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1 Introduction

W. R. Hamilton invented quaternions in 1843. Firstly, W. B. V. Kandasamy introduced quaternion
rings over Z, in (Kandasamy, 2000). In (Aristidou & Demetre, 2012), (Miguel & Serodio, 2011), (Tan &
Sison, 2021) some properties of these rings were investigated by many authors. In (Akbiyik & Ersoy 2017),
cyclic codes over H3 were determined. Their generator polynomials were given, and their parameters were
obtained. Motivated by this work (Akbiyik & Ersoy 2017), we decided to study cyclic and A—constacyclic
codes over H,, and to obtain their applications to quantum codes.

The paper is organized as follows. In section 2, the structures of quaternion rings over Z, and some
properties are given. In section 3, the structure of a linear code over H,, is determined. In sections 4 and
5, the structures of cyclic and A-constacyclic codes over H, are obtained, respectively. Some examples
are given. In section 6, dual codes over H,, are investigated. In section 7, the parameters of quantum

codes from cyclic codes and A-constacyclic over H), are obtained. Some examples are given.

2 Preliminaries

In (Kandasamy, 2000), the non-commutative ring with p* elements H, = {a + bi + ¢j + dk|a,b,c,d €
Zyi? =32 =k*=p—1,ij = (p— 1)ji = k} were introduced by Kandasamy, where p is a prime and
Z,=1{0,1,...p—1}.

The sum and left(right) product operations were defined in (Akbiyik & Ersoy 2017) for Hs. Similarly,
they can be defined for H,, as follows:
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+ : H,xH,— H,
(z,m) = z+m= (a1 +a2) + (b1 —|—b2)i+ (Cl —|—Cg)j—|—(d1 —|—d1)k‘

x, : H,xH,— H,
(z,m) +—  zxrm = (a1az + (p — D)biba + (p — 1)cica + (p — 1)drda) +
(a1be + brags + c1da + (p — 1)dyea)i +
(ar1c2 + cras + diba + (p — 1)b1da)j +
(a1da + dyag + bica + (p — 1)eiba)k

*xr : Hp,xH,— H,
(z,m) = zxpm=(a1a2 + (p — Dbiba + (p — 1)crca + (p — 1)did2) +
(ar1bs + bras + (p — 1)erde + dyco)i +
(arc2 + crag + (p — 1)dibe + bid2)j +
(a1dz + dyag + (p — 1)bica + c1b2)k

where z = a; +bii +c1j +dik,m = az + bai + coj + dok € Hy,.

In this paper, we use the left product as an operation for the non commutative ring with unity and denote
* instead of *j,.

In (Miguel & Serodio, 2011), the structure of the quaternion ring over Z, was determined, where p is an
odd prime. It was constructed as an isomorphism between the ring H, and the ring of square matrices of
order two over the finite field Z,. Thanks to the relationship between the ring H, and the ring M5(Z,)
and by using the Theorem 3.1. in (Cheraghpour & Ghosseiri, 2019), it can be given the number of units,

zero divisors, idempotent elements of the ring H,, as follows:

Theorem 2.1. (Cheraghpour & Ghosseiri, 2019) The number of units in Hy is

U=pp-1)p° 1)

Theorem 2.2. (Cheraghpour & Ghosseiri, 2019) Let p be an odd prime number. Then, the number of zero
divisors in Hp is

Z=p’+p’—p-1
Theorem 2.3. (Cheraghpour & Ghosseiri, 2019) Let p be an odd prime number. The number of idempotent

elements in Hp is

I:p2+p+2

Theorem 2.4. (Aristidou € Demetre, 2012) If h = a+bi+cj+dk € H, is idempotent, then a = (p+1)/2,b* +
A+ d* = (p* —1)/4(mod p).

Example 2.5. For the idempotent element h = a + bi + ¢j + dk € Hz,a = 2,b* + ¢® + d*> = 2( mod 3).
For h € Hs,a = 3,b> + ¢ + d?> = 1( mod 5). For h € Hy,a = 4,b* + ¢ + d? = 5( mod 7).

There are (p? +p)/2 idempotent pairs such that they are orthogonal and their sum is 1. They are called
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central orthogonal idempotent pairs. If the idempotent element is h = a + bi + cj + dk € H,, where
a=(p+1)/2,b® +c®+ d?> = (p? — 1)/4(mod p), then its pair is a + (p — b)i + (p — ¢)j + (p — d)k.

