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Use of Chest X-ray Images and Artificial Intelligence Methods for 

Early Diagnosis of COVID-19 

Highlights 

❖ A deep learning models are proposed to classify chest X-ray images into COVID-19, Pneumonia, and Normal 

categories.  

❖ The proposed models ensure interpretability through confusion matrices and consistent evaluation metrics. 

❖ The findings are compared with existing studies in the literature to demonstrate the potential clinical 

relevance, architectural efficiency, and practical scalability of the proposed models. 

Graphical Abstract 

A comparative deep learning frameworks are developed for the classification of chest X-ray images into COVID-19, 

Normal, and Pneumonia categories. The 8 CNN models are evaluated, with MobileNet and VGG16 emerging as the 

most reliable and efficient solutions for clinical deployment. 

Figure. Proposed deep learning-based classification approach for covid-19  

Aim 

To build a reliable, efficient, and interpretable deep learning framework that enables early diagnosis and 

differentiation of COVID-19 using chest X-ray images. 

Design & Methodology 

Standard preprocessing is applied to chest X-ray images and 8 deep learning models are evaluated using common 

performance metrics. 

Originality 

A multi-class, multi-model framework is presented that emphasizes standardized preprocessing, comprehensive 

evaluation, and clinical adaptability. 

Findings 

MobileNet and VGG16 achieved the highest performance, particularly for COVID-19 and Pneumonia classes. 

Conclusion 

This study demonstrates that pre-trained deep learning models, such as MobileNet and VGG16, can achieve high 

diagnostic accuracy and computational efficiency in detecting COVID-19 from chest X-ray images. These findings 

support their feasibility for deployment in real-time and resource-constrained healthcare environments. Future 

research may explore ensemble learning, integration with clinical data, and transfer learning techniques to enhance 

generalizability and clinical applicability. 
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 ABSTRACT 

The COVID-19 pandemic has underscored the urgent need for rapid and accurate diagnostic tools to support early intervention and 

containment. While chest X-ray (CXR) imaging has emerged as a practical modality for COVID-19 detection, existing studies 

often focus on binary classification or rely on single-model evaluations without addressing class imbalance, generalizability, or 

multi-class diagnostic scenarios. This study proposes a novel, standardized deep learning-based framework that classifies CXR 

images into three clinically relevant categories: COVID-19, Normal, and Pneumonia. Unlike previous works, our approach 

comprehensively evaluates and compares the performance of eight prominent deep learning models—CNN, ResNet50, Xception, 

DenseNet, MobileNet, VGG16, ResNet152v2, and InceptionV3—using a preprocessed dataset. Key innovations include the use of 

a unified preprocessing pipeline, class-balancing strategy, and detailed model comparison based on a rich set of evaluation metrics 

(Accuracy, Precision, Recall, F1-Score, FPR, FNR, and Specificity). The results demonstrate that MobileNet and VGG16 offer 

high diagnostic performance with low computational overhead, making them ideal for deployment in resource-limited clinical 

settings. Our study's uniqueness lies in its multi-model, multi-class evaluation design, interpretability through confusion matrix 

analysis, and robust benchmarking against real-world challenges such as class imbalance. This positions the proposed framework 

as a reliable and scalable CAD tool to aid frontline healthcare providers in the early detection and differential diagnosis of COVID-

19 and other respiratory illnesses.   

Keywords: Covid-19 classification, vgg16, resnet, cnn, chest x-ray. 

COVID-19’un Erken Teşhisi için Göğüs Röntgeni 

Görüntülerinin ve Yapay Zeka Yöntemlerinin 

Kullanımı 

ÖZ 

COVID-19 pandemisi, hastalıklara erken müdahale edilmesini ve yayılımın kontrol edilmesi için hızlı ve doğru tanı araçlarının 

gerekliliğini güçlü bir biçimde ortaya koymuştur. Göğüs röntgeni görüntüleme, COVID-19 tespiti açısından pratik bir yöntem 

olarak öne çıkmaktadır. Mevcut çalışmalar çoğunlukla ikili sınıflandırmaya odaklanmakta ya da tek bir modelin değerlendirmesiyle 

sınırlı kalmaktadır. Bu durum sınıf dengesizliği, genellenebilirlik veya çok sınıflı tanı senaryoları gibi önemli faktörleri göz ardı 

edilmesine sebep olmaktadır. Bu çalışma, göğüs röntgeni görüntülerini klinik açıdan anlamlı üç kategoriye ayırabilen (COVID-19, 

