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ABSTRACT 

Calculating feeder losses accurately is an important part of evaluating designs for electric power distribution systems. Historically, 

these losses have been calculated one of three ways: (1) using a peak load calculation and the load factor method, (2) using customer 

class statistics normalized for a month, season, or year, or (3) using customer class statistics together with feeder measurements to 

reflect the variation in load every hour of the year. The first two methods require far less data but provide far less accuracy than 

the third method. In this paper, the authors present a method of calculating losses that achieves better accuracy than the first two 

methods without the large data requirements of the third method. 

Keywords :  Load Factor Method, Measurements, Lagrange Interpolation, Advanced Metering Infrastructure (AMI), Loss 

Calculation. 

Rastgele Yük Eğrisi Metodu ile Elektrik Kayıplarının 

Hesaplanması 

ÖZ 

Fiderlerin elektrik kayıplarının dogru biçimde hesaplanması elektrik dağıtım sistemlerini değerlendirirken çok önemli bir paya 

sahiptir. Geçmişte, bu kayıpların hesaplanması üç değişik metod ile yapılırdı: (1) en yüksek yük hesaplaması ve yük faktörü 

metodunun kullanımiı ile (2) normalize edilmiş müşteri sınıf istatistiklerinin aylık, sezonluk ve yıllık kullanımı ile ve (3) müşteri 

sınıf istatisliklerinin fider ölçümlerinide kullanarak yükün yıl içinde her saat değişimini dikkate alarak kullanımıdır. Bunlardan ilk 

ikisi daha az bilgi gereksinimine ihtiyaç duymasına rağmen üçüncü metoda göre daha az doğruluk payları vardır. Bu çalışmada, 

elektrik kayıplarının hesaplanması için yeni bir metod kullanılacak ve bu ilk iki metoddan daha doğru sonuclar elde edilecek ve 

ayni zamanda üçüncü metodun gereksinim duydugu geniş bilgi ihtiyacına da gerek kalmayacaktır. 

Anahtar Kelimeler : Yük Ölçüm Metodu, Ölçümler, Lagrange Enterpolasyonu, İleri seviye ölçüm altyapısı (AMI), Kayıp 

Hesaplanması.

1. INTRODUCTION 

When planning engineers are laying out new feeders or 

reconfiguring or updating existing feeders, they want to 

either choose the least expensive design that meets 

certain criteria or else choose the design with the highest 

cost-benefit ratio. Part of calculating the costs of each 

design includes the cost of the electrical energy losses 

that will be incurred on the feeder over time. The 

accuracy with which these losses can be calculated may 

impact the decision of which design, if any, is 

implemented. 

The accuracy of the calculation of feeder losses is largely 

dependent upon the accuracy of the load model [1-3]. In 

the past, many engineers worked only with a peak load 

model [4-6]. For a new feeder, there would be rough 

assumptions about how much load would be located in 

various areas, but when planning upgrades to existing 

feeders, there would often be a peak feeder reading from 

a circle chart that would assist in modeling the peak load. 

A power flow calculation [7] would then produce the 

total losses for the feeder, and the load factor would be 

used to estimate the losses for the whole year.  

As the cost of metering equipment fell, utilities became 

able to generate load statistics for different types of 

customers to help them create "typical" load curves for 

more accurate calculation of losses [8-9]. By gathering 

hourly metered measurements for just a few meters of a 

few different customer types, the utility could generate 

an approximate load curve for each type of customer for 

each season or month for each type of day 

(weekday/weekend). These load curves would be scaled 

at each customer meter based on the kWh of consumption 

billed for each month of the year. Power flow 

calculations would then be done for each hour for each 

type of day for each season or month, and the losses 

would be calculated at each hour. By modeling the time-

varying nature of loads, a more accurate estimate of 

losses could be achieved [10-11].  
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When flow measurements are available at the start of the 

feeder, these "typical" load curves could be adjusted to 

match the feeder flow measurements, resulting in even 

greater accuracy. With one measurement for each hour of 

the year, 8760 power flow calculations could be made to 

calculate the losses for the year. With the increased data 

and increased calculations, a large increase in accuracy 

was possible. 

In rare cases, a utility may have hourly metered loads at 

every point of service, often called AMI (advanced 

metering infrastructure) [12-16]. As of the writing of this 

paper, however, very few utilities have extensive 

installations of such meters combined with the electrical 

model to make effective use of this data. 

