

the flight phase. A control torque is applied to the

Reaction Wheel to maintain the 𝜃1 angle of the

Main Axis at the desired value throughout the flight

duration. Therefore, equation (8) applies torsional

impedance control between the desired reference

angle 𝜃1
𝐹𝑃 and 𝜃1. Applying torque to the reaction

wheel creates a reverse moment that affects the

orientation of the main axis, specifically 𝜃1.

Figure 4. Flight Phase control. (Uçuş Fazı Kontrolü)

𝜏3
𝐹𝑃 is the control torque used to control the angle

𝜃1, 𝐾3
𝑓𝑙

 and 𝐵3
𝑓𝑙

 are the virtual spring damping

coefficients used to control 𝜃1 in the flight phase,

respectively. Virtual control coefficients are

optimized by trial and error technique. 𝜏3
𝐹𝑃 controls

the angle 𝜃1, while 𝐾3
𝑓𝑙

 and 𝐵3
𝑓𝑙

 are virtual spring

damping coefficients used for controlling 𝜃1 during

the flight phase. The virtual control coefficients

have been optimized using a trial and error

technique.

3.2. Transition and Ground Phase (Geçiş ve Yer

Fazı)

Adaptive impedance control has been implemented

to enable the robot to absorb the effects of hard

impacts, prevent tipping over, and recover balance.

This approach offers a versatile method for

controlling the robot's response to external forces,

ensuring stability, and adjusting oscillation

characteristics as needed. Figure 5 shows that the

length and angle of vector 𝐿4 are controlled by

springs and dampers defined on the horizontal and

vertical axes. These forces act on the robot, allowing

it to imitate spring damping movement [19]. The

stiffness value and damping coefficient of the spring

can be adjusted to achieve the desired type of

oscillation. The vector loop closure equation for the

𝐿4𝜖 ℜ
2 vector shown in Figure 5 can be written with

complex numbers in exponential form as in (9) and

this yield two explicit equation. The length of the

vector and its first derivative are provided in (10.a

and 10.b) and (11.a and 11.b), respectively, while

the angle 𝜃4 is given in equation (12).

Hülako / GU J Sci, Part C, 13(4): 1680-1698 (2025)

1686

𝐺𝐴1⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝐴1𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑃𝐺⃗⃗⃗⃗ ⃗ = 0 (9)

𝑃𝐺⃗⃗⃗⃗ ⃗ = −𝐿𝐺𝑒
𝑖(𝜃1+𝜋) − 2𝐿2𝑒

𝑖(𝜃1+𝜃2)

𝐿4
𝑥(𝜃1, 𝜃2) = 𝐿𝐺 cos(𝜃1) − 2𝐿2 cos(𝜃1 + 𝜃2)
𝐿4
𝑦(𝜃1, 𝜃2) = 𝐿𝐺 𝑠𝑖𝑛(𝜃1) − 2𝐿2 𝑠𝑖𝑛(𝜃1 + 𝜃2)

(10)

(10.a)

(10.b)

𝑉4 = 𝑖𝐿𝐺 𝜃̇1𝑒
𝑖(𝜃1) + 𝑖2𝐿2(𝜃̇1 + 𝜃̇2)𝑒

𝑖(𝜃1+𝜃2)

𝐿4
𝑦̇
= 𝐿𝐺𝜃̇1 cos(𝜃1) − 2𝐿2(𝜃̇1 + 𝜃̇2) cos(𝜃1 + 𝜃2)

𝐿4
𝑥̇ = −𝐿𝐺𝜃̇1 𝑠𝑖𝑛(𝜃1)

+ 2𝐿2(𝜃̇1 + 𝜃̇2) 𝑠𝑖𝑛(𝜃1 + 𝜃2)

(11)

(11.a)

(11.b)

𝜃4

= cos−1 (
𝐿𝐺 cos(𝜃1) − 2𝐿2 cos(𝜃1 + 𝜃2)

𝐿4
)

(12)

𝐿4
𝑥 and 𝐿4

𝑦
 represent the components on the

horizontal and vertical axes, respectively. During

the transition phase, the objective is to stabilize the

angle 𝜃4 at π/2 radians and maintain the length of 𝐿4

at a predetermined value during impact. Control is

achieved by learning the system through

experimentation using a learning algorithm. Once a

stable posture is achieved in the transition phase, the

system moves to the ground phase and attempts to

maintain the angle 𝜃4 at the same value. The 𝐿4

value is controlled to follow a trajectory until the

robot is fully upright. Equations 13 and 14 provide

the force components applied in the horizontal and

vertical axes by impedance control.

𝐹𝑖𝑐
𝑥 = (𝐿4

𝑥𝑒𝑞
− 𝐿4

𝑥). 𝐾𝑖𝑐 − 𝐿4
𝑥̇𝐵𝑖𝑐 (13)

𝐹𝑖𝑐
𝑦
= { 𝐿𝑒𝑟𝑟

𝑦
𝐾𝑖𝑐 − 𝐿̇4

𝑦
𝐵𝑖𝑐 𝑖𝑓, 𝐿4

𝑦
< (𝐿𝑔 + 2𝐿2) (14)

𝐿4
𝑑𝑒𝑠 = { 𝐿4

𝑦
(𝑡𝑖𝑚𝑝) 𝑖𝑓, 𝑠𝑖𝑔𝑛(𝑓𝑐) > 0 (15)

𝑐1
+ =

{

 ∑ 𝑡𝑖𝑛𝑡

𝑇

𝑡𝑖𝑛𝑡
−1

𝛼=0

 𝑖𝑓, (−𝜂 < 𝐿4
𝑥 < 𝜂)

 0 , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(16)

𝐿𝑒𝑟𝑟
𝑦

= {
(𝐿4
𝑑𝑒𝑠 + (𝑇 − 𝑡𝑖𝑚𝑝). 𝓏) − 𝐿4

𝑦
 𝑖𝑓, (−𝜂 < 𝐿4

𝑥 < 𝜂) 𝑎𝑛𝑑 (𝑐1
+ ≥ 𝑡𝑟𝑒𝑓)

(𝐿4
𝑑𝑒𝑠 − 𝐿4

𝑦
) , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(17)

