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In this paper, the structures of linear codes over the quaternion rings with
coefficient from Zp, Hp = Zp +Zpi+Zpj +Zpk are given, where p is an
odd prime, i2 = j2 = k2 = p− 1 and ij = (p− 1)ji = k. The quaternion
rings over Zp decompose into two parts form Zp + iZp(or Zp + jZp or
Zp + kZp) with idempotent coefficients, depending on selecting a central
orthogonal idempotent pair. The structures of cyclic and λ-constacyclic
codes over Hp are determined, where p ≡ 3(mod 4), p is an odd prime, λ
is a unit in Hp and some examples are given. The duals of linear codes
over Hp are investigated. The parameters of quantum codes are obtained
from cyclic codes and λ-constacyclic over Hp.

1 Introduction

W. R. Hamilton invented quaternions in 1843. Firstly, W. B. V. Kandasamy introduced quaternion
rings over Zp in (Kandasamy, 2000). In (Aristidou & Demetre, 2012), (Miguel & Serodio, 2011), (Tan &
Sison, 2021) some properties of these rings were investigated by many authors. In (Akbiyik & Ersoy 2017),
cyclic codes over H3 were determined. Their generator polynomials were given, and their parameters were
obtained. Motivated by this work (Akbiyik & Ersoy 2017), we decided to study cyclic and λ−constacyclic
codes over Hp and to obtain their applications to quantum codes.
The paper is organized as follows. In section 2, the structures of quaternion rings over Zp and some
properties are given. In section 3, the structure of a linear code over Hp is determined. In sections 4 and
5, the structures of cyclic and λ-constacyclic codes over Hp are obtained, respectively. Some examples
are given. In section 6, dual codes over Hp are investigated. In section 7, the parameters of quantum
codes from cyclic codes and λ-constacyclic over Hp are obtained. Some examples are given.

2 Preliminaries

In (Kandasamy, 2000), the non-commutative ring with p4 elements Hp = {a + bi + cj + dk|a, b, c, d ∈
Zp, i

2 = j2 = k2 = p − 1, ij = (p − 1)ji = k} were introduced by Kandasamy, where p is a prime and
Zp = {0, 1, ..., p− 1}.
The sum and left(right) product operations were defined in (Akbiyik & Ersoy 2017) for H3. Similarly,
they can be defined for Hp as follows:

https://dergipark.org.tr/tr/pub/jum
https://orcid.org/0000-0001-8687-032X
https://orcid.org/0000-0002-8133-9836
https://dergipark.org.tr/tr/pub/jum


Abdullah Dertli, Yasemin Cengellenmis

+ : Hp ×Hp −→ Hp

(z,m) 7→ z +m = (a1 + a2) + (b1 + b2)i+ (c1 + c2)j + (d1 + d1)k

∗L : Hp ×Hp −→ Hp

(z,m) 7→ z∗Lm = (a1a2 + (p− 1)b1b2 + (p− 1)c1c2 + (p− 1)d1d2) +

(a1b2 + b1a2 + c1d2 + (p− 1)d1c2)i+

(a1c2 + c1a2 + d1b2 + (p− 1)b1d2)j +

(a1d2 + d1a2 + b1c2 + (p− 1)c1b2)k

∗R : Hp ×Hp −→ Hp

(z,m) 7→ z∗Rm = (a1a2 + (p− 1)b1b2 + (p− 1)c1c2 + (p− 1)d1d2) +

(a1b2 + b1a2 + (p− 1)c1d2 + d1c2)i+

(a1c2 + c1a2 + (p− 1)d1b2 + b1d2)j +

(a1d2 + d1a2 + (p− 1)b1c2 + c1b2)k

where z = a1 + b1i+ c1j + d1k,m = a2 + b2i+ c2j + d2k ∈ Hp.
In this paper, we use the left product as an operation for the non commutative ring with unity and denote
∗ instead of ∗L.
In (Miguel & Serodio, 2011), the structure of the quaternion ring over Zp was determined, where p is an
odd prime. It was constructed as an isomorphism between the ring Hp and the ring of square matrices of
order two over the finite field Zp. Thanks to the relationship between the ring Hp and the ring M2(Zp)

and by using the Theorem 3.1. in (Cheraghpour & Ghosseiri, 2019), it can be given the number of units,
zero divisors, idempotent elements of the ring Hp as follows:

Theorem 2.1. (Cheraghpour & Ghosseiri, 2019) The number of units in Hp is

U = p(p− 1)(p2 − 1)

Theorem 2.2. (Cheraghpour & Ghosseiri, 2019) Let p be an odd prime number. Then, the number of zero
divisors in Hp is

Z = p3 + p2 − p− 1

Theorem 2.3. (Cheraghpour & Ghosseiri, 2019) Let p be an odd prime number. The number of idempotent
elements in Hp is

I = p2 + p+ 2

Theorem 2.4. (Aristidou & Demetre, 2012) If h = a+ bi+ cj+dk ∈ Hp is idempotent, then a = (p+1)/2, b2+

c2 + d2 ≡ (p2 − 1)/4(mod p).