Example 2.6. In Hs, there are 15 central orthogonal idempotent pairs. These are {3 + 2i + j + 4k,3 +
3i+4j+k},{3+4,3+4i},{3+4,3+45},{3+k,3+4k},{34+i+4j+2k,3+4i+7j+3k},{3+4i+2j+
k,34+i+3j+4k},{3+4i+54+2k,3+i+4j+3k},{3+2i+45j+k,3+3i+j+4k},{3+i+2j+4k,3+
4i+3j+k}, {3+i+j+2k3+4i+4j+3k}, {3+i+2j+k,3+4i+3j+4k},{3+2i+j+k,3+3i+45+
4k}, {3+i+j+3k,3+4i+4j+2k},{3+3i+7+k3+2i+4j+4k}, {3+i+35+k,3+4i+25+4k}.

Theorem 2.7. (Tan & Sison, 2021) Let H, be the ring of the quaternions over the finite field F,, where
q = p"(odd p). Then Hy is a semisimple ring with g + 1 proper left(resp. right) ideals and each proper left(resp.

right) ideal is principal, minimal and mazimal and has ¢ elements.
Result 2.8. The quaternion ring over Z, is a principal ideal ring. Moreover, it is not a finite chain ring.

Proposition 2.1. Let hy = (p + 1)/2 + bii + ¢1j + dik be an idempotent element in H, and hy =
(p+1)/2—b1i—c1j — dik be idempotent pair of hi, where p is an odd prime. Then every element h € H,
is uniquely written as h = hq * 21 + ho * 2o where 21,20 € Z, +1Z, (or Z, + jZ, or Z, + kZ,) depending
on the choice of central orthogonal idempotent pair {hy, ho}.

Proof. Let h = a + bi + cj + dk be an element in H,. Suppose that h = hy * 21 + hg * 22, where
z1 =e1+if1,20 = ex +ifs € Z, +iZ, depending on the choice of central orthogonal idempotent pairs
{h1,h2}. As {hy,hs} is the central orthogonal idempotent pair, then hs x hs = hs, hs x hy = 0, where
s,t = 1,2, s # t. By using them, we have hy * h = hy x z; and hg * h = hg * 29. From them, we
can obtain ey, ez, f1, fa € Z,, by solving these equations. For the uniqueness; For h € H),, assume that
the element A is written in two different ways as h = hy % 21 + ho * 29 = hy * my + ho * mo. From
this, we have hy * (21 + (p — 1)mq) = ha * ((p — 1)22 + mo). By multiplying hq, we have z; = mq, as

h1 % hy = hq, h1 * ho = 0. By multiplying ho, we have zo = mo, as hg *x hg = ha, ho x hy = 0.
The proof is similar to the others depending on the choice of central orthogonal idempotent pairs. O

For the different central orthogonal idempotent pairs, different elements z1, zo are obtained.

Example 2.9. In Hs, 3+ 2i + 35 + 4k € H; is uniquely written as 3+ 2i + 35 + 4k = (3 + 2i + j + 4k) %
2+ (34 3i+4j + k) x4 according to the pair{3 + 2i + j + 4k,3+3i+ 45+ k}. But 3+ 2i+ 35+ 4k € Hs
is uniquely written as 3+2i +3j +4k = 3+ 3i+j + k) * 2+ (3 + 2i + 45 + 4k) = (1 + 37) according to
the pair {3 +3i+j +k,3+ 2i + 45 + 4k}.

Proposition 2.2. Let hy = (p + 1)/2 + b1i + ¢1j + di1k be an idempotent element and hs be its pair.
If by # 0,¢c1 = 0,dy = 0, then H, can be decomposed into (Z, + jZ,) ® (Z, + jZ,) (or (Z, + kZ,) &
(Z, + kZ,)). f by = 0,¢1 # 0,d; = 0, then H, can be decomposed into (Z, + iZ,) & (Z, + iZ,) (or
(Zp+kZp)®(Zp+kZ,)). If by =0,¢1 =0,d; # 0, then H, can be decomposed into (Z,+i2,)®(Z,+1iZ),)
(or (Zp+jZ,) ® (Zp + jZ,)). In the other case, H, can be decomposed into any of them. Moreover,
H,isa Z,+1iZ, (or Z, + jZ, or Z, + kZ,)-right module depending on the choice of central orthogonal
idempotent pairs {hy, ho}.