The virtual impedance control coefficients, 𝐵𝑖𝑐 and

𝐾𝑖𝑐, are obtained from artificial neural networks in

both horizontal and vertical directions. These

coefficients were trained and determined by ANN

with random initial conditions, such as the robot's

height from the ground and speeds in the horizontal

and vertical axes. During the transition phase, the

desired reference values for the x and y directions

are 𝐿4
𝑥𝑒𝑞

 and 𝐿4
𝑑𝑒𝑠, respectively. 𝐿4

𝑥𝑒𝑞
 is determined

in advance, and 𝐿4
𝑑𝑒𝑠 is equal to the length 𝐿4

𝑦
 at the

time of impact 𝑡𝑖𝑚𝑝 as stated in equation (15). The

fixed solver interval is denoted as 𝑡𝑖𝑛𝑡. When the

condition specified in (16) is met, control for the

robot's straightening during the Ground phase is

ensured with the time-dependent trajectory given in

(17). T represents the total operational time until the

process is completed, while z adjusts the rate of

change in the velocity of the reference value. In the

steady state, the goal is to achieve equilibrium

within the ±𝜂 limits in the 𝐿4
𝑥 direction, and at the

same time, the 𝑐1
+ value is expected to remain in

equilibrium for the desired time 𝑡𝑟𝑒𝑓. The

representations of the Cartesian impedance control

applied to the body center are shown in Figure 5.

The resulting impedance forces are converted into

torque action signals, which drive the reaction

wheel and the second limb. These signals are

derived from the equations presented in (18.a-b).

Figure 5. Cartesian Impedance Control used in

Transition and Ground Phase. (Geçiş ve zemin

fazlarında kullanılan Kartezyen empedans kontrolü.)

𝜏2
𝑇𝐺𝑃 = 𝐹𝑖𝑐

𝑥𝐿𝐺 𝑠𝑖𝑛(𝜃1) + 𝐹𝑖𝑐
𝑦
𝐿𝐺 𝑐𝑜𝑠(𝜃1),

𝜏3
𝑇𝐺𝑃 = 𝐹𝑖𝑐

𝑥𝐿4
𝑦
+ 𝐹𝑖𝑐

𝑦
𝐿4
𝑥

(18.a)

(18.b)

In the TG phases, 𝜏2
𝑇𝐺𝑃 and 𝜏3

𝑇𝐺𝑃 apply torques to

𝐴1 and 𝐴0, respectively. Figure 6 shows the sub-

functions of TGP. The impedance control block

receives the output variables 𝐾𝑖𝑐 and 𝐵𝑖𝑐from the

ANN block and converts them into control torques

in the Force-Torque Converter (FTC) block.

Hülako / GU J Sci, Part C, 13(4): 1680-1698 (2025)

1687

Figure 6. TGP subsystem block structure. (TGB Alt

Bloğu)

3.3. Learning Balance Control During Impact
(Çarpma Anında Denge Kontrolünün Öğrenimi)

To effectively absorb the effects of high-energy

collisions, the terms 𝐵𝑖𝑐 and 𝐾𝑖𝑐 are determined

using Evolutionary Reinforcement Learning. In this

system, the genetic algorithm and ANN work

together to enable the agent's continuous learning

and improvement of its performance. In model-free

and continous system, the agent interacts with its

environment to learn its task. The Artificial Neural

Network or Policy generates actions based on the

observation data obtained by the agent's interaction

with the environment. The artificial neural network

weight parameters are optimized by the genetic

algorithm, evolving towards the best parameter set

to increase the agent's performance. In contrast to

Reinforcement Learning, where the agent tries to

maximise the reward value, in our system the agent

works towards minimising the Aim function,

bringing it closer to zero. Furthermore, the agent is

only provided with critical data rather than all

observation data. The policy, acting as an actor,

utilizes a neural network structure consisting of five

inputs, five hidden layers, and two output cells. The

neural network structure created for the Critic

Network is disabled in this method. The neural

network structure created for the actor has an input

vector 𝐼𝑛𝑝 𝜖 ℜ5, a weight matrix for the first and

second layers 𝑤𝑖𝑙 𝜖 ℜ
5𝑥5 and 𝑤𝑜𝑙 𝜖 ℜ

5𝑥5, and a bias

vector for the first and second layers 𝑏𝑖𝑙 𝜖 ℜ
5 and

𝑏𝑜𝑙 𝜖 ℜ
2 as given Eq. 19.a-c

 𝐼𝑛𝑝 =

(

𝑦1
𝑦̇1
𝑥̇1
𝐿4
𝑦

𝐿4
𝑑𝑒𝑠)

, 𝑤𝑖𝑙 =

[

𝑤1
𝑤6

𝑤2
𝑤7

𝑤11 𝑤12

…
…

𝑤5
𝑤10

… 𝑤15
𝑤16 𝑤17
𝑤21 𝑤22

… 𝑤20
… 𝑤25]

,

(19.a)

 𝑏𝑖𝑙 = (

𝑤36
𝑤37
⋮
𝑤40

)

𝑤𝑜𝑙 = [
𝑤26 𝑤27
𝑤31 𝑤32

… 𝑤30
… 𝑤35

], 𝑏𝑜𝑙 = (
𝑤41
𝑤42

)

(19.b)

(19.c)

The ANN architecture used in this study (Eq. 19–

20) was selected based on preliminary empirical

trials, aiming to balance learning capacity with

computational efficiency. The weight coefficients,

represented by 𝑤𝑛 where 𝑛 𝜖 {1, . . ,42}, are updated

in real-time after each shot through the Genetic

algorithm. The activation function used in the cells

is ‘tansig’. During the training phase, the ANN input

receives the state variables 𝑥̇1, 𝑦1, 𝑦̇1, 𝐿4
𝑦

, and 𝐿4
𝑑𝑒𝑠

of the dynamic model, and the output provides the

necessary terms for 𝐵𝑖𝑐 and 𝐾𝑖𝑐 impedance control.

The formulation is given Eq. 20.a and 20.b; Figure

7 shows the learning structure used for this purpose.

The simulation uses the Matlab Genetic Algorithm

Toolbox to determine the ANN weight coefficients.

The objective function targeted for our system is

given by equation (21). The term ψ is added during

training to penalise falling due to collision effects in

shooting trials. The term θ1
h is equal to the value of

𝜃1(𝑡𝑖𝑚𝑝) at the moment of the robot contact with the

ground and 𝐿4
𝑑𝑒𝑠, 𝐿4

𝑥𝑒𝑞
 represents the vertical and

horizontal clearance of the robot at that moment.