Example 2.5. For the idempotent element h = a+ bi+ cj + dk ∈ H3, a = 2, b2 + c2 + d2 ≡ 2( mod 3).
For h ∈ H5, a = 3, b2 + c2 + d2 ≡ 1( mod 5). For h ∈ H7, a = 4, b2 + c2 + d2 ≡ 5( mod 7).

There are (p2 + p)/2 idempotent pairs such that they are orthogonal and their sum is 1. They are called
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central orthogonal idempotent pairs. If the idempotent element is h = a + bi + cj + dk ∈ Hp, where
a = (p+ 1)/2, b2 + c2 + d2 ≡ (p2 − 1)/4(mod p), then its pair is a+ (p− b)i+ (p− c)j + (p− d)k.

Example 2.6. In H5, there are 15 central orthogonal idempotent pairs. These are {3 + 2i+ j + 4k, 3 +

3i+4j+ k}, {3+ i, 3+ 4i}, {3+ j, 3+ 4j}, {3+ k, 3+ 4k}, {3+ i+4j+2k, 3+ 4i+ j+3k}, {3+ 4i+2j+

k, 3+ i+3j+4k}, {3+ 4i+ j+2k, 3+ i+4j+3k}, {3+ 2i+4j+ k, 3+ 3i+ j+4k}, {3+ i+2j+4k, 3+

4i+3j+k}, {3+ i+ j+2k, 3+4i+4j+3k}, {3+ i+2j+k, 3+4i+3j+4k}, {3+2i+ j+k, 3+3i+4j+

4k}, {3+ i+ j +3k, 3+ 4i+4j +2k}, {3+ 3i+ j + k, 3+ 2i+4j +4k}, {3+ i+3j + k, 3+ 4i+2j +4k}.

Theorem 2.7. (Tan & Sison, 2021) Let Hq be the ring of the quaternions over the finite field Fq, where
q = pr(odd p). Then Hq is a semisimple ring with q + 1 proper left(resp. right) ideals and each proper left(resp.
right) ideal is principal, minimal and maximal and has q2 elements.

Result 2.8. The quaternion ring over Zp is a principal ideal ring. Moreover, it is not a finite chain ring.

Proposition 2.1. Let h1 = (p + 1)/2 + b1i + c1j + d1k be an idempotent element in Hp and h2 =

(p+1)/2− b1i−c1j−d1k be idempotent pair of h1, where p is an odd prime. Then every element h ∈ Hp

is uniquely written as h = h1 ∗ z1 + h2 ∗ z2 where z1, z2 ∈ Zp + iZp (or Zp + jZp or Zp + kZp) depending
on the choice of central orthogonal idempotent pair {h1, h2}.

Proof. Let h = a + bi + cj + dk be an element in Hp. Suppose that h = h1 ∗ z1 + h2 ∗ z2, where
z1 = e1 + if1, z2 = e2 + if2 ∈ Zp + iZp depending on the choice of central orthogonal idempotent pairs
{h1, h2}. As {h1, h2} is the central orthogonal idempotent pair, then hs ∗ hs = hs, hs ∗ ht = 0, where
s, t = 1, 2, s ̸= t. By using them, we have h1 ∗ h = h1 ∗ z1 and h2 ∗ h = h2 ∗ z2. From them, we
can obtain e1, e2, f1, f2 ∈ Zp, by solving these equations. For the uniqueness; For h ∈ Hp, assume that
the element h is written in two different ways as h = h1 ∗ z1 + h2 ∗ z2 = h1 ∗ m1 + h2 ∗ m2. From
this, we have h1 ∗ (z1 + (p − 1)m1) = h2 ∗ ((p − 1)z2 +m2). By multiplying h1, we have z1 = m1, as
h1 ∗ h1 = h1, h1 ∗ h2 = 0. By multiplying h2, we have z2 = m2, as h2 ∗ h2 = h2, h2 ∗ h1 = 0.
The proof is similar to the others depending on the choice of central orthogonal idempotent pairs.

For the different central orthogonal idempotent pairs, different elements z1, z2 are obtained.

Example 2.9. In H5, 3 + 2i+ 3j + 4k ∈ H5 is uniquely written as 3 + 2i+ 3j + 4k = (3 + 2i+ j + 4k) ∗
2+ (3+ 3i+4j + k) ∗ i according to the pair{3+ 2i+ j +4k, 3+ 3i+4j + k}. But 3+ 2i+3j +4k ∈ H5

is uniquely written as 3 + 2i+ 3j + 4k = (3 + 3i+ j + k) ∗ 2 + (3 + 2i+ 4j + 4k) ∗ (1 + 3i) according to
the pair {3 + 3i+ j + k, 3 + 2i+ 4j + 4k}.