In this paper, we will consider that H, is decomposed into (Z, + iZ,) ® (Zp + iZp). Similar things can
be done for the others.

Remark. If p = 3(mod 4), then 2 = —1 (mod p) has no solution. So z? + 1 € Z,[z] is irreducible.
Hence, Z,, +iZ, is a field.
Proposition 2.3. The field F is isomorphic to Z, + iZ, = Z,[z]/ < 2? + 1 >, for p = 3(mod 4).

Proof. Let f(x) be second degree primitive polynomial over F}, and w be primitive element of F)2, that
is f(w) = 0. For every second degree primitive polynomials f(x), by determining s,¢ € F, which satisfy
(sw+t)? = —1 (mod p), it is easily seen that the map ¢ from Z, +iZ, to F,2 with (i) = sw + ¢, or
(s~ — s71t) = w, is an isomorphism. O
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Example 2.10. For p = 7, there are ¢(7> — 1)/2 = 8 second degree primitive polynomials, where ¢ is
Euler function. They are w? + 6w + 3, w? + 2w + 5,w? + 3w + 5, w? + 5w + 3, w? + w + 3,w? + 2w +
3, w? 4+ 4w+ 5,w? + 5w + 5. The isomorphisms are ¥(i —3) = w,¥(5i — 1) = w, (i —5) = w,Y(3i +1) =
w, (i +3) =w,¥(3i— 1) =w, (i — 2) = w,¥(2i + 1) = w,respectively.

3 Linear codes over H,

We know that (Hj,)" is left (right) H,-module, where p is odd.

Definition 3.1. A left (right) linear code C of length n over H,, is a left (right)H,-submodule.

Every codeword c in such a left (right)code C is just an n-tuple of the form ¢ = (co, ..., c,—1) € H," and
can be represented by a polynomial in H),[x]-as follows

c=(Coy s Cp1) & c(x) = co + 17 + ...Cp_13" 1 € Hpx]

In Akbiyik and Ersoy (2017), the Gray map was defined in Hjz. Similarly, it can be given in H,,, where
p =3 (mod 4) as follows,

O Hy s (Zy+iZ) @ (2, +iZ,)
a — Q(a) =(21,22)

where o = hq * 21 + ha * 2. The map is linear. It is also generalized to H,".

The Gray weight of an element « is defined as

wg (@) = wa (P(z1),9(22))

where wy is Hamming weight. The Gray weight of codeword u is wg(u) = Y ;- ; we(w;). The minimum
Gray distance of a code C' is
da(C) = min{wg(u)u € C}.

Proposition 3.1. The map ; is an isometry from (H,", Gray distance) to ((Z, + iZ,)*", Hamming
distance).

Theorem 3.2. Let C be an (n, A,dc) linear code over H,, where n, A and dg are the code length, the number
of codewords and the minimum Gray distance of C, respectively. Then Q1(C) is a (2n, A,dc = du) linear code

over Fz.

Otherwise, the Gray map is defined in H,, as follows;

Q : H,—(Z,)*
a = Q(a)=(m(z1),7(22))

where o = hy * 21 + ha * 2. The map is linear. It is also generalized to H,". The weight of an element

« 1s defined as

wg(a) = wg(m(21), 7(22))

where wy is Hamming weight and the map 7 is from the ring Z, + iZ, to Zp2 by a; + ib1 — (a1,b1).
The Gray weight of codeword u is wg(u) = Y., we(u;). The minimum Gray distance of a code C is

de(C) = min{wg(u)|u € C}.
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Proposition 3.2. The map 2 is an isometry from (H,", Gray distance) to ((Z,)*", Hamming distance).

Theorem 3.3. Let C be an (n, A,dc) linear code over H,, where n, A and dg are the code length, the number
of codewords and the minimum Gray distance of C, respectively. Then Q2(C) is a (4n, A,dg = dn) linear code

over Zy.

The left linear code over H, with length 7 is represented by
C=h1*C1 D ho*xCy

where C1,Cs are linear codes over Fj,» with length n.

The right linear code over H),, with length n is represented by
C:Cl*hl@cg*hg

where C1, Cy are linear codes over Fp,» with length n.

The following considers that the linear code C is left. Similarly, all can made as the right linear code.

4 Cyeclic codes over H,

In this section, the structure of cyclic codes over H,, is given, where p is an odd prime.