Although the state variables given to the ANN input

have changed, after the impact, the robot is required

to balance 𝐿4
𝑦

 and 𝐿4
𝑥, around the value of 𝐿4

𝑑𝑒𝑠, 𝐿4
𝑥𝑒𝑞

respectively.

𝑓:ℜ5 → ℜ2

𝑓𝑜𝑙,𝑘 = 𝜎𝑎𝑐𝑡 (∑𝑤𝑜𝑙,𝑘𝑗 .

5

𝑗=1

𝜎𝑎𝑐𝑡 (∑𝑤𝑖𝑙,𝑗𝑖 .

5

𝑖=1

𝐼𝑛𝑝𝑖 + 𝑏𝑖𝑙,𝑗)

+ 𝑏𝑜𝑙,𝑘),

 𝑘 = 1,2

Where;

𝜎𝑎𝑐𝑡(𝑥) = 2. (
1

1 + 𝑒−2.𝑥
) − 1

(20.a)

(20.b)

Hülako / GU J Sci, Part C, 13(4): 1680-1698 (2025)

1688

Figure 7. Real-time in simulation robot training cycle. (Simülasyonda gerçek zamanlı robot eğitim döngüsü)

Despite the large collision force, it is desired to

allow a displacement in the horizontal direction up

to a maximum of ξ and punishment starts when this

limit is exceeded. The first term, 𝑚𝑎𝑥 (0, |𝐿4
𝑑𝑒𝑠 −

ξ − 𝐿4
𝑦
|
2
), begins to receive high penalty points

when it exceeds ξ, which is the maximum leg

closing amount, due to the impact effect at the

moment of contact with the ground. While the

expression |𝐿4
𝑑𝑒𝑠 − 𝐿4

𝑦
| helps the robot returns to the

balance point, (𝐿4
𝑑𝑒𝑠 − 𝐿4

𝑦
)
2
 minimises the

difference between it and the target height. The

terms (𝑃𝑥
ℎ𝑖𝑡 − 𝑃𝑥)

2
 and 𝜆6𝑃𝑦

2 are added to prevent

bouncing and displacement after collisions. 𝜆𝑗

𝑗 𝜖 {1, . . ,6} are the weighting factors and their

values were determined by trial and error. The

maximum control torque 𝜏𝑘
𝑇𝐺𝑃, 𝑘 𝜖 {2, 3} is limited

to ±𝑢𝑘
𝑚𝑎𝑥. Therefore, the conditions given in (23)

have been applied. To ensure that the initial

conditions are within controllable limits during

robot launch, the initial values for 𝜃1 in the launch

simulations are assumed to be in the range of
𝜋

3
<

𝜃1 <
13𝜋

18
. The initial values for 𝑦̇1 are assumed to

be in the range 𝑦̇𝑚𝑖𝑛1 < 𝑦̇1 < 𝑦̇
𝑚𝑎𝑥

1

𝑚

𝑠
. For 𝑦1 and

𝑥̇1 are 𝑦1
𝑚𝑖𝑛 < 𝑦1 < 𝑦1

𝑚𝑎𝑥 𝑥̇𝑚𝑖𝑛1 < 𝑥̇1 <

𝑥̇𝑚𝑎𝑥1
𝑚

𝑠
 respectively. In the initial state, link 2 is

assumed to start almost parallel to the base, and 𝜃2

starts at angles close to zero radians.

Εrr = 𝑚𝑖𝑛 ∑ (𝜆1. 𝑚𝑎𝑥 (0, |𝐿4
𝑑𝑒𝑠 − ξ − 𝐿4

𝑦
|
2
) + 𝜆2|𝐿4

𝑑𝑒𝑠 − 𝐿4
𝑦
| + 𝜆3(𝐿4

𝑑𝑒𝑠 − 𝐿4
𝑦
)
2
+ 𝜆4ψ

𝑇𝑡𝑟𝑎𝑖𝑛
𝑡𝑙𝑛

−1

𝜗=0

+ 𝜆5(𝑃𝑥
ℎ𝑖𝑡 − 𝑃𝑥)

2+𝜆6𝑃𝑦
2)

(21)

ψ = {(𝜃1 − 𝜃1
ℎ)2,

𝑖𝑓 (𝜃1
ℎ <

𝜋

2
) 𝑎𝑛𝑑 (−

𝜋

5
> 𝜃1 >

𝜋

2
) 𝑎𝑛𝑑 (𝐿4

𝑑𝑒𝑠 > 0)

𝑖𝑓 (𝜃1
ℎ >

𝜋

2
)𝑎𝑛𝑑 (−

5𝜋

6
> 𝜃1 <

𝜋

2
) 𝑎𝑛𝑑 (𝐿4

𝑑𝑒𝑠 > 0)

(22)

𝑠. 𝑡.

{

𝑦1
𝑚𝑖𝑛 ≤ 𝑦1 ≤ 𝑦1

𝑚𝑎𝑥

𝑦̇𝑚𝑖𝑛1 ≤ 𝑦̇1 ≤ 𝑦̇
𝑚𝑎𝑥

1

𝑥̇𝑚𝑖𝑛1 ≤ 𝑥̇1 ≤ 𝑥̇
𝑚𝑎𝑥

1

 𝜏𝑘 = {
𝑢𝑘
𝑚𝑎𝑥

|𝜏𝑘|

𝜏𝑘
, if |𝜏𝑘| > 𝑢𝑘

𝑚𝑎𝑥

𝜏𝑘 , if |𝜏𝑘| ≤ 𝑢𝑘
𝑚𝑎𝑥

(23)

Hülako / GU J Sci, Part C, 13(4): 1680-1698 (2025)

1689

The AF sub-block, modelled with Simulink blocks,
is shown in Figure 8 (on the right). In each launch
trial, the Genetic Algorithm, transfers new ANN
weight coefficients to the MS environment for
testing, as shown in Figure 8 (left). Throughout the
simulation, the total error obtained from the AF is
given to the Genetic Algorithm through the Err
block. Therefore, as the objective function

approaches zero during each simulation, the balance
process is learned and the next simulation is tested
with new coefficients to obtain better results. This
real-time (in simulation) learning cycle continues
until the number of iterations is reached or the
desired performance range is achieved. The
sampling time interval selected for training is
entered in the Err block.