Proposition 2.2. Let h1 = (p + 1)/2 + b1i + c1j + d1k be an idempotent element and h2 be its pair.
If b1 ̸= 0, c1 = 0, d1 = 0, then Hp can be decomposed into (Zp + jZp) ⊕ (Zp + jZp) (or (Zp + kZp) ⊕
(Zp + kZp)). If b1 = 0, c1 ̸= 0, d1 = 0, then Hp can be decomposed into (Zp + iZp) ⊕ (Zp + iZp) (or
(Zp+kZp)⊕(Zp+kZp)). If b1 = 0, c1 = 0, d1 ̸= 0, then Hp can be decomposed into (Zp+iZp)⊕(Zp+iZp)

(or (Zp + jZp) ⊕ (Zp + jZp)). In the other case, Hp can be decomposed into any of them. Moreover,
Hp is a Zp + iZp (or Zp + jZp or Zp + kZp)-right module depending on the choice of central orthogonal
idempotent pairs {h1, h2}.

In this paper, we will consider that Hp is decomposed into (Zp + iZp) ⊕ (Zp + iZp). Similar things can
be done for the others.

Remark. If p ≡ 3(mod 4), then x2 ≡ −1 (mod p) has no solution. So x2 + 1 ∈ Zp[x] is irreducible.
Hence, Zp + iZp is a field.

Proposition 2.3. The field Fp2 is isomorphic to Zp + iZp
∼= Zp[x]/ < x2 + 1 >, for p ≡ 3(mod 4).

Proof. Let f(x) be second degree primitive polynomial over Fp and w be primitive element of Fp2 , that
is f(w) = 0. For every second degree primitive polynomials f(x), by determining s, t ∈ Fp which satisfy
(sw + t)2 ≡ −1 (mod p), it is easily seen that the map ψ from Zp + iZp to Fp2 with ψ(i) = sw + t, or
ψ(s−1i− s−1t) = w, is an isomorphism.
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Example 2.10. For p = 7, there are ϕ(72 − 1)/2 = 8 second degree primitive polynomials, where ϕ is
Euler function. They are w2 + 6w + 3, w2 + 2w + 5, w2 + 3w + 5, w2 + 5w + 3, w2 + w + 3, w2 + 2w +

3, w2 +4w+5, w2 +5w+5. The isomorphisms are ψ(i− 3) = w,ψ(5i− 1) = w,ψ(i− 5) = w,ψ(3i+1) =

w,ψ(i+ 3) = w,ψ(3i− 1) = w,ψ(i− 2) = w,ψ(2i+ 1) = w,respectively.

3 Linear codes over Hp

We know that (Hp)
n is left (right) Hp-module, where p is odd.

Definition 3.1. A left (right) linear code C of length n over Hp is a left (right)Hp-submodule.

Every codeword c in such a left (right)code C is just an n-tuple of the form c = (c0, ..., cn−1) ∈ Hp
n and

can be represented by a polynomial in Hp[x]-as follows

c = (c0, ..., cn−1)←→ c(x) = c0 + c1x+ ...cn−1x
n−1 ∈ Hp[x]

In Akbiyik and Ersoy (2017), the Gray map was defined in H3. Similarly, it can be given in Hp, where
p ≡ 3 (mod 4) as follows,

Ω1 : Hp −→ (Zp + iZp)⊕ (Zp + iZp)

α 7→ Ω1(α) = (z1, z2)

where α = h1 ∗ z1 + h2 ∗ z2. The map is linear. It is also generalized to Hp
n.

The Gray weight of an element α is defined as

wG(α) = wH(ψ(z1), ψ(z2))

where wH is Hamming weight. The Gray weight of codeword u is wG(u) =
∑n

i=1 wG(ui). The minimum
Gray distance of a code C is

dG(C) = min{wG(u)|u ∈ C}.

Proposition 3.1. The map Ω1 is an isometry from (Hp
n, Gray distance) to ((Zp + iZp)

2n, Hamming
distance).

Theorem 3.2. Let C be an (n,A, dG) linear code over Hp, where n,A and dG are the code length, the number
of codewords and the minimum Gray distance of C, respectively. Then Ω1(C) is a (2n,A, dG = dH) linear code
over Fp2 .

Otherwise, the Gray map is defined in Hp, as follows;

Ω2 : Hp −→ (Zp)
4

α 7→ Ω2(α) = (π(z1), π(z2))

where α = h1 ∗ z1 + h2 ∗ z2. The map is linear. It is also generalized to Hp
n. The weight of an element

α is defined as
wG(α) = wH(π(z1), π(z2))

where wH is Hamming weight and the map π is from the ring Zp + iZp to Zp
2 by a1 + ib1 7→ (a1, b1).

The Gray weight of codeword u is wG(u) =
∑n

i=1 wG(ui). The minimum Gray distance of a code C is

dG(C) = min{wG(u)|u ∈ C}.
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Proposition 3.2. The map Ω2 is an isometry from (Hp
n, Gray distance) to ((Zp)

4n, Hamming distance).

Theorem 3.3. Let C be an (n,A, dG) linear code over Hp, where n,A and dG are the code length, the number
of codewords and the minimum Gray distance of C, respectively. Then Ω2(C) is a (4n,A, dG = dH) linear code
over Zp.

The left linear code over Hp with length n is represented by

C = h1 ∗ C1 ⊕ h2 ∗ C2

where C1, C2 are linear codes over Fp2 with length n.
The right linear code over Hp with length n is represented by

C = C1 ∗ h1 ⊕ C2 ∗ h2

where C1, C2 are linear codes over Fp2 with length n.
The following considers that the linear code C is left. Similarly, all can made as the right linear code.