Without AMI, using feeder flow measurements to adjust 

customer class load statistics offers the most accurate 

calculation of losses. Feeder flow measurements, 

however, are not available on all feeders, nor are they 

helpful when adding significant numbers of new loads, 

as these new loads must be modeled in some time-

varying way to be used together with the feeder 

measurements. In this paper, the authors present a 

method of modeling loads that makes effective use of a 

peak load measurement or estimate as well as customer 

class load statistics, without requiring feeder 

measurements for every hour of the year.  

In section 2, the older load modeling and loss calculation 

methodologies will be presented in more detail, followed 

by a presentation of the new load modeling method in 

section 3. These methods are then compared in section 4 

for a few feeders for which both monthly kWh billing 

data and hourly feeder measurements were available. 

Finally, in section 5, the work is summarized and some 

conclusions are drawn. 

  

2. PREVIOUS METHODOLOGIES 

Loss calculation methodologies have advanced in direct 

correspondence with the availability of more detailed 

measurements on the power system. Starting with the 

load factor method requiring no more than a 

measurement or estimate of the total feeder flow and 

progressing to the more precise time-varying load flow 

analysis using AMI measurements, electrical power 

system engineers have seen the complexity of the 

mathematical problem rise together with increased 

accuracy. 

2.1. Load Factor Method 

The earliest and simplest method uses a single 

measurement (or estimate) of the peak feeder demand 

and a rough model of how that load is distributed, as well 

as a load factor. The peak feeder demand may either be 

estimated or read from a circle chart. The load 

distribution varies from an assumed even distribution of 

load over the feeder to a model representing each 

transformer kVA where the load is assumed proportional 

to the transformer rating. Regardless of how the load is 

modeled, a power flow analysis is performed using the 

estimated peak demand on the feeder to calculate the 

energy losses at peak. 

The load factor (LF) represents the ratio of average 

annual energy consumption to peak demand, as shown in 

Equation 1. 

𝐿𝐹 =
𝑃𝑎𝑣𝑔

𝑃𝑝𝑒𝑎𝑘
 (1) 

Using the peak load flow results and the load factor, the 

average losses may be calculated using Equation 2, and 

these average losses are multiplied by the number of 

hours in a year (assuming 8760 hours in a year) to provide 

the total annual losses, as shown in Equation 3. 

𝐿𝑜𝑠𝑠𝑎𝑣𝑔 = 𝐿𝑜𝑠𝑠𝑝𝑒𝑎𝑘 ∗ 𝐿𝐹2 (2) 

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑎𝑣𝑔 ∗  8760 (3) 

This approach to calculating annual losses on a feeder 

leads to an underestimation of the losses and a further 

underestimation of the cost of losses, as proven in 

reference [17]. 

2.2. Customer Class Load Statistics Method 

Of course, in order to bill their customers correctly, 

utilities have been measuring more than merely the peak 

demand at the feeder even since the earliest power 

systems infrastructure was being built. In order to make 

use of these measurements in a load flow analysis, 

however, one must be able to convert the total monthly 

kilowatt-hour consumption into a kilowatt demand at a 

given hour of the year. 

By metering a few loads, a generic load curve could be 

estimated for various customer types for various seasons 

or months and for various types of days. The monthly 

kilowatt-hours read from customer meters (or anticipated 

consumption based on energy sales to similar customers) 

could then be divided among the hours of the month 

based on the typical load curve and the types of days. For 

example, in Figure 1, we have a sample plot for two 

different customer types (residential and commercial) 

and two different types of day (weekday and weekend). 

The vertical axis of Figure 1 shows the kW demand at 

each hour based on a total monthly consumption of 1000 

kWh. For a residential customer with only 500 kWh, the 

load curve would take the same shape but each value 

would be halved. 

 

Fig. 1. Comparison of kW demand for two different 

customer types and Days 
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The number of distinct daily curves depends on the 

variation in customer load. For some utilities, four 

seasons and two types of day (weekday/weekend) may 

prove sufficiently accurate. For other utilities, there will 

be different curves for each day of the week for each 

month of the year, resulting in 2016 hourly curve points 

(12 months x 7 day types x 24 hours/day). Modeling 

holidays independently would add additional curve 

points to be analyzed. 