Figure 8. ANN (Left), AF (Right) subsystem block structures (YSA (Sol) ve AF (Sağ) alt sistem blok yapıları)

The genetic Algorithm is set up with 60 iterations

and a population size of 10. The simulation initial

conditions for 𝑦1, 𝑦̇1, 𝑥̇1 are chosen randomly

within the range specified in Eq. (23). The solver

constant sampling time for the simulation is set to

𝑡𝑖𝑛𝑡 = 0.0001 𝑠, and the solver is selected as "ode4

(Runge-Kutta) ". The sampling interval for training

is chosen as 𝑡𝑙𝑛 = 0.01 𝑠 sec. The total simulation

time for each training is 𝑇𝑡𝑟𝑎𝑖𝑛 = 1.40 seconds.

Figure 9. Learning State of Dynamic Systems During

Iterations (Yinelemeler sırasında dinamik sistemlerin öğrenme

durumu)

The training procedure was executed on a system

equipped with an Intel Core i7 processor using

Matlab 2022. A total of 600 launch trials were

performed to complete the learning process. Figure

9 illustrates the Genetic Algorithm, listing the

performance values while predicting the ANN

parameters. Here, 'Best' refers to the best solution or

the lowest objective function value found by the

genetic algorithm at each iteration or generation.

'Mean' refers to the average value of all solutions in

the population at each iteration or generation, which

can be expressed as the average of the objective

function or the fitness values. 'Fitness value'

represents the fitness level of each individual or

solution, typically measured based on an objective

or fitness function. 'Iteration' can also be referred to

as a generation. Each generation is a phase where

individuals derived from the previous generation

evolve and new individuals are created. Best and

mean values are particularly important for

evaluating the algorithm's performance, as they

indicate the optimization progress and the quality of

the solutions. It can be seen from the graph that the

learning is completed after the 37th generation.

4. NUMERICAL SIMULATION (NÜMERİK

SİMÜLASYON)

The results of the numerical simulations carried out
using the Simulink model include all the control
structures developed to test the launch and balance
stages. The parameters required to control the robot
and the initial values for the simulations performed
are given in Tables 1 and 2, and these parameters
are defined in the relevant blocks in the Simulink
model.

Hülako / GU J Sci, Part C, 13(4): 1680-1698 (2025)

1690

Table 1. Parameters of Control and Robot dynamics (Kontrol ve robot dinamiklerinin parametreleri)

To ensure compatibility with a potential real-world

application, the system parameters were selected

within realistic and practical limits. As introduced

in the context of a throwable tripod, the robot’s total

height was set to 0.4 meters, and the body weight

was chosen as 700 grams, which is sufficient to

accommodate brushless motors, motor driver

boards, and a battery for three axes. Similarly, the

mass values of the reaction wheel and leg segment

were assigned based on physically feasible

dimensions. The initial x and y positions and

velocities were determined by referencing average

human dimensions, ensuring that the launch heights

and speeds reflect normal throwing conditions

while excluding highly aggressive scenarios. Three

launch tests were performed to evaluate the

performance of the system on the robot. While

random initial values were chosen for launch Test 1,

the other two tests examined the pre-defined

maximum and minimum starting conditions for the

launch. The initial values of positions and velocities

for 3 different launch tests are given in Table 2. At

the beginning of the simulation (t = 0), while the

reaction wheel was at rest, the robot was started at

the initial angular and linear positions and velocities

given below. After the robot is launched, it is

expected to stabilize in both [𝜃1, 𝜃̇1](𝑡 = ∞) =

[
𝜋

2
 𝑟𝑎𝑑, 0

𝑟𝑎𝑑

𝑠
] and [𝜃2, 𝜃̇2](𝑡 = ∞) = [

𝜋

2
 𝑟𝑎𝑑, 0

𝑟𝑎𝑑

𝑠
].

During the simulations, the maximum control

torques 𝜏3 and 𝜏2 were constrained, as given in

equation (23). The simulation screenshot taken

during the launch and installation of the robot of

launch Test 1 is given in Figure 10. Again, for Test

1, the 8-second test graphs of the outputs of the

robot's MSM model are presented in Figures 11 to

17.In the graphs, it can be seen that control is

achieved with negligible differences in the MSMB

model and the robot balances steadily during the

verification process.

Table 2. Initial values for simulations (Simülasyon için ilk Değerler)

(𝑡 = 0) (Test 1)Random

Initial Values

(Test 2)Max

Initial Values

(Test 3)Min Initial

Values 𝑥1 0 𝑚 0 𝑚 0 𝑚

𝑦1 1.7 𝑚 2.2 𝑚 1.2 𝑚

𝑥̇1 2𝑚 𝑠⁄ 2.7 m/s 0.0 m/s

𝑦̇1 1.2𝑚 𝑠⁄ 2.5 m/s 0.0 m/s

𝜃1 1.832 𝑟𝑎𝑑 1.832 rad 1.832 rad

𝜃2 6.109 𝑟𝑎𝑑 6.109 rad 6.109 𝑟𝑎𝑑

𝜃̇2, 𝜃3, 𝜃̇3, 𝜃̇1 [0,0,0,0] [0,0,0,0] [0,0,0,0]