A cyclic shift o acts on H," as

O'(Co, cery Cn—l) = (Cn—h CQy ey Cn_g)

A left (right) linear code C over H,, of length n is said to be left(right) cyclic code if it is invariant under
the cyclic shift. i.e.o(C) = C.

Using the polynomial representation of codewords in H,"™ in Hp[z], we see that for a codeword ¢ €
H,",0(c) corresponds to zc(x) in Hylz]/ < z™ —1 >. A subset C of H," is a left (right) cyclic
code of length n over H, if and only if its polynomial representation is a left(right) ideal of the ring
Hylz]/ <a™—1>.

As H, is a principal ideal ring, so is Hy[z]/ < 2™ — 1 >.

Theorem 4.1. Let C = hy * C1 & ha * C2 be a code over Hy,, where p = 3(mod 4). Then C is a cyclic code over
H, of length n if and only if C1,C2 are cyclic codes of length n over F2.

Proof. Let C be a cyclic code and & = (2q, ..., Zn—1) € C1,¥ = (Yo, ---s Yn—1) € Co such that c¢; = hy*xs+
hoxys, for s = 0,...,n—1. 0(c) = hyxo(x)+hoxo(y) = hi*(Tp—1,T0, -y Tn—2)+ho*x(Yn—-1, Y0, -, Yyn—2) € C
for ¢ = (co, ...,cn—1) € C. So C1,Cy are cyclic codes over Fj:.

Conversely, let ¢ = (co,...,cn—1) € C, where ¢s = hy *x x5 + hg x ys, for s = 0,1,...,n — 1. Since
C1,Cy are cyclic codes over Fp2, for = (xo,,,,%n-1),¥ = (Yo,--»Yn—1) € Fp2", we have o(z) =

(xn—lvaa "'71'n—2) S Clv J(y) = (yn—hy()a
weyYn—2) € Cy. Hence o(c) = (h1 * Tp_1 + ha * Yn_1,h1 * o + ho * Yo, oo, N1 * Tp_o + ho * yp_o) =
hy * (Zp—1, %0, ..., Tn—2) + 2 * (Yn—1, Yo, .., yn—2) € C. Hence, C is a cyclic code of length n over H,. [

Theorem 4.2. Let C; =< gi(xz) > be a cyclic code of length n over F,2 with parameters (n,M;,d;), where
gi(2)|z" —1 fori=1,2 and p = 3(mod 4). Then C =< g(z) > is a cyclic code over Hy with parameters (n, M, d),
where |C| = M = M1 Ms,d = dr(C) = min{di,d2}, g(x) = h1 * g1(x) + ha * g2() and g(z)|z™ — 1.

If not p = 3(mod 4), we can say:

Theorem 4.3. Let C = h1 % C1 @ ha * Ca be a code over Hy,. Then C' is a cyclic code over Hy of length n if and
only if C1,Cs are cyclic codes of length n over the ring Z, +iZ, = Zy[x]/ < x* +1 >.
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Example 4.4. Let p= 3,9 (1 +i) = w and w? = w + 1. Let
Cr=(a"+22° +22° + (1+w)z+1) = (2" + 22° + 22° + 2ix + 1)

Cy= (2 +w’s® + (1+w)z+1) = (2® + (2+2i) 2 + 2z + 1)

be cyclic codes over Z3 + iZ3 with length 20. Then, C} is a cyclic code with parameters [20, 16, 3] and
Cy is a cyclic code over Z3 + iZ3 with parameters [20,17,3]. If we choose {2+ j + 2k,24+2j + k} as a

central orthogonal idempotent pair, then

. <(2+j—|—2k:)>k(x4—|—2x3+2x2+2i96+1)+>
(2+2j + k) * (2% + (2 + 2i) 2% + 2iz + 1)
(24 +2k) 2" + (j +2k) 2 + (2 + i + 2j + 2k) 2® + 26z + j + 2k)

is a (20, 933, 3) cyclic code over Hs.

Example 4.5. Let p = 7,% (i —3) = w and w? = w +4. Let C; = Cy = (g1 (x)), where g; (z) =
284+ (4 + 4i) 27 + 2028 + (5 +4) 25+ (4 + 3i) 2* + (6 — 4) 23 + (4 + 3i) 2% + (i — 3) 2+ be cyclic codes over
Z7 + 1Z7 with length 16. Then, C is a cyclic code over Z7 + iZ7 with parameters [16,8,9]. Also, it is
an MDS code. If we choose {4 + 3i +4j + k,4 + 4i + 3j + 6k} as a central orthogonal idempotent pair,
then C = ((443i+4j + k) * g1 (x) + (4 + 4i 4+ 3j — k) = g2 (x))is a (16,49'%,9) cyclic code over Hy.