4 Cyclic codes over Hp

In this section, the structure of cyclic codes over Hp is given, where p is an odd prime.
A cyclic shift σ acts on Hp

n as

σ(c0, ..., cn−1) = (cn−1, c0, ..., cn−2)

A left (right) linear code C over Hp of length n is said to be left(right) cyclic code if it is invariant under
the cyclic shift. i.e.σ(C) = C.
Using the polynomial representation of codewords in Hp

n in Hp[x], we see that for a codeword c ∈
Hp

n, σ(c) corresponds to xc(x) in Hp[x]/ < xn − 1 >. A subset C of Hp
n is a left (right) cyclic

code of length n over Hp if and only if its polynomial representation is a left(right) ideal of the ring
Hp[x]/ < xn − 1 >.
As Hp is a principal ideal ring, so is Hp[x]/ < xn − 1 >.

Theorem 4.1. Let C = h1 ∗C1 ⊕ h2 ∗C2 be a code over Hp, where p ≡ 3(mod 4). Then C is a cyclic code over
Hp of length n if and only if C1, C2 are cyclic codes of length n over Fp2 .

Proof. Let C be a cyclic code and x = (x0, ..., xn−1) ∈ C1, y = (y0, ..., yn−1) ∈ C2 such that cs = h1∗xs+
h2∗ys, for s = 0, ..., n−1. σ(c) = h1∗σ(x)+h2∗σ(y) = h1∗(xn−1, x0, ..., xn−2)+h2∗(yn−1, y0, ..., yn−2) ∈ C
for c = (c0, ..., cn−1) ∈ C. So C1, C2 are cyclic codes over Fp2 .
Conversely, let c = (c0, ..., cn−1) ∈ C, where cs = h1 ∗ xs + h2 ∗ ys, for s = 0, 1, ..., n − 1. Since
C1, C2 are cyclic codes over Fp2 , for x = (x0, , , ., xn−1), y = (y0, ..., yn−1) ∈ Fp2

n, we have σ(x) =
(xn−1, x0, ..., xn−2) ∈ C1, σ(y) = (yn−1, y0,
..., yn−2) ∈ C2. Hence σ(c) = (h1 ∗ xn−1 + h2 ∗ yn−1, h1 ∗ x0 + h2 ∗ y0, ...., h1 ∗ xn−2 + h2 ∗ yn−2) =
h1 ∗ (xn−1, x0, ..., xn−2) + h2 ∗ (yn−1, y0, ..., yn−2) ∈ C. Hence, C is a cyclic code of length n over Hp.

Theorem 4.2. Let Ci =< gi(x) > be a cyclic code of length n over Fp2 with parameters (n,Mi, di), where
gi(x)|xn−1 for i = 1, 2 and p ≡ 3(mod 4). Then C =< g(x) > is a cyclic code over Hp with parameters (n,M, d),
where |C| = M = M1M2, d = dL(C) = min{d1, d2}, g(x) = h1 ∗ g1(x) + h2 ∗ g2(x) and g(x)|xn − 1.

If not p ≡ 3(mod 4), we can say:

Theorem 4.3. Let C = h1 ∗C1 ⊕ h2 ∗C2 be a code over Hp. Then C is a cyclic code over Hp of length n if and
only if C1, C2 are cyclic codes of length n over the ring Zp + iZp

∼= Zp[x]/ < x2 + 1 >.
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Example 4.4. Let p = 3, ψ (1 + i) = w and w2 = w + 1. Let

C1 =
〈
x4 + 2x3 + 2x2 + (1 + w)x+ 1

〉
=

〈
x4 + 2x3 + 2x2 + 2ix+ 1

〉
C2 =

〈
x3 + w5x2 + (1 + w)x+ 1

〉
=

〈
x3 + (2 + 2i)x2 + 2ix+ 1

〉
be cyclic codes over Z3 + iZ3 with length 20. Then, C1 is a cyclic code with parameters [20, 16, 3] and
C2 is a cyclic code over Z3 + iZ3 with parameters [20, 17, 3]. If we choose {2 + j + 2k, 2 + 2j + k} as a
central orthogonal idempotent pair, then

C =

〈
(2 + j + 2k) ∗

(
x4 + 2x3 + 2x2 + 2ix+ 1

)
+

(2 + 2j + k) ∗
(
x3 + (2 + 2i)x2 + 2ix+ 1

)
〉

=
〈
(2 + j + 2k)x4 + (j + 2k)x3 + (2 + i+ 2j + 2k)x2 + 2ix+ j + 2k

〉
is a

(
20, 933, 3

)
cyclic code over H3.