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒

𝐿1(𝑚) 0.2 𝜆1 1.5 𝑦1
𝑚𝑖𝑛(𝑚) 1.2

𝐿2(𝑚) 0.2 𝜆2 0.7 𝑦1
𝑚𝑎𝑥(𝑚) 2.2

𝐿𝐺(𝑚) 0.142 𝜆3 1 𝑦̇𝑚𝑖𝑛1(𝑚/𝑠) 0

𝑚1(𝑘𝑔) 0.70 𝜆4 2 𝑦̇𝑚𝑎𝑥1(𝑚/𝑠) 2.5

𝑚2(𝑘𝑔) 3𝑥10−2 𝜆5 2 𝑥̇𝑚𝑖𝑛1(𝑚/𝑠) 0

𝑚3(𝑘𝑔) 7𝑥10−2 𝜆6 2 𝑥̇𝑚𝑎𝑥1(𝑚/𝑠) 2.7

𝑔(𝑚/𝑠2) 9.80665 ξ(𝑚) 0.1 𝐾2
𝑓𝑙
(𝑁/𝑚) 3.5

𝐼1(𝑘𝑔𝑚
2) 2.47917𝑥10−3 𝐾3

𝑓𝑙
(𝑁/𝑚) 1 𝐵2

𝑓𝑙
(𝑁/𝑚) 1𝑥10−2

𝐼2(𝑘𝑔𝑚
2) 1.00563𝑥10−4 𝐵3

𝑓𝑙
(𝑁/𝑚) 0.1 𝑢2

𝑚𝑎𝑥(𝑁𝑚) 20

𝐼3(𝑘𝑔𝑚
2) 1.5931𝑥10−4 η(𝑚) 2𝑥10−2 𝑢3

𝑚𝑎𝑥(𝑁𝑚) 15

𝑘𝑐
𝑥(𝑁/𝑚) 103 𝑡𝑟𝑒𝑓(𝑠𝑒𝑐.) 2 𝐿4

𝑥𝑒𝑞
(𝑚) 0

𝑏𝑐
𝑥(𝑁/𝑚𝑠−1) 102 𝑧 1.5𝑥10−2 𝜃1

𝐹𝑃(𝑟𝑎𝑑) 1.832

𝑘𝑐
𝑦
(𝑁/𝑚) 105 𝑏𝑐

𝑦
(𝑁/𝑚𝑠−1) 2𝑥102

Hülako / GU J Sci, Part C, 13(4): 1680-1698 (2025)

1691

Figure 10. Screenshots of the robot’s launch and upright standing for Test 1 were taken using MSM (Test 1 için robotun

kalkış ve dik duruş anına ait ekran görüntüleri MSM kullanılarak alınmıştır.)

The linear position and velocity components of 𝑥1

and 𝑦1 when the robot falls during launch are given

in Figure 11 and Figure 12, respectively. In Figure

12, the value of 𝑦1 indicates that the robot stabilises

at about 0.3 meters, which is its most upright

position, after about 7 seconds. During the flight

phase, until the moment of contact with the ground,

in Figure 13 (Left), it can be observed that 𝜃1
closely follows the desired reference angle with

negligible errors. As can be seen from the graph,

within the 7-second duration, the value of 𝜃1
stabilises at the π/2 radians with negligible

deviation. Similarly, 𝜃̇1 shows small oscillations

around 0 rad/s, ensuring the successful stabilisation

of the robot. In Figure 14, it is observed that 𝜃2

closely follows the desired variable trajectory (on

the left) with negligible errors. In Figure 15 (on the

left), it can be seen that the difference in the value

of 𝐿4
𝑥 quickly closes as the transition phase begins.

In Figure 15 (on the right), the difference in the

value of 𝐿4
𝑦

 due to the impact when the transition

phase begins immediately closes and approaches

the value of 𝐿4
𝑑𝑒𝑠. When the balance state is

achieved for a duration of 𝑡𝑟𝑒𝑓, the robot follows the

variable trajectory 𝐿4
𝑑𝑒𝑠 to straighten its posture.

After approximately 6 seconds, balance is fully

achieved at 𝐿4
𝑦
= 0.342 𝑚. As seen in Figure 16 (on

the right), In order for the robot body to maintain

balance in the desired position, the torque action

signal applied to the reaction wheel joint is seen. As

shown in Figure 16, despite the impact, the control

torques 𝜏2 and 𝜏3 have managed to stabilise the

robot within the desired range. Figure 16 shows that

in the transition phase, within a period of 1 second,

θ4 is fixed at the desired reference value of π/2

radians. In the transition phase, within a 1-second

duration, it can be observed in Figure 17 that 𝜃4 is

stabilised at the desired reference value of π/2

radians. Figure 18 shows that the maximum and

minimum initial values were tested for Test 2 and

Test 3, for θ1 (left), it follows the reference values

𝜃1
𝐹𝑃 for both 2 test and is fixed at π/2. Similarly, in

the flight phase, the variable reference trajectory

𝜃2
𝑟𝑒𝑓

derived for 𝜃2 (Right) follows with negligible

error, and the robot stabilises at π/2 in the balanced

state. In Figure 19, more deflection occurred at the

maximum initial values due to the effect of a larger

impact. Here, the torque limits of the actuators

driving 𝐴0 and 𝐴1 are reached, and the maximum

value of ξ in the vertical direction is exceeded.

Despite this, it is observed that the system has

recovered and successfully reached balance. For

both cases, after the ground contact occurs, it is

observed that 𝐿4
𝑥 is balanced around the reference

point and 𝐿4
𝑦

 is balanced around the 𝐿4
𝑑𝑒𝑠 value,

which occurs gradually. Figure 19 shows that the

main desired balanced upright posture was

successfully achieved and maintained around the

π/2 value throughout the ground phase.

Hülako / GU J Sci, Part C, 13(4): 1680-1698 (2025)

1692

Figure 11. The graph shows the changes in the position of x1 (left), its velocity ẋ1 (right) during Test 1. (Grafik, Test

1 sırasında x1’in konumundaki (sol) ve hızındaki (sağ) değişimleri göstermektedir)

Figure 12. The graph shows the changes in the position of y1(left), its velocity ẏ1(right) during Test 1. (Grafik, Test 1

sırasında y₁’in konumundaki (sol) ve hızındaki (sağ) değişimleri göstermektedir)

Figure 13. The graph shows the changes in the angular position of θ1 (left) and angular velocity θ̇1 (right) during Test

1. (Grafik, Test 1 sırasında θ₁’in açısal konumundaki (sol) ve açısal hızındaki (sağ) değişimleri göstermektedir)

Figure 14. The graph shows the changes in the angular position of θ2 (left) and angular velocity θ̇2 (right) during Test

1. (Grafik, Test 1 sırasında θ₂’nin açısal konumundaki (sol) ve açısal hızındaki (sağ) değişimleri göstermektedir)

Hülako / GU J Sci, Part C, 13(4): 1680-1698 (2025)

1693

Figure 15. The graph shows the changes in the L4
x (left) and L4

y
 (right) during Test 1. (Grafik, Test 1 sırasında L₄ˣ’in (sol)

ve L₄ʸ’in (sağ) değişimlerini göstermektedir)

Figure 16. The graph shows the changes in the τ2 and τ3 during Test 1. (Grafik, Test 1 sırasında τ₂ ve τ₃’teki değişimleri

göstermektedir)

Figure 17. The graph shows the changes in the θ4 for Test 1. (Grafik, Test 1 için θ₄’teki değişimleri göstermektedir)