Example 4.6. Let p = 11,7 (3i + 2) = w and w? = 4w + 9. Let
Cy = (27 + 32" + 62" 4 102° + 42® + 5z + 10)

Cy = (2" + 72° + 52° + T2 + 62° + 62 + 62 + 10)

be cyclic codes over Z1; + iZ1; with length 43. Then, C; and C5 are cyclic codes over Zy1 + 1211 with
parameters [43,36,5]. If we choose {6 + 3i + 8j — k,6 + 8i + 35 + k} as a central orthogonal idempotent

pair, then
. < 2"+ (94+i—j+Tk)a+ (44+5i+ 65+ 2k)2® + (1 — 3i + 35 + k) z* >
+8+i—j+Tk)a*+ (5+5i+6j+2k)x? + (—=3i+3j+k)z—1
is a (43,12172,5) cyclic code over Hyg.

o 28 4+ w9727 4wl 4 wde® 4wyt '
Let p = 11,n = 17. Similarly, for C; = Cy = , Cis a
w4+ wta? 4w 4+ 1

(17, 12118, 9) cyclic code over Hy.

5 - Constacyclic codes over H),

In this section, the structures of A-constacyclic codes over H,, are investigated where p = 3(mod 4) and
the unit A which satisfies A x h,, = h,. % A, for all r =1, 2.

A X-constacyclic shift v acts on H," as
7(607 ey Cn—l) = ()\Cn—la €Oy -eeey cn—2)
A left (right) linear code C over H), of length n is said to be left(right)\—consta cyclic code if it is
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invariant under the A-constacyclic shift, where X is a unit in H,. i.ey(C) = C. Using the polynomial
representation of codewords in H," in H,[x], we see that for a codeword ¢ € H,",~(c) correspond to
zc(z) in Hylz]/ < 2™ — A >, where A is a unit in H),.

A subset C of Hp" is a left (right) A-constacyclic code of length n over H,, if and only if its polynomial
representation is an left(right) ideal of the ring H,[z]/ < 2™ — A >.

As H, is a principal ideal ring, so is Hp[z]/ < 2™ — X >.

Theorem 5.1. Let C = hy xC1 @ ha x Cs be a code over Hy and A = h1 A1+ ha * A2 be a unit in Hyp. If C is a
A-constacyclic code over H), of length n ,then C1,C2 are A1, A2-constacyclic codes of length n over Zp+iZ, = F2,
respectively.

Proof. Let z = (xg,....,xn—1) € C1 and y = (Yo, -.-,Yn—1) € Cs. Since C be a A = hy * A\ + ho * Aa-
constacyclic code over H,, of length n, for every ¢ = (co, ..., cn—1) = (h1 * o + ho * Yo, ..., b1 * Tp_1 + ho *
yn—l) S C, we have ((hl */\1+h2*>\2)*(h1 *Tn—1 —|—h2*yn_1), hl *I0+h2*y07 T hl *In_g—i-hg*yn_g) eC.
Therefore we get (hy % Axy—1 4+ ho % Ayp—_1, b1 * 2o+ ha * Yo, ..., h1 % Tpy—a + ho * yp_2) = (h1 * \yTp_1 + hao *
Aoyn—1, hi*x0+ho*yo, ..., hi ¥ T2+ ho*yn_2) = hi ¥ (MTn_1,20, ..., Tn_2) +ho* (A2¥Yn—1,Y0, s Yn—2) €
C = hy x C1 @ hy * Co. From this, we get (1, Cy are Aq, Ag-constacylic codes over Iz, respectively. [
Example 5.2. Let {h1,ho} = {3 +4,3+4i},A =i and p = 5. Since C is a A-constacyclic code over Hj,
we get Cp,Cs are 3, 2-constacyclic codes over Fbs.

Remark. The converse of the theorem in the above is not true generally. Let p = 3. Although 2 + ¢ and
142 are units in Z3 +iZs and i+j+k = (2+i+2k)* (1 +2i)+ (24+2i+ k) % (2), and i + j + k is not

a unit in Hs.
Depending on A, A2 choice, if A\ = hy * Ay + hg * Az is a unit in H,,, then the converse of theorem is true.