Example 4.5. Let p = 7, ψ (i− 3) = w and w2 = w + 4. Let C1 = C2 = ⟨g1 (x)⟩, where g1 (x) =

x8+(4 + 4i)x7+2ix6+(5 + i)x5+(4 + 3i)x4+(6− i)x3+(4 + 3i)x2+(i− 3)x+ i be cyclic codes over
Z7 + iZ7 with length 16. Then, C1 is a cyclic code over Z7 + iZ7 with parameters [16, 8, 9]. Also, it is
an MDS code. If we choose {4 + 3i+ 4j + k, 4 + 4i+ 3j + 6k} as a central orthogonal idempotent pair,
then C = ⟨(4 + 3i+ 4j + k) ∗ g1 (x) + (4 + 4i+ 3j − k) ∗ g2 (x)⟩is a

(
16, 4916, 9

)
cyclic code over H7.

Example 4.6. Let p = 11, ψ (3i+ 2) = w and w2 = 4w + 9. Let

C1 =
〈
x7 + 3x5 + 6x4 + 10x3 + 4x2 + 5x+ 10

〉
C2 =

〈
x7 + 7x6 + 5x5 + 7x4 + 6x3 + 6x2 + 6x+ 10

〉
be cyclic codes over Z11 + iZ11 with length 43. Then, C1 and C2 are cyclic codes over Z11 + iZ11 with
parameters [43, 36, 5]. If we choose {6 + 3i+ 8j − k, 6 + 8i+ 3j + k} as a central orthogonal idempotent
pair, then

C =

〈
x7 + (9 + i− j + 7k)x6 + (4 + 5i+ 6j + 2k)x5 + (1− 3i+ 3j + k)x4

+(8 + i− j + 7k)x3 + (5 + 5i+ 6j + 2k)x2 + (−3i+ 3j + k)x− 1

〉

is a
(
43, 12172, 5

)
cyclic code over H11.

Let p = 11, n = 17. Similarly, for C1 = C2 =

〈
x8 + w97x7 + w41x6 + w3x5 + w46x4

+w3x3 + w41x2 + w97x+ 1

〉
, C is a(

17, 12118, 9
)

cyclic code over H11.

5 λ- Constacyclic codes over Hp

In this section, the structures of λ-constacyclic codes over Hp are investigated where p ≡ 3(mod 4) and
the unit λ which satisfies λ ∗ hr = hr ∗ λ, for all r = 1, 2.
A λ-constacyclic shift γ acts on Hp

n as

γ(c0, ..., cn−1) = (λcn−1, c0, ...., cn−2)

A left (right) linear code C over Hp of length n is said to be left(right)λ−consta cyclic code if it is
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invariant under the λ-constacyclic shift, where λ is a unit in Hp. i.e.γ(C) = C. Using the polynomial
representation of codewords in Hp

n in Hp[x], we see that for a codeword c ∈ Hp
n, γ(c) correspond to

xc(x) in Hp[x]/ < xn − λ >, where λ is a unit in Hp.
A subset C of Hp

n is a left (right) λ-constacyclic code of length n over Hp if and only if its polynomial
representation is an left(right) ideal of the ring Hp[x]/ < xn − λ >.
As Hp is a principal ideal ring, so is Hp[x]/ < xn − λ >.

Theorem 5.1. Let C = h1 ∗C1 ⊕ h2 ∗C2 be a code over Hp and λ = h1 ∗ λ1 + h2 ∗ λ2 be a unit in Hp. If C is a
λ-constacyclic code over Hp of length n ,then C1, C2 are λ1, λ2-constacyclic codes of length n over Zp+ iZp

∼= Fp2 ,
respectively.

Proof. Let x = (x0, ..., xn−1) ∈ C1 and y = (y0, ..., yn−1) ∈ C2. Since C be a λ = h1 ∗ λ1 + h2 ∗ λ2-
constacyclic code over Hp of length n, for every c = (c0, ..., cn−1) = (h1 ∗ x0 + h2 ∗ y0, ..., h1 ∗ xn−1 + h2 ∗
yn−1) ∈ C, we have ((h1∗λ1+h2∗λ2)∗(h1∗xn−1+h2∗yn−1), h1∗x0+h2∗y0, ..., h1∗xn−2+h2∗yn−2) ∈ C.
Therefore we get (h1 ∗λxn−1+h2 ∗λyn−1, h1 ∗x0+h2 ∗y0, ..., h1 ∗xn−2+h2 ∗yn−2) = (h1 ∗λ1xn−1+h2 ∗
λ2yn−1, h1∗x0+h2∗y0, ..., h1∗xn−2+h2∗yn−2) = h1∗(λ1xn−1, x0, ..., xn−2)+h2∗(λ2yn−1, y0, ..., yn−2) ∈
C = h1 ∗ C1 ⊕ h2 ∗ C2. From this, we get C1, C2 are λ1, λ2-constacylic codes over Fp2 , respectively.

Example 5.2. Let {h1, h2} = {3 + i, 3 + 4i},λ = i and p = 5. Since C is a λ-constacyclic code over H5,
we get C1, C2 are 3, 2-constacyclic codes over F25.

Remark. The converse of the theorem in the above is not true generally. Let p = 3. Although 2+ i and
1+ 2i are units in Z3 + iZ3 and i+ j + k = (2+ i+2k) ∗ (1 + 2i) + (2+ 2i+ k) ∗ (2), and i+ j + k is not
a unit in H3.