Normal ve Zatürre) yeni ve standartlaştırılmış derin öğrenme tabanlı bir çerçeve önermektedir. Önceki çalışmalardan farklı olarak, 

önerilen yaklaşım önişlenmiş bir veri kümesi üzerinde CNN, ResNet50, Xception, DenseNet, MobileNet, VGG16, ResNet152v2 

ve InceptionV3 gibi önde gelen sekiz derin öğrenme modelinin performansını kapsamlı bir şekilde değerlendirmekte ve 

karşılaştırmaktadır. Çalışmanın temel yenilikleri arasında birleşik ön işleme süreci, sınıf dengesini sağlama stratejisi ve farklı 

değerlendirme ölçütleri kümesi (Doğruluk, Kesinlik, Duyarlılık, F1-Skoru, Yanlış Pozitif Oranı, Yanlış Negatif Oranı ve Özgüllük) 

durumlarına dayalı detaylı model karşılaştırması yer almaktadır. Elde edilen sonuçlar, MobileNet ve VGG16 modellerinin yüksek 

tanı başarımını düşük hesaplama maliyetiyle sunduğunu göstermektedir. Ayrıca bu modellerin kaynakları sınırlı klinik ortamlarda 

kullanım için ideal hale getirildiği vurgulanmaktadır. Çoklu model ve çoklu sınıf değerlendirme yapısı sunması, karmaşıklık 

matrisleri üzerinden yorumlanabilirlik sağlaması ve sınıf dengesizliği gibi gerçek dünya zorluklarına karşı bir kıyaslama sunması 

bu çalışmanın özgünlüğünü sağlayan ana maddelerdir. Bu özellkikleriyle önerilen çerçeve, COVID-19 ve diğer solunum yolu 

hastalıklarının erken tespiti ve ayırıcı tanısında ön saflarda görev yapan sağlık hizmeti sağlayıcılarına destek olacak, güvenilir ve 

ölçeklenebilir bir bilgisayar destekli tanı aracı olarak değerlendirilmektedir. 

Anahtar Kelimeler: Covid-19 sınıflandırılması, vgg16, resnet, cnn, göğüs röntgeni. 

 
1. INTRODUCTION 

COVID-19 was formally recognized as a global 

pandemic by the World Health Organization (WHO) on 

March 11, 2020, and it continues to persist due to its 

ongoing global transmission. Severe Acute Respiratory 

Syndrome (SARS), and Middle East Respiratory 

Syndrome (MERS) both zoonotic diseases transmitted by 

civets and camels, respectively, demonstrate greater 
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transmissibility yet a reduced fatality rate compared to 

the newly identified beta coronavirus, 2019-nCoV, which 

was discovered through the unbiased sequencing of 

patient samples [1,2]. When there are no limits between 

society and the natural world, new coronaviruses and 

diseases like SARS and MERS are more likely to appear. 

In the beginning, the absence of vaccination led to a rise 

in fatalities [3]. 

It was crucial to conduct study into a number of early 

spotting strategies to combat the COVID-19 outbreak [4]. 

There have been 6.49 million fatalities globally as of the 

WHO's most current statistics, with 30.581 in Pakistan 

and 104 million in the United States [5]. Today, Reverse 

Transcription Polymerase Chain Reaction (RT-PCR) is a 

technique that identifies viral RNA by analyzing samples 

collected via a nasopharyngeal swab. It is the gold 

standard for identifying coronavirus cases. The RT-PCR 

test's primary drawback, however, is its constrained 

sensitivity range, which makes it unsuitable for rapidly 

identifying positive instances [6].  

It may be possible to prevent the spread of a coronavirus 

outbreak by using molecular imaging to find it early [7]. 

It has been proven that methods for classifying COVID-

19 images mechanically often involving preprocessing, 

feature extraction, and selection perform more 

effectively than human methods [8]. As lung infections 

are a frequent complication of COVID-19, Computed 

Tomography (CT) scans can assist COVID-19 patients in 

locating organ harm and monitoring its development. 

Patients with COVID-19 may exhibit radiological 

imagery that is similar to those who have bacterial or 

viral pneumonia, such as pneumonia linked with SARS 

and MERS. Therefore, successfully distinguishing 

diseases through medical image analysis has become a 

difficult task that necessitates the assistance of medical 

staff in early disease detection and the quick isolation of 

infected patients [9]. 