Figure 18. The graph shows the variation in the angular position of θ1 (on the left) and θ2 (on the right) during Test

2 and Test 3. (Grafik, Test 2 ve Test 3 sırasında θ₁’in açısal konumundaki (sol) ve θ₂’nin açısal konumundaki (sağ) değişimleri

göstermektedir)

Hülako / GU J Sci, Part C, 13(4): 1680-1698 (2025)

1694

Figure 19. The graph shows the variation for L4
x (left) and L4

y
 (right) during Test 2 and Test 3 (Grafik, Test 2 ve Test 3

sırasında L₄ˣ’in (sol) ve L₄ʸ’in (sağ) değişimlerini göstermektedir)

Figure 20. The graph shows the variation for θ4 during Test 2 and Test 3. (Grafik, Test 2 ve Test 3 sırasında θ₄’teki

değişimleri göstermektedir)

5. CONCLUSION AND

RECOMMENDATIONS (SONUÇ VE ÖNERİLER)

After training and learning the control process,

the robot has successfully maintained its balance in

the MSM environment. While the planar motion has

been effectively controlled in the simulation, there

will be numerous parameters to consider when

transitioning to a real-world application. Future

work will therefore focus on the hardware

implementation and experimental validation of the

proposed control architecture. Our plan involves a

Sim-to-Real transfer strategy. The ANN weights,

optimized within the Simscape simulation, will be

deployed onto a low-cost, powerful microcontroller

such as an ESP32. This embedded controller will be

responsible for real-time execution of the control

loop. It will process data from onboard sensors for

example Inertial Measurement Unit (IMU) for body

orientation and motor encoders for joint angles and

feed these states into the trained ANN. The network

will then output the virtual impedance coefficients

𝐵𝑖𝑐 and 𝐾𝑖𝑐, which the controller will use to

calculate and command the necessary torques to the

reaction wheel and leg motors. We anticipate

challenges inherent to the sim-to-real gap, such as

unmodeled dynamics, sensor noise, and actuator

delays. To mitigate these issues, we plan to first

refine the system identification of the physical

prototype to improve the simulation's fidelity.

Subsequently, if necessary, the pretrained ANN

policy may undergo further online fine-tuning on

the physical robot using reinforcement learning

techniques to adapt to the nuances of the real world.

Additional weights that will come in 3D

application will have costs in terms of

controllability. This study was intentionally

conducted in a 2D planar environment to reduce

modeling complexity and computational cost during

the development of the control and learning

architecture. Extending the system to 3D presents

additional challenges such as more degrees of

freedom, increased dynamic instability, and

complex interactions during landing impacts.

Despite these difficulties, the proposed method was

designed with extendibility in mind, and future

work will focus on adapting the current structure to

a 3D robotic system. As another potential solution,

the use of brushless motors and propellers to

actively drive the underactuated base axes for the

mission can facilitate control. Since high thrust

powers can be achieved in a short time, the desired

robot balance will be easily allowed, control can be

more easily achieved. However, we acknowledge

Hülako / GU J Sci, Part C, 13(4): 1680-1698 (2025)

1695

the importance of experimental validation and have

outlined plans for comprehensive real-world testing

in future work to confirm the practical applicability

and effectiveness of the system.

DECLARATION OF ETHICAL STANDARDS
(ETİK STANDARTLARIN BEYANI)

The author of this article declares that the materials
and methods they use in their work do not require
ethical committee approval and/or legal-specific
permission.
Bu makalenin yazarı çalışmalarında kullandıkları materyal ve

yöntemlerin etik kurul izni ve/veya yasal-özel bir izin

gerektirmediğini beyan ederler.

AUTHORS’ CONTRIBUTIONS (YAZARLARIN

KATKILARI)

Halit HÜLAKO: He conducted the simulations,
analyzed the results and performed the writing
process.
Simülasyonları yapmış, sonuçlarını analiz etmiş ve maklenin

yazım işlemini gerçekleştirmiştir.

CONFLICT OF INTEREST (ÇIKAR
ÇATIŞMASI)

There is no conflict of interest in this study.
Bu çalışmada herhangi bir çıkar çatışması yoktur.

6. APPENDIX (EK)

The equations of motion are derived from

Lagrange’s equation, given in Eq. a1, where 𝐿 is the

Lagrangian function and 𝜏𝑖 are the input torques

applied to the system. The dissipative energy in the

robot mechanism can be disregarded, as there is no

contribution from viscous torque.

𝑑

𝑑𝑡
(
∂𝐿

∂θ̇𝑖
) −

∂𝐿

∂θ𝑖
= τ𝑖 (a1)

Positions and velocites of the center of mass of part

2 given in Eq. a2;

𝑥2 = 𝑥𝐵 − 𝐿1  cos(Θ1)
+ 𝐿2  cos(Θ1 +Θ2)

(a2)

𝑦2 = 𝑦𝐵 + 𝐿2  sin(Θ1 + Θ2) − 𝐿1  sin(Θ1)

𝑥̇2 =
𝜕

𝜕𝑡
 𝑥𝐵 + 𝐿1  sin(Θ1) 

𝜕

𝜕𝑡
 Θ1

− 𝐿2  sin(Θ1

+ Θ2) (
𝜕

𝜕𝑡
 Θ1 +

𝜕

𝜕𝑡
 Θ2)

𝑦̇2 =
𝜕

𝜕𝑡
 𝑦𝐵 − 𝐿1  cos(Θ1) 

𝜕

𝜕𝑡
 Θ1

+ 𝐿2  cos(Θ1

+ Θ2) (
𝜕

𝜕𝑡
 Θ1 +

𝜕

𝜕𝑡
 Θ2)

Positions and velocites of the center of mass of disk

given in Eq. a3;

𝑥3 = 𝑥𝐵 + 𝐿1  cos(Θ1)
𝑦3 = 𝑦𝐵 + 𝐿1  sin(Θ1)

𝑥̇3 =
∂

∂𝑡
 𝑥𝐵 − 𝐿1  sin(Θ1) 

∂

∂𝑡
 Θ1

𝑦̇3 =
∂

∂𝑡
 𝑦𝐵 + 𝐿1  cos(Θ1) 

∂

∂𝑡
 Θ1

(a3)

The moments of inertia for all three limbs are given

in Eq. a4. In Simscape Multibody, the inertia of a

disk is calculated automatically. Here, the inner and

outer dimensions of the disk are 𝑅𝑖 = 80 𝑚𝑚 and

𝑅𝑜 = 120 𝑚𝑚, respectively.