Depending on λ1, λ2 choice, if λ = h1 ∗ λ1 + h2 ∗ λ2 is a unit in Hp, then the converse of theorem is true.

Theorem 5.3. For λ1, λ2, let λ = h1 ∗ λ1 + h2 ∗ λ2 be a unit in Hp. If C1, C2 are λ1, λ2-constacyclic codes of
length n over Zp + iZp

∼= Fp2 respectively, then C is a λ = h1 ∗λ1 +h2 ∗λ2-constacyclic code over Hp of length n.

Proof. Let C1, C2 be λ1, λ2-constacyclic codes of length n over Zp + iZp
∼= Fp2 respectively. So

(λ1xn−1, x0, ..., xn−2) ∈ C1, for every (x0, ..., xn−1) ∈ C1 and (λ1yn−1, y0, ..., yn−2) ∈ C2, for every
(y0, ..., yn−1) ∈ C2. For every (c0, ..., cn−1) = (h1 ∗ x0 + h2 ∗ y0, ..., h1 ∗ xn−1 + h2 ∗ yn−1) ∈ C, we have
(λ∗ (h1 ∗xn−1+h2 ∗yn−1), h1 ∗x0+h2 ∗y0, ..., h1 ∗xn−2+h2 ∗yn−2) = (h1 ∗λxn−1+h2 ∗λyn−1, h1 ∗x0+
h2 ∗y0, ..., h1 ∗xn−2+h2 ∗yn−2) = (h1 ∗λ1xn−1+h2 ∗λ2yn−1, h1 ∗x0+h2 ∗y0, ..., h1 ∗xn−2+h2 ∗yn−2) =
h1∗(λ1xn−1, x0, ..., xn−2)+h2∗(λ2yn−1, y0, ..., yn−2) ∈ C = h1∗C1⊕h2∗C2. Therefore C is λ-constacyclic
code over Hp.

Proposition 5.1. Let Ci =< gi(x) > be λi-constacyclic codes over Fp2 such that gi(x)|xn−λi, dH(Ci) =

di for i = 1, 2. So C =< g(x) > is λ = h1 ∗ λ1 + h2 ∗ λ2-constacyclic code over Hp of length n,with
|C| =M = |C1||C2| and dG(C) = min{d1, d2}, where g(x) = h1 ∗ g1(x) + h2 ∗ g2(x) and g(x)|xn − λ.

Example 5.4. Let p = 3, λ1 = λ2 = 2.

x7 − 2 = (x+ 1)
(
x3 + w5x2 + w7x+ 1

) (
x3 + w7x2 + w5x+ 1

)
= g1 (x) g2 (x) g3 (x) ∈ F9 [x]

Let C1 = ⟨g3 (x)⟩, C2 = ⟨g1 (x) g3 (x)⟩ be a cyclic codes over Z3 + iZ3 with length 7. Then, C1 and
C2 are 2-constacyclic codes over Z3 + iZ3 with parameters [7, 4, 4], [7, 3, 5], respectively. Also, they are
MDS codes. If we choose {2 + j + k, 2 + 2j + 2k} as a central orthogonal idempotent pair, then C is a
2-constacyclic code over H3 with parameters

(
7, 97, 4

)
.

Example 5.5. Let p = 7, λ1 = λ2 = 6, ψ (i− 3) = w and w2 = w + 4. Let C1 =
〈
x4 + 3x2 − 1

〉
,

C2 =
〈
x4 + (1− i)x2 + i

〉
be a cyclic codes over Z7 + iZ7 with length 16. Then, C1 and C2 are 6-

constacyclic codes over Z7 + iZ7 with parameters [16, 12, 3]. If we choose {4 + j + 2k, 4− j + 5k} as a
central orthogonal idempotent pair, then C is a 6-constacyclic code over H7 with parameters

(
16, 4924, 3

)
.
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Let p = 7, λ1 = λ2 = 3, n = 32. Similarly, C is a
(
32, 4932, 5

)
3-constacyclic code over H7.

Example 5.6. Let p = 11, ψ (3i+ 2) = w and w2 = 4w + 9. Let
C1 = C2 =

〈
x12 + w10x11 + w26x10 + ...+ w56x+ w6

〉
be 4-constacyclic codes over Z11 + iZ11 with

length 28. Then, C1 is a 4-constacyclic code over Z11 + iZ11 with parameters [28, 16, 8]. If we choose
{6 + 3i+ 8j − k, 6 + 8i+ 3j + k} as a central orthogonal idempotent pair, then C is a 4-constacyclic code
over H11 with parameters

(
28, 12132, 8

)
.

6 Dual codes over Hp

For any v = (v1, .., vn), w = (w1, w2, .., wn) ∈ Hp
n, where vs = h1 ∗ vs,0 + h2 ∗ vs,1, ws = h1 ∗ ws,0 + h2 ∗

ws,1, s = 1, 2, ..., n, the quaternionic Euclidean inner product of v, w is defined as follows,

< v,w >=

n∑
s=1

vs ∗ ws.

