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ABSTRACT 

The yielding of two-layer composite spherical pressure vessels under either internal or external pressure is investigated analytically 

in the framework of small deformations and von Mises yield criterion. It is shown for both pressure cases that depending on the 

material properties and sphere dimensions, different modes of plasticization may take place. Unlike the deformation behavior of a 

single layer spherical pressure vessel, yielding may commence at the inner layer or at the outer layer or simultaneously at both 

layers of the assembly. 
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1. INTRODUCTION 

The prediction of stresses in commonly used structures 

such as tubes, shafts, annular disks and pressure vessels 

is an important topic in engineering practice. The 

classical problem of a thick-walled spherical pressure 

vessel under different loading and boundary conditions 

has been investigated by several researchers in the past. 

Timoshenko and Goodier [1] derived the expressions of 

the stresses in a thick-walled sphere subjected to internal 

and external pressure. Mendelson [2] studied the elastic 

and elastoplastic deformation behavior of spherical 

pressure vessels under thermal and pressure loading. 

Noda et al. [3] derived the stress and displacement 

expressions of thick-walled spheres under various types 

of thermal loads. Jiang [4] studied the elastic-plastic 

response of such assemblies subject to internal and 

external pressures and radial temperature gradient. Bufler 

[5] investigated the laminated composite hollow spheres 

under pressure.  

In recent years, analytical studies focusing on pressure 

vessels made of functionally graded materials (FGM) and 

multilayered pressure vessels were performed both in 

elastic and elastoplastic stress states. For example, Guven 

[6], You et al. [7], Eslami et al. [8], and Chen and Lin [9] 

treated the FGM spheres under different loading 

conditions in elastic stress state. On the other hand, Fukui 

and Yamanaka [10], Horgan and Chan [11], and Tutuncu 

and Ozturk [12] treated the internally pressurized FGM 

cylindrical pressure tube problem in elastic stress state. 

The elastoplastic response of FGM spherical pressure 

vessels was investigated by Akis [13], while Eraslan and 

Akis [14] investigated the elastoplastic response of FGM 

cylindrical pressure vessels, and Jahromi et. al [15, 16] 

studied the autofrattage of such assemblies. Besides these 

studies, both the mechanical and thermal stresses in the 

FGM cylindrical tubes were studied by several 

researchers such as Jabbari, Sohrabpour and Eslami [17] 

and Eraslan [18]. The closely related studies on the 

pressurized two-layer composite thick-walled tubes may 

be found in publications [19-22]. Finally, recent studies 

on spherical and cylindrical pressure vessels can be found 

in [23-26].  

It is evident from the list of the existing literature that the 

investigation of the yielding behavior of the pressurized 

two-layer spherical pressure vessel problem by analytical 

means has not yet been done. It is therefore the main 

objective of this work to obtain a consistent analytical 

solution to predict the yielding behavior of such 

assemblies under pressure. The geometry considered in 

this study consists of two concentric thick spheres: A 

sphere layer of inner radius a and outer radius b and a 

sphere layer of inner radius b and outer radius c. This 

composite system is subjected to either internal or 

external pressure. The elastic behavior of the system is 

investigated analytically and the limiting pressures 

causing plastic flow are evaluated by the use of von 

Mises yield criterion. It is shown that, unlike the 

deformation behavior of a single layer spherical pressure 

vessel, yielding may start at the inner surface or at the 

interface of the assembly. 

 

2. FORMULATION AND SOLUTION 

Spherical coordinates ( r , ,  ) are considered in this 

problem. In addition, infinitesimal deformations are 

presumed and the notation of Timoshenko and Goodier 

[1] is used. For a spherical symmetric deformation  case 

(    ), the strain-displacement relations 

dr

du
r  ,                  (1) 

r

u
 ,                  (2) 

the Hooke’s law  

  2
1

 rr
E

,                 (3) 

 )(
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)(    r
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and the equation of equilibrium 

0)(
2

 


r
r

rdr

d
                                            (5) 

form the basis for the analysis. In these equations, 
j

  

represents the normal strain, u the radial displacement, r 

the radial coordinate, E the modulus of elasticity, j  the 

normal stress, and ν is the Poisson's ratio. A straight 

forward manipulation on the equations above leads to 

stress-displacement relations: 












 u

r

uE
r )1(2

)21)(1(



 ,                       (6) 












 u

r

uE



 

)21)(1(
)( ,               (7) 

where a prime denotes differentiation with respect to the 

radial coordinate r. Substituting the stresses from (6) and 

(7) in the equation of equilibrium (5) one obtains the 

governing differential equation for the radial 

displacement in a spherical pressure vessel. The general 

solution is 

  rC
r

C
ru 22

1  ,                 (8) 

where 
1

C  and  
2

C  are arbitrary integration constants. 