Theorem 5.3. For A1, X2, let A\ = h1 * A1 + ha x A2 be a unit in H,. If C1,C2 are A1, Aa-constacyclic codes of
length n over Zp +1iZ, = F2 respectively, then C' is a A = h1 * A1 + ha % Aa-constacyclic code over Hy of length n.
Proof. Let C1,C> be Ay, Ag-constacyclic codes of length n over Z, + iZ, = Fj,: respectively. So
(MZp-1,Z0,...,Tn—2) € Cq, for every (zq,...,2n—1) € C1 and (AM1Yn—1,%0, -, Yn—2) € Ca, for every
(Y0, -y Yn—1) € Co. For every (cg,...,cn-1) = (h1 * g + ha * Yo, ..., b1 * Zpu_1 + ha * yp_1) € C, we have
(A (hy*mp_1+hoxyn_1),hi*xo+ha*yo,....;hixTpn_o+hoxyn_2) = (h1* Az 1 +ho* Ay 1, b1 x 20 +
ho* Yo, ..y h1 % T o +ho*Yn_2) = (h1x M1 +ha* Aoy 1, h1 x 2o +ha* Yo, ..., h1 ¥ Ty o +ho*Yp_2) =
h1k (M Zpn—1, %0y ey Tn—2) Fha% (A2Un—1,Y0, -, Yn—2) € C' = h1xC1 B hoxCy. Therefore C' is A-constacyclic
code over H,,. |

Proposition 5.1. Let C; =< g;(x) > be \;-constacyclic codes over Fj2 such that g;(x)|z™ —X;, dg(C;) =
d; for i = 1,2. So C =< g(z) > is A = h1 * A1 + ha * Ag-constacyclic code over H, of length n,with
|C| = M = |C4||Cs] and dg(C) = min{dy,da}, where g(x) = hy * g1(z) + ha * g2(x) and g(z)|z™ — A

Example 5.4. Let p =3, Ay = Ay = 2.

x’ =2

(z+1) (2° +w’2® +wz +1) (2 + w'2? + w2 + 1)
= 91(x)g2(x) gs () € Fy [7]

Let C; = (g3 (x)), C2 = (g1 (z) g3 (z)) be a cyclic codes over Z3 + iZ3 with length 7. Then, C; and
Cy are 2-constacyclic codes over Z3 + iZ3 with parameters [7,4,4], [7,3,5], respectively. Also, they are
MDS codes. If we choose {2+ j + k,2 + 25 + 2k} as a central orthogonal idempotent pair, then C is a
2-constacyclic code over Hs with parameters (7, 97, 4).

Example 5.5. Let p = 7, Ay = Ay = 6, ¥ (i —3) = w and w? = w+4. Let C; = (z* + 327 - 1),
Cy = <x4 + (1 —1i) 22 +i> be a cyclic codes over Z; + iZ7; with length 16. Then, C; and Cs are 6-
constacyclic codes over Z7 + iZ; with parameters [16,12,3]. If we choose {4+ j + 2k,4 — j + 5k} as a
central orthogonal idempotent pair, then C is a 6-constacyclic code over Hr with parameters (16,4974, 3).
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Let p=7, A1 = Ay = 3,n = 32. Similarly, C is a (32, 4932, 5) 3-constacyclic code over Hy.

Example 5.6. Let p = 11,9 (3i + 2) = w and w? = 4w + 9. Let

Cp = Cy = <x12 + w0l 426210 1 4 S0y 4 w6> be 4-constacyclic codes over Zy, + iZ1; with
length 28. Then, C is a 4-constacyclic code over Z1; + iZ1; with parameters [28,16,8]. If we choose
{6 +3i+8j — k,6 + 8i + 3j + k} as a central orthogonal idempotent pair, then C is a 4-constacyclic code
over Hy; with parameters (28, 12132, 8).