𝐼1 =
𝐿1
2 𝑚1

3
, 𝐼2 =

𝐿2
2 𝑚2

3
, 𝐼3 =

𝑚3 (𝑅𝑖
2+𝑅𝑜

2)

2
 (a4)

The Lagrangian represents the difference between

the kinetic energy and potential energy of the

system and general formulation given in Eq. a5. The

Lagrange function of the robotic system is given in

the Eq. a6.

𝐿 =∑[
1

2
𝑚𝑖(𝑥𝑖

2̇ + 𝑦𝑖
2̇) +

1

2
𝐼𝑖θ𝑖

2̇]

3

𝑖=1

−∑[𝑚𝑖𝑔ℎ𝑖]

3

𝑖=1

(a5)

𝐿 =
𝑚3 ((𝑥̇𝐵 − σ2)

2 + (𝑦̇𝐵 + σ3)
2)

2

+
𝑚2 ((𝑦̇𝐵 − σ3 + 𝐿2  cos(Θ1 + Θ2) σ1)

2 + (𝑥̇𝐵 + σ2 − 𝐿2  sin(Θ1 + Θ2)  σ1)
2)

2

+
𝑚1 𝑥̇𝐵

2

2
+
𝑚1 𝑦̇𝐵

2

2
− 𝑔 𝑚1 𝑦𝐵 − 𝑔 𝑚3 (𝑦𝐵 + 𝐿1  sin(Θ1))

− 𝑔 𝑚2 (𝑦𝐵 + 𝐿2  sin(Θ1 + Θ2) − 𝐿1  sin(Θ1)) +
𝐿1

2 𝑚1 Θ̇1
2

6
+
𝐿2

2 𝑚2 σ1
2

6

+
𝑚3 (Θ̇1 + Θ̇3)

2
 (𝑅𝑖

2 + 𝑅𝑜
2)

4

(a6)

Hülako / GU J Sci, Part C, 13(4): 1680-1698 (2025)

1696

𝑤ℎ𝑒𝑟𝑒

 σ1 = Θ̇1 + Θ̇2
 σ2 = 𝐿1  sin(Θ1) Θ̇1
 σ3 = 𝐿1  cos(Θ1) Θ̇1

Thus, the resulting equations of motion for

generalized coordinates are listed in Eq. a7- a11.

Applying the Lagrange equation for coordinate 𝑥𝐵:

(𝑚1 +𝑚2 +𝑚3) 𝑥̈𝐵 −
𝑚2  (2 𝐿2  sin(σ3) (Θ̈1 + Θ̈2) − σ1 − σ2 + 2 𝐿2  cos(σ3) (Θ̇1 + Θ̇2)

2
)

2

−
𝑚3 (σ2 + σ1)

2
= 0

𝑤ℎ𝑒𝑟𝑒

 σ1 = 2 𝐿1  cos(Θ1) (
∂

∂𝑡
 Θ1)

2

 σ2 = 2 𝐿1  sin(Θ1) 
∂2

∂𝑡2
 Θ1

 σ3 = Θ1 +Θ2

(a7)

Applying the Lagrange equation for coordinate 𝑦𝐵:

(𝑚1 +𝑚2 +𝑚3) 𝑦̈𝐵 + 𝑔 𝑚1 + 𝑔 𝑚2 + 𝑔 𝑚3

−
𝑚2  (2 𝐿2  sin(Θ1 +Θ2) (Θ̇1 + Θ̇2)

2
− 2 𝐿2  cos(Θ1 +Θ2) (Θ̈1 + Θ̈2) − σ1 + σ2)

2

−
𝑚3 (σ1 − σ2)

2
= 0

𝑤ℎ𝑒𝑟𝑒

 σ1 = 2 𝐿1  sin(Θ1) Θ̇1
2

 σ2 = 2 𝐿1  cos(Θ1) Θ̈1

(a8)

Applying the Lagrange equation for coordinate Θ1:

(
𝐿1
2 𝑚1

3
+ 𝐿1

2 𝑚2 + 𝐿1
2 𝑚3 +

4 𝐿2
2 𝑚2

3
+
𝑅𝑖
2 𝑚3

2
+
𝑅𝑜

2 𝑚3

2
− 2 𝐿1 𝐿2 𝑚2  cos(Θ2)) Θ̈1

+
4 𝐿2

2 𝑚2 Θ̈2
3

+
𝑅𝑖
2 𝑚3 Θ̈3
2

+
𝑅𝑜

2 𝑚3 Θ̈3
2

− 𝐿1 𝑚2  cos(Θ1) 𝑦̈𝐵

+ 𝐿1 𝑚3  cos(Θ1) 𝑦̈𝐵 + 𝐿1 𝑚2  sin(Θ1) 𝑥̈𝐵 − 𝐿1 𝑚3  sin(Θ1) 𝑥̈𝐵
+ 𝐿2 𝑚2  cos(Θ1 + Θ2) 𝑦̈𝐵 − 𝐿1 𝑔 𝑚2  cos(Θ1) + 𝐿1 𝑔 𝑚3  cos(Θ1)

− 𝐿2 𝑚2  sin(Θ1 +Θ2) 𝑥̈𝐵 + 𝐿2 𝑔 𝑚2  cos(Θ1 + Θ2) + 𝐿1 𝐿2 𝑚2  sin(Θ2) Θ̇2
2

− 𝐿1 𝐿2 𝑚2  cos(Θ2) Θ̈2 + 2 𝐿1 𝐿2 𝑚2  sin(Θ2) Θ̇2 Θ̇1 = 0

(a9)

Applying the Lagrange equation for coordinate Θ2:

Hülako / GU J Sci, Part C, 13(4): 1680-1698 (2025)

1697

4 𝐿2
2 𝑚2

3
 Θ̈2 +

4 𝐿2
2 𝑚2 Θ̈1
3

+ 𝐿2 𝑚2  cos(Θ1 + Θ2) 𝑦̈𝐵 − 𝐿2 𝑚2  sin(Θ1 + Θ2) 𝑥̈𝐵

+ 𝐿2 𝑔 𝑚2  cos(Θ1 + Θ2) − 𝐿1 𝐿2 𝑚2  sin(Θ2) (Θ̇1)
2
− 𝐿1 𝐿2 𝑚2  cos(Θ2) Θ̈1

= τ2

(a10)

Here, the actuated generalized coordinates are the

3rd and 2nd coordinates. In the equation of motion

where the disk is present, it is clearly seen in Eq. a11

that the acceleration of Θ̈1 is directly affected by the

actuation. Applying the Lagrange equation for

coordinate Θ3:

𝑚3 (Θ̈1 + Θ̈3) (𝑅𝑖𝑛
2 + 𝑅𝑜𝑢𝑡

2)

2
= τ3 (a11)

REFERENCES

[1] C. Rui, I. V. Kolmanovsky, and N. H.