The stresses are then determined as 
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For a spherical pressure vessel under internal pressure, 

the integration constants 
1

C  and  
2

C   are determined 

using boundary conditions Pa
r

)(  and 0)( b
r

  

as 
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On the other hand, if the pressure is applied externally in 

radial direction, the boundary conditions read 

0)( ar  and Pbr )( , hence 
1

C  and  
2

C  are 

obtained as 
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For spherical symmetric case, the deviatoric stress tensor 

ijS  can be written as 

 
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where   is the deviatoric stress given by 

3/)2(   r . The von Mises yield stress, 
Y

 , 

may be expressed as [27] 

ijijY SS
2

3
 ,                 (16) 

and the explicit expression can be obtained as 

  rY ,               (17) 

by carrying out summations over repeated indices. 

Yielding begins as soon as the yield stress Y  becomes 

greater than the uniaxial yield limit 0  of the material 

and the elastic limit load is obtained from 0 Y . 

Studies showed that for a single layer spherical pressure 

vessel, the inner surface is critical for both internal and 

external pressure cases and yielding always commences 

at this surface. Hence, the elastic limit pressure eP  can 

be obtained from )()(0 aar   . For both 

cases, this limit is found as 

3

33

0

3

)(2

b

ab
Pe





.               (18) 

This expression is identical with the elastic limit 

expression given by Mendelson [2]. As an example, a 

steel pressure vessel (E = 200 GPa, ν = 0.3, 
0

  = 430 

MPa) is considered. To present the numerical results, the 

following nondimensional variables are used: brr /  ;  

0/ jj   ;  )/( 0buEu   ;  
0/PP  . The inner 

radius of the assembly is taken as 7.0/  baa . For 

the internal pressure case, using Eq. (18), the elastic limit 

pressure is obtained as 438.0eP . Using Eqs. (11) and 

(12), the dimensionless integration constants are 

calculated as 43

11 1019562.3/  bCC , and 

4

22 1096653.1 CC . The corresponding stresses and 

displacement are plotted against the nondimensional 

radial coordinate in Figure 1. In order to monitor the 

commencement of the plastic flow, the nondimensional 

stress variable Y  is introduced. In accordance with von 

Mises yield criterion it is obtained from   rY
, 

which corresponds to the yield stress 
Y

  in the plastic 

core. Note that 1Y  at the elastic-plastic border 

implying onset of plasticization at that location and 

1Y  in the elastic region. By following the variation 

of  
Y
   in Figure 1, it is seen that yielding commences at 

the inner surface of the assembly as 1)( aY . For the 

external pressure case, same steel assembly is considered 

with 6.0/  baa . The corresponding elastic limit 

pressure is calculated as 522667.0eP  from Eq. (18). 
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Using Eqs. (13) and (14), the integration constants are 

obtained as 43

11 100124.2/  bCC , and 

4

22 1073333.5 CC . As a result, the profiles for the 

stresses and displacement shown in Figure 2 are drawn. 

Since 1)( a
Y
 , yielding first begins at the inner 

surface of the assembly. 

 
Figure 1. Stresses and displacement in a steel spherical 

pressure vessel of inner radius 7.0a  subject to 

elastic limit internal pressure 438.0
e

P . 

 
Figure 2. Stresses and displacement in a steel spherical 

pressure vessel of inner radius 6.0a  subject to 

elastic limit external pressure 522667.0
e

P

. 

2.1 Two-Layer Assembly Subject to Internal Pressure 

In two-layer composite spherical pressure vessels, same 

stress and displacement expressions are valid for both 

layers. However, these expressions contain four 

unknown integration constants: 1C , 2C  for the inner 

layer, and 3C , 4C  for the outer layer. For such an 

assembly subject to internal pressure P, these constants 

are determined from the boundary conditions 

PaI

r )( and  0)( cII

r , and the interface conditions  

)()( bb II

r

I

r    , )()( bubu III  . Here the superscripts I and 

II denote inner and outer layers, respectively. The stress 

components and radial displacement for both layers can 

be obtained by the use of Eqs. (9), (10), and (8). 