A number of projects in medical image processing are 

concentrating on using Machine Learning (ML) methods 

to assist in the diagnosis of COVID-19 through the 

analysis of chest X-ray or CT scan images [10]. CT scans 

offer more comprehensive information, but they also 

have drawbacks, including limited accessibility, higher 

expense, lengthier acquisition time, and the requirement 

for trained radiologists [11]. The raw images are typically 

extracted and given to the ML technique for 

categorization along with manually created features like 

texture, shape, and point-based data [12]. Deep Learning 

(DL), however, has become an effective tool in the field 

of medical imaging [13,14]. DL needs a large quantity of 

data to build a model. The creation of recognition-based 

applications for voice recognition, object tracking, and 

medical imaging has been made easier by this technology 

[15,16]. 

Although additional research is needed to gain a 

comprehensive understanding of the epidemiological 

characteristics of COVID-19, the data we currently have 

indicates that 80% of patients have minor symptoms or 

are silent, while the remaining 20% have severe or 

critical conditions. 10% or so of patients who need to be 

hospitalized require admittance to an ICU for mechanical 

breathing. The mortality rate is said to be 2%, but some 

specialists believe it might actually be closer to 0.5%.  

Pneumonia, an inflammation of the pulmonary 

parenchyma responsible for gas transmission in the lung, 

can be brought on by COVID-19. Pneumonia is not a 

singular illness but rather a collection of infections 

brought on by numerous viruses, bacteria, or fungus [17]. 

The task at hand is to use intelligent methods to 

categorize X-ray images into numerous classifications, 

including COVID-19, normal, and viral pneumonia. 

Advanced ML algorithms and computer vision 

techniques must be used for this job in order to correctly 

pull pertinent characteristics from the X-ray images and 

categorize them into the appropriate categories. The 

identification of discriminative characteristics, handling 

the class imbalance, and creating an intelligible and 

robust categorization model maybe some of the 

challenges that come with the job of building such a 

model, considering the complexity and variability of X-

ray images. Swift identification and treatment of 

COVID-19 and other respiratory illness could greatly 

benefit from the use of such a model. 

The primary objective of this study is to develop an 

efficient and robust DL-based framework for the 

automated classification of chest X-ray (CXR) images 

into three distinct categories: COVID-19, normal, and 

viral pneumonia. This research aims to support early and 

accurate diagnosis of COVID-19 and related respiratory 

diseases, leveraging Convolutional Neural Networks 

(CNN) and different DL algorithms to enhance 

diagnostic precision, reduce reliance on manual 

interpretation, and accelerate clinical decision-making. 

To summarize the main contributions of this study: 

• To develop a comprehensive DL framework for 

the multi-class classification of chest X-ray 

images, aimed at distinguishing COVID-19 

from other lung conditions such as pneumonia 

and normal cases. 

• To implement and evaluate multiple pre-trained 

CNN architectures, fine-tuned on a curated and 

preprocessed dataset to enhance model 

performance and generalizability. 

• To introduce a standardized preprocessing 

pipeline involving image resizing, and 

normalization to improve data quality and 

minimize model bias. 

• To conduct extensive experiments assessing 

model performance using metrics such as 

Accuracy, Precision, Recall, and F1-Score, 

thereby offering comparative insights into the 

effectiveness of each architecture. 

 

 

 



 

 

2. RELATED WORKS 

For the purpose of detecting and categorizing COVID-19 

using CXR images, computer vision experts have created 

a variety of methods in the past [18,19]. However, while 

the majority of studies concentrated on conventional 

methods, a small number of scholars created novel DL 

models for the detection and recognition of coronavirus 

from CXR and CT images [20,21]. The paradigm 

described by Khan et al. [22], which used deep 

explainable Artificial Intelligence (AI) for coronavirus 

categorization from CXR images, is one illustration of a 

DL-based strategy. For the feature capture and training 

phases of this system, two DL models were used. The 

authors enhanced feature fusing using canonical 

correlation analysis and optimized merged features using 

a mix of whale-elephant herding and feature selection. 

On three openly accessible datasets, the authors got 

accuracies of 99.1%, 98.2%, and 96.7%, which were 

superior to the outcomes attained by earlier techniques. 

The optimization method used in this study, however, 

had a static cutoff value, which is a drawback that might 

be fixed in subsequent studies. 

Researchers in [23] proposed a CAD system for 

tuberculosis detection using chest X-rays by jointly 

addressing segmentation and classification tasks. They 

introduced TB-UNet for precise lung segmentation and 

TB-DenseNet for disease classification, achieving an F1-

score of 0.8988 and accuracy of 0.9510, respectively.  