A more precise formulation is given in Equations 7-10 of 

reference [11]. 

2.1. Customer Class Load Statistics With 

Measurement Matching 

An obvious shortfall of the customer class load statistics 

method is that the load is assumed to be the same for 

many days in a given month. Without representing the 

variation in load, the total losses will be underestimated 

by the same proof as given in [11]. If feeder 

measurements are available, the loads produced by the 

customer load statistics and monthly kWh billing data 

can be scaled at each hour to match the feeder flow 

measurement. This then provides the variation in load 

needed to greatly improve the accuracy of the total feeder 

losses calculation. 

2.2. Fully Metered Loads (AMI) 

When matching feeder measurements, the total feeder 

flow is accurate but the actual distribution of the load is 

only as accurate as the customer load statistics. If the 

actual loads were known at each point of service, then the 

feeder measurement would not be needed (or would only 

be needed to help scale unmetered loads or to identify 

significant errors in the metered loads). This type of 

information is provided by advanced metering 

infrastructure (AMI). While the extent of AMI 

deployment has been increasing over the last several 

years, such detailed measurements are not available in 

much of the service territory around the world. 

Table 1 below shows the variations in amount and types 

of data required as well as the variation in amount of 

calculations required. The rows are listed in order of 

increasing accuracy which corresponds with  increasing 

 

data requirements and increasing computational cost. In 

this case, the customer load statistics method uses two 

daily curves per month (weekday and weekend), 

resulting in 576 time points (12 months x 2 day types per 

month x 24 hours per day type). 

Table 1 provides inspiration for another load modeling 

technique introduced below. Since greater accuracy is 

possible with greater measurements and increased 

analysis times, another row could be introduced between 

the customer load statistics and the customer load 

statistics scaled for feeder measurements: a row that uses 

the peak feeder flow as well as the monthly kWh 

consumption which also models time variation for all 

8760 hours of the year, not just for 576 hours per year. It 

is this new method to which we now turn. 

 

3. RANDOMIZED CUSTOMER CLASS LOAD 

STATISTICS METHODOLOGY 

When neither AMI measurements nor feeder flow 

measurements are available, or when feeder flow 

measurements are insufficient due to large load growth 

on the feeder, the planning engineer is left with only two 

sets of data to use in modeling the load: (1) an expected 

peak load for the whole feeder and (2) customer class 

load statistics and either actual or estimated monthly 

kWh consumption data. The load factor method makes 

use of the former but not the latter, with rather poor 

accuracy. The customer class load statistics method 

makes use of the latter but not the former with somewhat 

improved accuracy. Even greater accuracy is available to 

the engineer if both the feeder peak load can be used as 

well as the anticipated kWh consumption.Our proposal is 

to take the “typical” daily load curves calculated from the 

customer class load statistics and scale them randomly 

throughout the month such that the following two 

conditions are met: (1) the total consumption matches the 

provided kWh consumption forecasts and (2) that the 

peak load on the feeder matches the forecasted feeder 

peak. The feeder peak helps to put an upper bound on the 

randomized scaling. A third piece of data, the ratio of the 

average load to the minimum load, is used to set the lower 

bound on the randomized scaling. While this ratio is not 

as likely to be known for individual feeders, the utility 

Table 1. Comparison of Data Required For Each Methods 

 

Method Measurement Data Requirements Number of Time Points 

Analyzed for One Year 

Load Factor Peak Feeder Flow 1 

Customer Load 

Statistics 

Monthly kWh Consumption per Service 

Point 

576 

Customer Load 

Statistics 

Scaled for Feeder 

Measurements 

Hourly Feeder Flow Measurements + 

Monthly kWh Consumption per Service 

Point 

8760 

Power Flow with AMI 

Data 

Hourly Load Measurements at Every 

Service Point 

8760 
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will often have a rule-of-thumb number that may be used 

(for utilities involved in both the generation and 

distribution of electric energy, this ratio is part of 

planning their base load generation and thus likely has 

good data behind it). Even if the minimum-to-average 

load ratio is not chosen accurately, it will not prevent the 

model from achieving both objectives listed above. 