6 Dual codes over H,

For any v = (v1,..,v), w = (w1, Wy, .., wy,) € H,", where vg = hy % v50 + ho * V51, Ws = A1 % ws0 + ho *

Ws,1,8 = 1,2,...,n, the quaternionic Euclidean inner product of v, w is defined as follows,

<v,w >= sz * Wg.
s=1

For any v = (v1,..,vn), w = (w1, ws,..,w,) € Hp", the quaternionic Hermitian inner product of v, w is
defined as follows,

<v,w >Hg= sz * Wy

s=1

where h = a + (p — 1)bi + (p — 1)cj + (p — 1)dk is conjugate of h = a + bi + cj + dk € H,.
For C in H,", the dual of C

L(C)={ve H,"| <v,e>=0,for all ce C}

R(C)={ve H,"| < c,v>=0,for all c e C}

Similarly, the dual of C' can be defined for quaternionic Hermitian inner product.

For the code C over H,, L(C) is a left linear code, R(C) is a right linear code.

As Z, is a Frobenious ring, by using Theorem 3.1 in (Tan & Sison, 2021), it is easily seen that H, is a
Frobenious ring. Therefore, the following results about the duals of the codes over H,, can be written by
using the same results in (Dougherty & Andre, 2016).

A left linear code C' is defined to be self-orthogonal if C' C L(C) and self dual if C = L(C).

Lemma 6.1. If C is a left linear code over Hy, then |R(C)||C| = |Hp|". If C is a right linear code, then
ILONIC] = [Hp|™

Since 7y = y.T, for any z,y € H,, then L(C) = R(C) = C*. So we use the notation C* as a dual of C.

Theorem 6.2. The left linear code C is a self-orthogonal over Hy if and only if C1and Cs are all self-orthogonal

codes over Fz.

Proof. Clearly, C is self-orthogonal over H,, if Cy and C are all self-orthogonal over Fj2. On the other
hand, let C be a self-orthogonal code over H,, and for any element c € C, we have ¢ = hy * ¢1 + ha * cg,
where ¢; € C; and cp € Cs. Since C is a self orthogonal, it follows that ¢ = hy * c12 + ha x> =0 . It
means that ¢;2 = ¢32 = 0. Thus, ¢; € C’ll and ¢y € Cj . Therefore, C7 and Cy are all self-orthogonal
codes over Fjpe. |

Theorem 6.3. Let C be a left linear code of length n over H,. If C is a self-orthogonal, so is Q1(C).

Proof. It is enough tho show that the map 2 preserves the orthogonality, that is < Q;(cp), Q1(c1) >=0
when < cg,c1 >=0. Let t = hy * x1 + hg * 2,7 = hy xy1 + ho x yo € H,,, where x1,%2,91,y2 € Fp2. By
the quaternionic Euclidean inner product of ¢ and r, we get

<t,r >=hy *xx1y1 + ho *x2y2 =0
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since hy + ho = 1, we have x1y; + x2y2 = 0, for every central idempotent pair. In this case, it follows
that < Q1(t), Q1(r) >= x1y1 + z2y2 = 0, which completes the proof. O

Proposition 6.1. Let C' = hy * C1 @ hg * C3 be a left linear code of length n over H,. Then

Ct =hy % Cy @ hyxCy.

7 Quantum codes obtained from Cyclic and M-Constacyclic Codes

In this section, the parameters of the quantum codes will first be obtained from the left cyclic code over
H,.

Theorem 7.1. (CSS Construction) (Calderbank et al., 1998) Let C1 = [n,ki,d1], and C2 = [n, k2, d2], be
linear codes over GF(q) with Co C Cy . Then there exists a quantum error-correcting code C' = [[n, k1 —
ko, min{di,ds }]]4, where d5 denotes the minimum Hamming distance of the dual code C5 of Ca. Further, if

Ci = Ca, then there exists a quantum error-correcting code C = [[n, 2k1 — n, d1]].

Lemma 7.2. ((Calderbank et al., 1998), Theorem 13) A cyclic code C over a finite field with generator poly-

nomial g(x) contains its dual code if and only if

’

z" — 1 = 0(modg(x)g (z))

where g’(az) is the reciprocal polynomial of g(x).
Theorem 7.3. Let C = hy x C1 & ha x C be a left cyclic code of length n over H, and C =< g(x) >, where
g(z) = h1x g1(z) + h2 x g2(z), C1 =< g1(x) >,Ce = g2(x). Then L(C) C C iff

2" —=1=0 (modgs (a:)g; (:r))

for s =1,2.

Proof. Let 2" —1=0 (modgs(x)g;(x)) for s = 1,2. From Lemma 7.2, we have Ci- C C1,C3 C Cs.