For any v = (v1, .., vn), w = (w1, w2, .., wn) ∈ Hp
n, the quaternionic Hermitian inner product of v, w is

defined as follows,

< v,w >H=

n∑
s=1

vs ∗ ws

where h = a+ (p− 1)bi+ (p− 1)cj + (p− 1)dk is conjugate of h = a+ bi+ cj + dk ∈ Hp.
For C in Hp

n, the dual of C

L(C) = {v ∈ Hp
n| < v, c >= 0, for all c ∈ C}

R(C) = {v ∈ Hp
n| < c, v >= 0, for all c ∈ C}

Similarly, the dual of C can be defined for quaternionic Hermitian inner product.
For the code C over Hp, L(C) is a left linear code, R(C) is a right linear code.
As Zp is a Frobenious ring, by using Theorem 3.1 in (Tan & Sison, 2021), it is easily seen that Hp is a
Frobenious ring. Therefore, the following results about the duals of the codes over Hp can be written by
using the same results in (Dougherty & Andre, 2016).
A left linear code C is defined to be self-orthogonal if C ⊂ L(C) and self dual if C = L(C).

Lemma 6.1. If C is a left linear code over Hp, then |R(C)||C| = |Hp|n. If C is a right linear code, then
|L(C)||C| = |Hp|n.

Since xy = y.x, for any x, y ∈ Hp, then L(C) = R(C) = C⊥. So we use the notation C⊥ as a dual of C.

Theorem 6.2. The left linear code C is a self-orthogonal over Hp if and only if C1and C2 are all self-orthogonal
codes over Fp2 .

Proof. Clearly, C is self-orthogonal over Hp if C1 and C2 are all self-orthogonal over Fp2 . On the other
hand, let C be a self-orthogonal code over Hp and for any element c ∈ C, we have c = h1 ∗ c1 + h2 ∗ c2,
where c1 ∈ C1 and c2 ∈ C2. Since C is a self orthogonal, it follows that c2 = h1 ∗ c12 + h2 ∗ c22 = 0 . It
means that c12 = c2

2 = 0. Thus, c1 ∈ C⊥
1 and c2 ∈ C⊥

2 . Therefore, C1 and C2 are all self-orthogonal
codes over Fp2 .

Theorem 6.3. Let C be a left linear code of length n over Hp. If C is a self-orthogonal, so is Ω1(C).

Proof. It is enough tho show that the map Ω1 preserves the orthogonality, that is < Ω1(c0),Ω1(c1) >= 0
when < c0, c1 >= 0. Let t = h1 ∗ x1 + h2 ∗ x2, r = h1 ∗ y1 + h2 ∗ y2 ∈ Hp, where x1, x2, y1, y2 ∈ Fp2 . By
the quaternionic Euclidean inner product of t and r, we get

< t, r >= h1 ∗ x1y1 + h2 ∗ x2y2 = 0
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since h1 + h2 = 1, we have x1y1 + x2y2 = 0, for every central idempotent pair. In this case, it follows
that < Ω1(t),Ω1(r) >= x1y1 + x2y2 = 0, which completes the proof.

Proposition 6.1. Let C = h1 ∗ C1 ⊕ h2 ∗ C2 be a left linear code of length n over Hp. Then

C⊥ = h1 ∗ C⊥
1 ⊕ h2 ∗ C⊥

2 .

7 Quantum codes obtained from Cyclic and λ-Constacyclic Codes

In this section, the parameters of the quantum codes will first be obtained from the left cyclic code over
Hp.

Theorem 7.1. (CSS Construction) (Calderbank et al., 1998) Let C1 = [n, k1, d1]q and C2 = [n, k2, d2]q be
linear codes over GF(q) with C2 ⊆ C1 . Then there exists a quantum error-correcting code C = [[n, k1 −
k2,min{d1, d⊥2 }]]q, where d⊥2 denotes the minimum Hamming distance of the dual code C⊥

2 of C2. Further, if
C⊥

1 = C2, then there exists a quantum error-correcting code C = [[n, 2k1 − n, d1]].

Lemma 7.2. ((Calderbank et al., 1998), Theorem 13) A cyclic code C over a finite field with generator poly-
nomial g(x) contains its dual code if and only if

xn − 1 ≡ 0(modg(x)g
′
(x))

where g
′
(x) is the reciprocal polynomial of g(x).

Theorem 7.3. Let C = h1 ∗ C1 ⊕ h2 ∗ C2 be a left cyclic code of length n over Hp and C =< g(x) >, where
g(x) = h1 ∗ g1(x) + h2 ∗ g2(x), C1 =< g1(x) >,C2 = g2(x). Then L(C) ⊆ C iff

xn − 1 ≡ 0
(
modgs(x)g

′
s(x)

)
for s = 1, 2.

Proof. Let xn − 1 ≡ 0
(
modgs(x)g

′

s(x)
)

for s = 1, 2. From Lemma 7.2, we have C⊥
1 ⊆ C1, C

⊥
2 ⊆ C2.