 
Fig. 2.  Scaled Residential Load Curves 

 

In Figure 1, the residential customer type has a minimum 

load point on the weekend and a maximum load point on 

the weekday. The three constraints listed above can be 

explained in terms of the scaled residential load curves 

shown in Figure 2. The upper bound of the scaling is 

determined by the average-to-peak ratio (B / A in Figure 

2) and the lower bound of the scaling is determined by 

the minimum-to-peak ratio (C / A in Figure 2). The 

average must be maintained so that the total consumption 

on the feeder matches the total kWh billed to the 

customers. The maximum scaling factor (SF) for the ith 

type of day can be calculated in terms of the average load 

curve (scaling factor of 1.0) using Equation 4. 

𝑆𝐹𝑀𝑎𝑥𝑖
=

𝐷𝑎𝑖𝑙𝑦𝐴𝑣𝑔𝑖

𝐷𝑎𝑖𝑙𝑦𝑃𝑒𝑎𝑘𝑖 
∗  

𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝑃𝑒𝑎𝑘

𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝐴𝑣𝑔
 (4) 

The minimum scaling factor can likewise be calculated 

using Equation 5. 

𝑆𝐹𝑀𝑖𝑛𝑖
=

𝐷𝑎𝑖𝑙𝑦𝐴𝑣𝑔𝑖

𝐷𝑎𝑖𝑙𝑦𝑀𝑖𝑛𝑖 
∗

  𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝑀𝑖𝑛

𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝐴𝑣𝑔
 (5) 

The curves in Figure 2 assume an average-to-peak ratio 

of 0.65 and a minimum-to-peak ratio of 0.4. Using these 

values, the scaling factors for each curve are calculated 

as shown in Table 2. 

The randomization function that satisfies these three 

constraints can be depicted as a cumulative distribution 

function which must pass through (0, SFmin), (0.5, 1.0) 

and (1.0, SFmax). These three points may be interpolated 

using Lagrange interpolation to provide the 

randomization functions, as shown in Figure 3. For each 

customer type, then, a distinct Lagrange interpolation 

function must be calculated. Note that, although the 

maximum scaling factor is larger for the weekend, the 

peak will still (on average) be on a weekday, since the 

weekday curve starts out higher. 

 
Fig. 3. Randomization Function produced by Lagrange 

Interpolation 

 

Since the load curve shape is to be maintained, all loads 

of a given type shall have the same scaling factor for the 

entire day; i.e., the entire daily curve gets scaled 28 to 31 

times a month, depending on the number of days in the 

month. Additionally, in order for the feeder peak and 

minimum to correspond to the monthly peak-to-average 

and minimum-to-peak ratios, and, in respect of the fact 

that loads are often temperature-dependent, the same 

random number must be supplied to each Lagrange 

interpolation function for each day of the month. Thus, 

all loads on the system will see their highest weekday on 

the same day of the month, and all loads on the system 

will see their highest weekend on the same day of the 

month. Since some loads peak on the weekdays and some 

loads peak on the weekend, the different load types will 

peak on one of two different days, so the scaling factors 

must be calculated based on the curve data for different 

types weighted based on the percent of load on the feeder 

allocated to a particular type of customer. 

 

4. SIMULATION RESULTS 

Table 3 below shows loss results for load factor 

calculation for 8 different feeders. As we discussed 

previously, loss calculation with load factor method is 

underestimated, so loss values are very lower than its 

original measurement values. Table 3 also provides extra 

Table 2. Scaling Factors For Each Curve 

 

Type of Day 𝐷𝑎𝑖𝑙𝑦𝐴𝑣𝑔

𝐷𝑎𝑖𝑙𝑦𝑃𝑒𝑎𝑘
 

𝐷𝑎𝑖𝑙𝑦𝐴𝑣𝑔

𝐷𝑎𝑖𝑙𝑦𝑀𝑖𝑛
 

𝑆𝐹𝑀𝑎𝑥 𝑆𝐹𝑀𝑖𝑛 

Weekday 0.793 1.245 1.220 0.766 

Weekend 0.817 1.294 1.257 0.796 
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information to calculate losses by using load factor 

method. 

Another way of calculation the losses is to get customer 

class statistics which basically dependent on accuracy of 

customer class curves. Table 4 shows detail calculation 

of losses by using customer class statistics method. 

Also Table 5 shows the actual measurement for losses for 

each feeder. Notice that losses calculated by load factor 

method and customer class statistic methods are under or 

overestimated with these methods. 