The paradigm described by authors in  [24], which used 

CNN-LSTM for corona categorization, is another 

method for CXR image analysis. Modified 

EfficientNetB0 was used by authors in  [24] to create a 

new CNN-LSTM technique for deep feature extractions. 

The extracted features were combined using serial-based 

maximum value fusing methods, and the combined 

vector was then used to enhance moth flame feature 

selection. Three openly accessible databases were used in 

the research, which had accuracy rates of 93, 94.5, and 

98.5 percent consecutively. A limitation of this study was 

that the fusion procedure limited the vector capacity, and 

lengthened computation times. For the identification of 

CT scan images, authors in [25] presented a new branch 

model network that made use of CNN and 

transformations. They put into practice two models with 

branches one with CNN and the other with 

transformation-based branches. A comprehensive 

COVID-19 dataset was utilized for the analysis, and a bi-

directional approach was employed to integrate the 

features. The accuracy rate was 96.7%. The lack of 

sufficient characteristics and the insufficient patient 

information, however, limited this study. Using 2 chest 

CT images datasets, authors in [26] developed an 

effective CNN models for the identification of COVID-

19. The highest accuracy rates were obtained with 

EfficientNetB5 (97.59%, and 98.45%.). They used 

GradCam graphics to see the weights in their multi-layer 

CNN model. 

Researchers in [27] proposed a DL-based system to 

distinguish between normal and severe pneumonia cases 

using chest X-rays, addressing challenges such as visual 

similarity with other respiratory diseases and variability 

in image quality. They evaluated eight pre-trained 

models are ResNet50, ResNet152V2, DenseNet121, 

DenseNet201, Xception, VGG16, EfficientNet, and 

MobileNet on two large datasets. Among them, 

MobileNet achieved the highest accuracy, with 94.23% 

and 93.75% on the respective datasets. Hyperparameters 

such as batch size, epochs, and optimizers were fine-

tuned to identify the most effective model configuration. 

Using CXR images, authors in  [28] developed a multi-

classification technique for COVID-19. Features were 

obtained from the Global Average Pooling layer and used 

in a pre-trained XceptionNet model that was learned 

using transfer learning. The study used a three-class open 

source cohort with a 99.3% accuracy rate. This method's 

drawback was the insufficient number of images used in 

the chosen selection. 

There are studies using DL-based techniques to diagnose 

COVID-19 using medical images. A hosted cuckoo 

optimization method was used by authors in [29] to 

adjust hyperparameters and arrive at a precise diagnosis. 

CNN with Social Mimic Optimization (CNN-SMO), 

SVM classifier using Bayesian Optimization algorithm 

(SVM-BOA), and the proposed DBN+HO-COA 

approach were used in the study. The accuracy rates of 

these models are approximately 63%, 45% and 95%. In 

order to increase accuracy, authors in [30] created an 

automatic CNN-based system for binary and multiclass 

categorization of chest images. To facilitate the diagnosis 

of COVID-19 using CT images, authors in [31] created a 

new CNN model called CTnet-10, which obtained an 

accuracy of 82.1% for a two-class dataset and 94.52% for 

conventional DCNN networks. For the categorization of 

coronavirus illness from lung ultrasound images, authors 

in [32] demonstrated a multi-layer fusion method using 

convolutional connections, obtaining a 91.8% accuracy 

rate but with a large number of parameters. For the 

categorization of CXR images, authors in [33] created an 

innovative CNN architecture based on 22 layers and 

attained high accuracies of 99.1% for binary and 94.2% 

for multiclass datasets. 

In their research, authors in  [34] improved a DL network 

for COVID-19 diagnosis on a binary class dataset using 

the Gravitational Search Algorithm method, and they 

reported a 98% accuracy rate. Authors in [35]'s method 

for COVID-19 classification using medical CXR images 

was built on Generative Adversarial Networks (GAN), 

and it achieved an amazing accuracy of 99.78%. Authors 

in [36] introduced a GAN-based system for the automatic 

segmentation and detection of COVID-19 lung infections 

in CT-scan images, obtaining 98.10% classification 

accuracy and 81.11% dice coefficient accuracy. Using 

transfer learning and four distinct models, authors in [37] 

proposed using X-ray images as a tool for COVID-19 

detection. VGG16 and VGG19 performed better than the 

other two models, with a 99.3% success rate (accuracy) 



 

 

for their approach. However, the writers did not include 

any other respiratory illnesses; they only utilized 

COVID-19 and normal images from various databases. 