This shows that hsC⊥
s ⊆ hsCs, for s = 1, 2. We have L(C) = h1 ∗C⊥

1 ⊕ h2 ∗C⊥
2 ⊆ h1 ∗C1⊕ h2 ∗C2 = C,

by using Proposition 6.1.
Conversely, if L(C) ⊆ C, then we have h1 ∗ C⊥

1 ⊕ h2 ∗ C⊥
2 ⊆ h1 ∗ C1 ⊕ h2 ∗ C2. So C⊥

s ⊆ Cs for s = 1, 2.
So from Lemma 7.2, we get xn − 1 ≡ 0

(
modgs(x)g

′

s(x)
)
, for s = 1, 2.

Theorem 7.4. Let C = h1 ∗ C1 ⊕ h2 ∗ C2 be a cyclic code of length n over Hp and let the parameters of code
Ω1(C) be [2n, k, dG], where dG is the minimum Gray distance of C. If L(C) ⊆ C , then there exists a quantum
error correcting code with parameter [[2n, 2k − 2n, dG]] over Fp2 .

We give the following lemma to obtain the parameters of quantum codes from λ-constacyclic codes over
Hp, where λ = −1.

Lemma 7.5. A negacyclic code C over a finite field with generator polynomial g(x) contains its dual code if and
only if

xn + 1 ≡ 0(modg(x)g
′
(x))

where g
′
(x) is the reciprocal polynomial of g(x).

Theorem 7.6. Let C = h1 ∗ C1 ⊕ h2 ∗ C2 be a left (p − 1)-constacyclic code (negacyclic) of length n over Hp

and C =< g(x) >, where g(x) = h1 ∗ g1(x) + h2 ∗ g2(x), C1 =< g1(x) >,C2 =< g2(x) >. Then L(C) ⊆ C iff

xn + 1 ≡ 0
(
modgs(x)g

′
s(x)

)
for s = 1, 2.

Proof. It is made as proof of the Theorem 7.3.
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Theorem 7.7. Let C = h1 ∗ C1 ⊕ h2 ∗ C2 be a left (p − 1)-constacyclic code of length n over Hp and let the
parameters of the code Ω1(C) be [2n, k, dG], where dG is the minimum Gray distance of C. If L(C) ⊆ C, then
there exists a quantum error correcting code with parameter [[2n, 2k − 2n, dG]] over Fp2 .

Example 7.8. Let p = 7, ψ (i− 3) = w and w2 = w+4. Let C1 = C2 = ⟨g(x)⟩ =
〈
x3 − x2 + 4x− 1

〉
be

a cyclic codes over Z7 + iZ7 with length 6. Obviously x6 − 1 is divisible by g(x)g
′
(x). Hence, we have

C ⊆ C⊥. We know that C is a cyclic code of length 6 with minimum Gray distance dG = 4. Thus, we
obtain a quantum code with parameters [[12, 0, 4]].

Example 7.9. Let p = 11, ψ (3i+ 2) = w and w2 = 4w + 9. Let
C1 = ⟨g1(x)⟩ =

〈
x7 + 5x6 + 5x5 + 5x4 + 4x3 + 6x2 + 4x+ 10

〉
, C2 = ⟨g2(x)⟩ =

〈
x7 + 7x6 + 5x5 +7x4 +

6x3 + 6x2 + 6x + 10 be cyclic codes over Z11 + iZ11 with length 43. Obviously x43 − 1 is divisible by
gi(x)g

′

i(x), for i = 1, 2. Hence, we have C ⊆ C⊥. We know that C is a cyclic code of length 43 with
minimum Gray distance dG = 5.Thus, we obtain a quantum code with parameters [[86, 58, 5]].

Example 7.10. Let p = 3, ψ (1 + i) = w and w2 = w + 1. Let
C1 = C2 = ⟨g(x)⟩ =

〈
x11 + x8 + x6 + 2x4 + x3 + x2 + 2x+ 1

〉
be a negacyclic codes over Z3 + iZ3 with

length 23. Obviously x23 + 1 is divisible by g(x)g
′
(x). Hence, we have C ⊆ C⊥. We know that C is a

negacyclic code of length 23 with minimum Gray distance dG = 8. Thus, we obtain a quantum code with
parameters [[46, 2, 8]].

Example 7.11. Let p = 7, ψ (i− 3) = w and w2 = w + 4. Let
C1 = ⟨g1(x)⟩ =

〈
x11 + w27x10 + ...+ w21x+ 6

〉
be cyclic code and C2 = ⟨g2(x)⟩ =

〈
x11 + w3x10 +... +

w21x+ 1 be negacyclic codes over Z7 + iZ7 with length 23. Obviously x23 − 1 is divisible by g1(x)g
′

1(x),
x23 + 1 is divisible by g2(x)g

′

2(x). Hence, we have C ⊆ C⊥. We know that C is an i-constacyclic code
of length 23 with minimum Gray distance dG = 11.Thus, we obtain a quantum code with parameters
[[46, 2, 11]].

8 Conclusion

In this paper, the structures of linear codes over a family of the Quaternion rings over Zp are determined.
The structures of cyclic and λ-constacyclic codes over Hp are investigated, where λ is a unit in Hp, for
p ≡ 3(mod 4). Their applications to quantum codes are obtained.
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