This shows that h,C} C hCs, for s = 1,2. We have L(C) = hy  Cf @ ho % C3- C hy % C1 @ hy % Cy = C,
by using Proposition 6.1.
Conversely, if L(C') C C, then we have h; x* Cf @D ho * CQL Chy*C1L® hy xCy. So C’j C (g for s=1,2.

So from Lemma 7.2, we get 2" —1 =0 (modgs(x)g;(x)), for s =1,2. O

Theorem 7.4. Let C = hy x C1 & ha * Ca be a cyclic code of length n over Hy, and let the parameters of code
Q1(C) be [2n,k,dc], where dg is the minimum Gray distance of C. If L(C) C C , then there exists a quantum

error correcting code with parameter [[2n,2k — 2n,dg]] over F2.

We give the following lemma to obtain the parameters of quantum codes from A-constacyclic codes over
H,, where A\ = —1.

Lemma 7.5. A negacyclic code C over a finite field with generator polynomial g(z) contains its dual code if and
only if

’

z" + 1= 0(modg(z)g (z))
where gl(w) is the reciprocal polynomial of g(x).

Theorem 7.6. Let C = hy x C1 @ ha x Ca be a left (p — 1)-constacyclic code (negacyclic) of length n over H,
and C =< g(x) >, where g(x) = h1 * g1(z) + ha % g2(z), C1 =< g1(z) >,C2 =< ga2(x) >. Then L(C) C C iff

2" +1=0 (modgs(w)g; (I))
fors=1,2.

Proof. It is made as proof of the Theorem 7.3. [
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Theorem 7.7. Let C = hy * C1 & ha * Ca be a left (p — 1)-constacyclic code of length n over H, and let the
parameters of the code Q1(C) be [2n,k,dc], where dg is the minimum Gray distance of C. If L(C) C C, then

there exists a quantum error correcting code with parameter [[2n,2k — 2n,dg]] over F2.

Example 7.8. Let p=7, ¢ (i — 3) = w and w? = w+4. Let C; = Cy = (g(z)) = (2® — 2% + 42 — 1) be
a cyclic codes over Z; + iZ; with length 6. Obviously 2% — 1 is divisible by g(x)g'(:v). Hence, we have
C C C+. We know that C is a cyclic code of length 6 with minimum Gray distance dg = 4. Thus, we

obtain a quantum code with parameters [[12,0, 4]].

Example 7.9. Let p = 11,9 (3i + 2) = w and w? = 4w + 9. Let

C1 = (gi(2)) = (27 + 52° + 52° + 5zt + 42% + 622 + 42 + 10), Co = (ga(2)) = (27 + 72® + 52° +72* +
622 4 622 + 6x + 10 be cyclic codes over Zy; + iZy; with length 43. Obviously z*3 — 1 is divisible by
gi(x)g;(z), for i = 1,2. Hence, we have C C C. We know that C is a cyclic code of length 43 with

minimum Gray distance dg = 5.Thus, we obtain a quantum code with parameters [[86, 58, 5]].

Example 7.10. Let p = 3,9 (1 +4) = w and w? = w + 1. Let

C1 =Cy = (g(x)) = (o™ +2® + 2% + 22* + 2® + 2% 4+ 22 + 1) be a negacyclic codes over Z3 + iZ3 with
length 23. Obviously 2% + 1 is divisible by g(m)g/ (r). Hence, we have C C C*+. We know that C is a
negacyclic code of length 23 with minimum Gray distance dg = 8. Thus, we obtain a quantum code with

parameters [[46, 2, 8]].

Example 7.11. Let p = 7,7 (i — 3) = w and w? = w + 4. Let

C1 = (g1(2)) = (a' + w2 + .. + w?'z + 6) be cyclic code and Co = (g2(x)) = (2™ + w3z +.. +
w?'z + 1 be negacyclic codes over Z; + iZ; with length 23. Obviously 223 — 1 is divisible by g; (x)gll(x),
2% + 1 is divisible by go()gq(z). Hence, we have C' C C. We know that C is an i-constacyclic code
of length 23 with minimum Gray distance dg = 11.Thus, we obtain a quantum code with parameters
[[46, 2, 11]].

8 Conclusion

In this paper, the structures of linear codes over a family of the Quaternion rings over Z,, are determined.
The structures of cyclic and A-constacyclic codes over H), are investigated, where A is a unit in H), for

p = 3(mod 4). Their applications to quantum codes are obtained.
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