As a result, their system was unable to identify additional 

lung illnesses. A technique for identifying COVID-19 

infection using chest radiography images was put forth 

by authors in [38] using a model made up of nine 

Convolutional Layers (CL) and one completely 

connected layer. The model had an accuracy of 98.40% 

after being trained on multiclass datasets with three 

classes (COVID-19, normal, and pneumonia). A new 

DCNN model called COVIDXception-Net was created 

by authors in [39] for classifying COVID-19 illness using 

X-ray images. On four publicly accessible datasets, the 

system obtained 99.4% accuracy after the model was 

trained using Bayesian optimization. GRAD-CAM 

rendering was used for qualitative analysis. 

Researchers in [40] proposed a performance analysis of 

ResNet50, DenseNet121, and Inception-ResNet-v2 for 

COVID-19 detection using chest X-rays. DenseNet121 

achieved the highest internal accuracy at 96.71%, while 

Inception-ResNet-v2 reached 76.70% externally. To 

reduce performance drop across datasets, an ensemble 

method was introduced, improving accuracy to 97.38% 

(internal) and 81.18% (external). 

Researchers in [41] proposed a DL framework for 

COVID-19 detection and severity assessment using chest 

X-ray images. U-Net was employed for lung 

segmentation, achieving a high precision of 0.9924. In 

the classification task, the convolutional capsule network 

achieved true positive rates of 86% for COVID-19, 93% 

for pneumonia, and 85% for normal clases. For severity 

prediction, models including ResNet50, VGG-16, and 

DenseNet201 were utilized, with DenseNet201 

demonstrating the highest accuracy among them. The 

results, validated with 95% confidence intervals, 

demonstrate the framework's robustness for clinical 

deployment. 

Researchers in [42] proposed multiple DL models to 

detect pneumonia from chest X-ray images, focusing on 

accuracy, precision, recall, loss, and AUC scores. They 

evaluated Enhanced CNN, VGG-19, ResNet-50, and 

fine-tuned ResNet-50 using an expanded dataset of 5.863 

images from Kaggle. Results showed that Enhanced 

CNN achieved the highest accuracy at 92.4%, 

outperforming ResNet-50, which scored 82.8%.  

Researchers in [43] proposed two novel DL algorithms -

Dynamic Co-Occurrence Grey Level Matrix (DC-GLM) 

and Contextual Adaptation Multiscale Gabor Network 

(CAMSGNeT) - to improve COVID-19 detection in 

chest X-rays by addressing challenges such as 

interpretability, computational cost, and data 

dependency. DC-GLM captures key COVID-19 

indicators like ground-glass opacities and fibrosis by 

modeling texture patterns and spatial pixel correlations, 

while CAMSGNeT enhances fine feature extraction 

using a Contextual Adaptive Diffusion mechanism. 

These methods preserve important details such as air 

bronchograms and improve edge and texture recognition. 

Combined with a lightweight neural network and feature 

importance analysis, the approach achieved 98.27% and 

100% accuracy on two datasets, offering a highly 

interpretable and efficient solution. 

Researchers in this paper [44] proposed an automated 

pneumonia detection approach using chest X-ray images 

by integrating features from three optimized pre-trained 

CNN models with an XGBoost classifier. The method 

combines learned features through an ensemble strategy, 

with Bayesian optimization used to fine-tune 

hyperparameters and preserve essential layers. This 

integration achieved strong performance, with a 

classification accuracy of 99.15%, precision of 99.53%, 

sensitivity of 99.30%, and an AUC of 0.9972. 

A wide range of DL-based approaches has been proposed 

for the automatic detection of COVID-19 and similar 

respiratory diseases using CXR images. Beyond 

traditional methods, several studies have achieved high 

accuracy rates by employing specially designed CNN, 

CNN-LSTM, and DCNN architectures. In particular, 

techniques such as transfer learning, feature fusion, 

Bayesian optimization, and ensemble strategies have 

been utilized to enhance model performance, with some 

studies reporting accuracy and AUC values exceeding 

99%. However, certain models still exhibit limitations 

such as restricted dataset sizes, vector capacity 

constraints, and lack of clinical information. In next-

generation models, efforts have been made to improve 

both accuracy and interpretability through the use of 

techniques like GRAD-CAM, capsule networks, GAN-

based segmentation, and even multi-modal imaging 

(CXR and CT). 

Despite the extensive research, efforts and high 

classification accuracies reported in previous studies, 

several limitations persist. Many approaches rely heavily 

on large, curated datasets, making their performance less 

generalizable to real world, diverse clinical data. Some 

models suffer from limited interpretability, 

computational inefficiency, or lack of robustness across 

different imaging conditions and patient populations. 