Application of the above mentioned four nonredundant 

conditions results in 
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where 

11 1 N , 11 21 M , 22 1 N , 

22 21 M .                                                         (23) 

The subscripts 1 and 2 are used to denote material 

properties ( E ,  ,
 0 ) 

 
of the inner and outer layers, 

respectively. Parametric studies showed that, unlike the 

deformation behavior of a single layer pressure vessel, 

different modes of plastic flow may take place. Plastic 

deformation may first begin at ar   (at the inner 

surface), or at br   (at the interface). These two 

different modes imply the existence of a critical interface 

radius crbb 
 

for which the plastic flow begins 

simultaneously in both layers. The critical interface 

radius crb
 
and the corresponding elastic limit pressure 

eP
  

can be determined by simultaneous solution of the 

following two equations: 

01)()(    aa II
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After some algebraic manipulations, the critical interface 

radius crb  and the corresponding elastic limit internal 

pressure are obtained as 
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where 
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It is also found that the existence of the critical interface 

radius crb  depends mainly on the material properties of 

the layers of the assembly. The analyses showed that, for 

instance, in an assembly consisting of steel inner and 

aluminum outer layers (ST-AL) crb  exists for all a . On 

the other hand, in an aluminum-steel (AL-ST) assembly 

crb  does not exist and yielding always commences at the 

inner surface ar  . If the critical interface radius 

exists, the plastic flow will start at the inner surface for 

the values of crbb   and at the interface of the assembly 

for crbb  . The elastic limit internal pressure that 

causes yielding at the inner layer at ar    is determined 

from Eq. (24) as 
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The equations above for the integration constants and 

critical pressures can easily be shown to reduce to the 

corresponding equations of a single layer spherical 

pressure vessel under internal pressure by setting 

EEE  21 ,   21 , 00201    and 

either ba   or  bc  . 

2.2 Assembly Subject to External Pressure 

If the two-layer assembly is subjected to external 

pressure P , the boundary conditions become 

0)( aI

r and PcII

r )( . The interface 

conditions are the same as the interface conditions for the 

internal pressure case. Using them to determine the 

integration constants yields 
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Making use of Eqs. (24) and (25), the critical interface 

radius and the elastic limit external pressure are obtained 

as 
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The choice crbb 
 
leads to plastic flow in both layers 

(at ar   and br  ) simultaneously. Yielding 

commences at the interface, br  , for the values of b  

less than crb . In case crbb 
 
or when crb

 
does not 

exists, plastic flow begins at the inner surface ar  . 

The corresponding elastic limit pressure turns out to be 
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Like in internal pressure case, equations above for the 

integration constants and critical pressures can be 

reduced to the corresponding equations of a single layer 

assembly under external pressure. 

 

3. NUMERICAL RESULTS 

A composite system consisting of steel inner ( 200E  

GPa, 3.0 , 4300   MPa) and aluminum outer (

70E  GPa, 35.0 , 1000   MPa) layers is 

considered. To present the numerical results the 

following non-dimensional variables are used: 

c

r
r   ;  

01




j

j   ;  
c

uE
u

01

1


  ;  

01

P
P        (37) 

3.1 Assembly Subject to Internal Pressure 

The inner radius of the assembly is taken as 

75.0/  caa . In case the assembly subject to 

internal pressure, the critical interface radius and the 

corresponding critical elastic limit pressure are calculated 

as 895058.0/  cbb crcr and 318305.0eP

using Eqs. (26) and (27), respectively. If these values are 

substituted in Eqs. (19)-(22) the dimensionless 

integration constants are obtained as 
43

11 1093047.3/  cCC , 4

22 1099591.2 CC , 

43

33 1060965.4/  cCC and 4

44 1004873.2 CC

. The corresponding stresses and displacement are plotted 

against the nondimensional radial coordinate in Figure 

3(a). The radial stress and displacement are continuous at 

the interface satisfying interface conditions, but since the 

layers are made of different materials the tangential stress 

is discontinuous. It is also shown in this figure that the 

stress component   is tensile whereas r  is 

compressive. By following the variation of the 
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nondimensional stress variable Y  in Figure 3(a), it is 

seen that yielding commences simultaneously at the inner 

surfaces of both layers. For the same assembly, assigning 

the interface radius 
crbb  85.0 and using Eq.(27), the 

elastic limit internal pressure is obtained as 

235399.0eP . The corresponding integration constants 

are 4

1 1030663.3 C , 4

2 1079891.2 C , 

4

3 1094795.3 C  and 4

4 1075464.1 C . The 

distribution of stresses and displacement in the spherical 

pressure vessel is given in Figure 3(b). It is seen in this 

figure that yielding commences at the interface of the two 

layers since 1)( bY . For 
crbb  95.0 , Eq. (29) gives 

356688.0eP  and from Eqs. (19)-(22) 

4

1 1093047.3 C , 4

2 1066582.2 C , 

4

3 1050096.4 C  and 4

4 1000043.2 C  are 

obtained. As a result, the profiles for the stresses and 

displacement shown in Figure 3(c) are drawn. Since 

1)( aY , yielding first begins at the inner surface of 

the assembly. Finally, the variation of the elastic limit 

internal pressure eP  with the interface radius b  for 

steel-aluminum assembly of inner radius 75.0a is 

plotted in Figure 4. Here, 75.0 ab  implies a 

single aluminum spherical pressure vessel under internal 

pressure and the turning point of the curve corresponds 

to crbb  . 