McClamroch, “Nonlinear attitude and shape control

of spacecraft with articulated appendages and

reaction wheels,” IEEE Trans Automat Contr, vol.

45, no. 8, pp. 1455–1469, Aug. 2000, doi:

10.1109/9.871754.

[2] G. Shengmin and C. Hao, “A comparative

design of satellite attitude control system with

reaction wheel,” in Proceedings - First NASA/ESA

Conference on Adaptive Hardware and Systems,

AHS 2006, 2006, pp. 359–362. doi:

10.1109/AHS.2006.2.

[3] Y. Yang, “Spacecraft Attitude and Reaction

Wheel Desaturation Combined Control Method,”

IEEE Trans Aerosp Electron Syst, vol. 53, no. 1, pp.

286–295, Feb. 2017, doi:

10.1109/TAES.2017.2650158.

[4] P. Zhang, Z. Wu, H. Dong, M. Tan, and J.

Yu, “Reaction-Wheel-Based Roll Stabilization for a

Robotic Fish Using Neural Network Sliding Mode

Control,” IEEE/ASME Transactions on

Mechatronics, vol. 25, no. 4, pp. 1904–1911, Aug.

2020, doi: 10.1109/TMECH.2020.2992038.

[5] M. Gajamohan, M. Merz, I. Thommen, and

R. D’Andrea, “The Cubli: A cube that can jump up

and balance,” in IEEE International Conference on

Intelligent Robots and Systems, 2012, pp. 3722–

3727. doi: 10.1109/IROS.2012.6385896.

[6] M. Muehlebach, G. Mohanarajah, and R.

D’Andrea, “Nonlinear analysis and control of a

reaction wheel-based 3D inverted pendulum,” in

Proceedings of the IEEE Conference on Decision

and Control, Institute of Electrical and Electronics

Engineers Inc., 2013, pp. 1283–1288. doi:

10.1109/CDC.2013.6760059.

[7] T. L. Brown and J. P. Schmiedeler,

“Reaction Wheel Actuation for Improving Planar

Biped Walking Efficiency,” IEEE Transactions on

Robotics, vol. 32, no. 5, pp. 1290–1297, Oct. 2016,

doi: 10.1109/TRO.2016.2593484.

[8] S. I. Han and J. M. Lee, “Balancing and

velocity control of a unicycle robot based on the

dynamic model,” IEEE Transactions on Industrial

Electronics, vol. 62, no. 1, pp. 405–413, Jan. 2015,

doi: 10.1109/TIE.2014.2327562.

[9] J. Trentin, S. da Silva, J. Ribeiro, and H.

Schaub, “Inverted Pendulum Nonlinear Controllers

Using Two Reaction Wheels: Design and

Implementation,” IEEE Access, vol. PP, p. 1, May

2020, doi: 10.1109/ACCESS.2020.2988800.

[10] M. Kim, J. Kim, and D. Yun, “Compact

Posture Control System for Jumping Robot Using

an Air Reaction Wheel,” IEEE/ASME Transactions

on Mechatronics, 2024, doi:

10.1109/TMECH.2024.3398636.

[11] M. Zabihi and A. Alasty, “Dynamic

stability and control of a novel handspringing

robot,” Mech Mach Theory, vol. 137, pp. 154–171,

Jul. 2019, doi:

10.1016/j.mechmachtheory.2019.03.018.

[12] S. Haoran, X. Yong, L. Jiali, J. Xinyang,

and Y. Jie, “Marsbot: A monopod robot capable of

achieving three-dimensional dynamic and stable

Hülako / GU J Sci, Part C, 13(4): 1680-1698 (2025)

1698

jumping,” Proc Inst Mech Eng C J Mech Eng Sci,

vol. 236, no. 1, pp. 552–565, Jan. 2022, doi:

10.1177/09544062211024311.

[13] A. Anzai, T. Doi, K. Hashida, X. Chen, L.

Han, and K. Hashimoto, “Monopod robot prototype

with reaction wheel for hopping and posture

stabilisation,” 2021. [Online]. Available:

http://creativecommons.org/licenses/by-nc-nd/4.0/

[14] T. L. Brown and J. P. Schmiedeler,

“Reaction Wheel Actuation for Improving Planar

Biped Walking Efficiency,” IEEE Transactions on

Robotics, vol. 32, no. 5, pp. 1290–1297, Oct. 2016,

doi: 10.1109/TRO.2016.2593484.

[15] F. Roscia, A. Cumerlotti, A. Del Prete, C.

Semini, and M. Focchi, “Orientation Control

System: Enhancing Aerial Maneuvers for

Quadruped Robots,” Sensors, vol. 23, no. 3, Feb.

2023, doi: 10.3390/s23031234.

[16] Q. Zhu, X. Wu, Q. Lin, and W.-N. Chen,

“Two-Stage Evolutionary Reinforcement Learning

for Enhancing Exploration and Exploitation,” 2024.

[Online]. Available: www.aaai.org

[17] L. Deng and S. Liu, “Incorporating Q-

learning and gradient search scheme into JAYA

algorithm for global optimization,” Artif Intell Rev,

vol. 56, pp. 3705–3748, Dec. 2023, doi:

10.1007/s10462-023-10613-1.

[18] L. Deng and S. Liu, “Snow ablation

optimizer: A novel metaheuristic technique for

numerical optimization and engineering design,”

Expert Syst Appl, vol. 225, Sep. 2023, doi:

10.1016/j.eswa.2023.120069.

[19] S. Zhang, H. Zhang, and Y. Fu, “Leg

Locomotion Adaption for Quadruped Robots with

Ground Compliance Estimation,” Appl Bionics

Biomech, vol. 2020, 2020, doi:

10.1155/2020/8854411.