When we don’t have actual measurements or AMI data, 

system losses needs to be calculated by different method 

than load factor and customer class statistic method to be 

able to plan for future power systems more accurately. 

Table 6 shows the randomized load curve method results 

among with power flow results. It is interesting to see that 

Table 3. Load Factor Loss Calculation 

  Load Factor calculation         

Feeder# MaxKWFlow KWFlowSum KWFlowAvg 

Load 

Factor LossesKWMax LossesKW 

Feeder1 4496.15 1623715.19 2255.16 0.50 81.30 14725.74 

Feeder2 4312.54 2023898.59 2810.97 0.65 58.72 17961.45 

Feeder3 3751.95 1322135.87 1836.30 0.49 86.72 14956.37 

Feeder4 3381.83 1506666.53 2092.59 0.62 18.86 5199.40 

Feeder5 6815.34 2795443.59 3882.56 0.57 139.46 32586.05 

Feeder6 531.45 245696.83 341.25 0.64 2.95 875.96 

Feeder7 3754.92 1619877.46 2249.83 0.60 37.49 9690.08 

Feeder8 5623.38 2600546.54 3611.87 0.64 77.71 23082.48 

 

Table 4. Customer Class Curve Loss Calculation 

  

Customer Class Curve Loss  

Calculation     

Feeder # LossesKW KWFlow KVARFlow MaxKWFlow 

Feeder1 51209.86 2915378.20 627254.78 5847.75 

Feeder2 22764.78 1905225.87 1154151.19 3810.41 

Feeder3 17377.86 1491892.73 465625.82 2986.67 

Feeder4 7937.17 1657220.31 995658.61 3311.64 

Feeder5 54290.76 2650325.64 1603754.01 5293.32 

Feeder6 1899.71 312417.75 189837.58 624.63 

Feeder7 14785.36 1664536.00 924510.92 3324.75 

Feeder8 31064.30 2192025.61 1289755.67 4385.54 

 

Table 5. Actual Measurements For Losses 

  Measurements of losses     

Feeder # LossesKW KWFlow KVARFlow MaxKWFlow 

Feeder1 34005.36 1623715.19 -383872.48 4496.15 

Feeder2 24419.53 2023898.59 1206260.58 4312.54 

Feeder3 27513.36 1322135.87 -1603911.28 3751.95 

Feeder4 6807.19 1506666.53 894542.87 3381.83 

Feeder5 56435.99 2795443.59 1666101.43 6815.34 

Feeder6 1428.90 245696.83 145831.94 531.45 

Feeder7 14684.76 1619877.46 962173.18 3754.92 

Feeder8 32849.89 2600546.54 464311.18 5623.38 
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losses by calculated randomized load are between load 

factor method and customer class load curve method. 

Among these loss calculation technique, proposed 

technique provides the most accurate data when there is 

no measurement or AMI data. Table 7 below shows the 

accuracy comparison of three methods based on actual 

measurement values. 

As it is seen from Table 7, average accuracy with load 

factor method is 0.62 while accuracies are 1.01 and 1.06 

with randomized load curve and customer class load 

curve respectively. 

 

5. CONCLUSION 

When a utility needs to evaluate the impact of a design 

decision on the operating costs of a feeder, they must 

often incorporate the impact of the design on the cost of 

losses on the feeder. Historically, these losses have been 

calculated one of three ways: (1) using a peak load 

calculation and the load factor method, (2) using 

customer class statistics normalized for a month, season, 

or year, or (3) using customer class statistics together 

with feeder measurements to reflect the variation in load 

every hour of the year. Some utilities are beginning to 

have AMI data available which allows them to 

significantly reduce the uncertainty of the load. When 

AMI data is not available and either feeder measurements 

are not available or else the topology and loading of the 

feeder have changed so as to make the feeder 

measurements of little use, the utility needs another 

means of calculating the load and losses to evaluate their 

design decisions. In this paper, a novel method of 

calculating customer loads at every service location is 

presented. This method does not have the large 

measurement requirements of the more accurate 

methodologies but makes effective use of peak load 

measurement/estimation and customer class statistics to 

greatly improve the accuracy of the feeder loss 

calculation. In the eight feeders simulated, this novel 

method presented 37% improvement in loss calculation 

relative to using the load factor method and 4% 

improvement in loss calculation relative to using 

normalized customer load statistics. 
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