 
Figure 3(a).  Stresses and displacement in a steel-aluminum 

spherical pressure vessel of inner radius 

75.0a subject to internal pressure at elastic 

limit internal pressure for  895058.0 crbb  and 

318305.0eP . 

 
Figure 3(b).  Stresses and displacement in a steel-aluminum 

spherical pressure vessel of inner radius 

75.0a  subject to internal pressure at 

elastic limit internal pressure for 85.0b , 

235399.0eP  

 

Figure 3(c). Stresses and displacement in a steel-aluminum 

spherical pressure vessel of inner radius 

75.0a  subject to internal pressure at elastic 

limit internal pressure for 95.0b , 

356688.0eP . 
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Figure 4.  Variation of elastic limit internal pressure with 

interface radius. 

 

3.2 Assembly Subject to External Pressure 

In order to express the response of the two-layer spherical 

pressure vessels under external pressure, a steel-

aluminum assembly is considered again. The inner radius 

is taken as 7.0a  and with the help of Eq. (34) the 

critical interface radius for this system is calculated as 

776302.0crb . Using Eq. (35) for cases crbb   and 

crbb  and Eq. (36) for crbb  and Eqs. (30)-(33) for 

all, calculations are performed for three different 

interface radii and the results are summarized in Table 1. 

Table 1. Results of calculations for 7.0a  

 75.0b  776302.0crb  8.0b  

eP  0.194742 0.260397 0.284579 

1C  -2.69487×10-4 -3.19562×10-4 -3.19562×10-4 

2C  -4.83492×10-4 -5.73333×10-4 -5.73333×10-4 

3C  -2.71205×10-4 -3.00751×10-4 -2.80717×10-4 

4C  -4.79418×10-4 -6.13541×10-4 -6.49202×10-4 

 

The stresses and displacement corresponding to 

75.0b , 776302.0 crbb  and 8.0b  at 

their elastic limit external pressures are calculated and 

plotted in Figures 5(a), (b) and (c), respectively. As seen 

in these figures, both stress components are compressive. 

Furthermore, yielding commences in the assembly of 

interface radius 75.0b  in the outer layer (Figure 5(a)), 

simultaneously in both layers for 776302.0 crbb  

(Figure 5(b)) and in the inner layer for 8.0b  (Figure 

5(c)). Finally, the variation of elastic limit external 

pressure eP  with the interface radius b  can be seen in 

Figure 6. 

 
Figure 5(a). Stresses and displacement in a steel-aluminum 

spherical pressure vessel of inner radius 7.0a  

subject to external pressure at elastic limit 

external pressure for 75.0b , 194742.0eP . 

 
Figure 5(b). Stresses and displacement in a steel-aluminum 

spherical pressure vessel of inner radius 7.0a  

subject to external pressure at elastic limit 

external pressure for 776302.0 crbb , 

260397.0eP . 
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Figure 5(c).  Stresses and displacement in a steel-aluminum 

spherical pressure vessel of inner radius 7.0a  

subject to external pressure at elastic limit 

external pressure for 8.0b , 284579.0eP . 

 
Figure 6. Variation of elastic limit external pressure with 

interface radius. 

 

4. CONCLUDING REMARKS 

In the framework of small deformation theory and von 

Mises yield criterion, an engineering stress analysis is 

performed in this study concerning the yielding of two-

layer spherical pressure vessels under pressure. In a 

single layer spherical pressure vessel, the inner surface is 

critical regardless of internal or external pressure is 

applied and yielding commences at this location when the 

pressure reaches its elastic limit. However, in two-layer 

composite spherical pressure vessels, depending on the 

material properties and interface radius, yielding may 

begin in the inner layer or in the outer layer or 

simultaneously in both layers. A critical interface radius 

crb  leading to plastic flow simultaneously in both layers 

may be found. The existence of 
crb  mainly depends on 

the material properties of the layers. The plastic flow 

starts from the inner layer at ar   if  crbb  , it yields 

in the outer layer at the interface otherwise. In case 
crb  

does not exist, the assembly behaves like a single layer 

spherical pressure vessel. 

 

LIST OF SYMBOLS 

a , b , c  inner, interface and outer radii of the spherical 

pressure vessel assembly, respectively 

iC  integration constants 

E  modulus of elasticity 

P  pressure 

r ,  ,   spherical coordinates 

ijS  deviatoric stress tensor 

u  radial displacement 

i  strain components 

  Poisson's ratio 

i  stress components 

0 , Y  initial and subsequent yield stress 

  deviatoric stress 

Y  nondimensional stress variable 
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