Fusion and optimization techniques often increase model 

complexity and computation time without guaranteeing 

consistent gains. Moreover, a number of studies focus 

exclusively on binary classification (e.g., COVID-19 vs. 

Normal), overlooking other respiratory diseases like 

pneumonia, which limits their diagnostic utility in multi-

class scenarios. Lastly, few works perform 

comprehensive comparisons across multiple DL 

architectures on balanced datasets, and many do not 

address model reproducibility or the need for lightweight 

deployment in clinical environments. 

 

 

 

 

 



 

 

3.  METHODOLOGY  

3.1. Dataset 

The dataset (CXR)  displayed in Figure 1 consists of 317 

X-ray images [40,45] that are separated into three 

categories; normal (90 images), Covid (137 images), and 

pneumonia (90 images).  

Figure 1. Some examples of images of the dataset 

In this study, a series of preprocessing steps were applied 

to chest X-ray images used for model training and testing. 

The images were read from structured directories, 

mapped to class labels (Covid, Normal,  Pneumonia), and 

resized to 224×224 pixels. All images were converted to 

RGB format and cast to the float32 data type. To prevent 

the model from learning any ordering bias, the training 

dataset was shuffled. Class distributions in both training 

and testing sets were computed and visualized to detect 

potential imbalance. Finally, pixel values were 

normalized from the 0–255 range to a 0–1 scale to 

improve training efficiency and convergence stability. 

This dataset has been made available to support 

researchers and medical professionals in diagnosing 

respiratory diseases, particularly those associated with 

COVID-19 [40-45]. To assess the efficiency of current 

and future ML models in accurately classifying these 

images, the dataset has been partitioned into training and 

testing sets using an 8:2 ratio. Specifically, 80% of the 

data is allocated for training, enabling the model to learn 

patterns, while the remaining 20% is reserved for testing 

to evaluate the model's effectiveness on unseen data. 

Chest X-ray images categorization that is accurate and 

trustworthy is crucial for identifying and managing 

respiratory illnesses, especially those brought on by 

Covid-19. This kind of big collection can be used to build 

ML models that can be used to automate diagnosis, 

possibly increasing both speed and accuracy. However, 

the caliber and variety of the training data have a 

significant impact on how well these algorithms work. 

Therefore, the advancement of the creation of ML 

algorithms for diagnostic reasons in healthcare depends 

on databases like this. 

3.2. Training Details 

This section presents a detailed explanation of the 

methodology adopted for the proposed DL-based 

classification approach, as depicted in Figure 2. The 

approach begins with the utilization of a publicly 

available chest X-ray dataset. In accordance with 

standard ML practices, the dataset is divided into two 

subsets: a training set and a testing set. The training set is 

used to build and optimize the model, allowing it to learn 

patterns and relevant features necessary for accurately 

classifying images into predefined categories (e.g., 

COVID-19, pneumonia, and normal). During this 

training phase, model parameters - including weights and 

biases - are iteratively adjusted to minimize prediction 

error. 

After the training phase is completed, the model's 

performance and ability to generalize are assessed using 

the test set, which consists of previously unseen data. 

This step verifies that the model does not merely 

memorize the training data but can accurately predict 

outcomes on novel inputs. To quantify performance, 

standard evaluation metrics such as accuracy, precision, 

recall, and F1-score are employed. 

The dataset is randomly split in to 80% of the data is used 

for training and 20% for testing. This split is chosen to 

ensure that the model is exposed to a sufficient volume 

of training data to learn discriminative features, while 

retaining enough testing data for reliable performance 

assessment. Additionally, class distribution is balanced 

to minimize bias and ensure consistent representation 

across all categories, thereby enhancing the fairness and 

robustness of the model. 

Random state helps to shuffle the examples in the dataset 

to be flipped helping it to reduce the susceptibility bias of 

the dataset to the performance of the model. In this 

project, for reproducibility, we used a random state of 25, 

which helps to generate the same shuffle sequence if the 

code is run several times. After this, the pixel values of 

the images were shuffled, and normalization of the pixel 

values followed by dividing them by 255.0. 

Normalization of pixel values is a regular practice in 

image processing and helping to enhance the 

performance of DL models. It reduces the range of high 

numbers between 0 and 1 and helps models to easy to 

understand. A bar chart was then plotted to explain the 

number of examples in each class (Figure 3). It helped us 

to know if there were any discrepancies in the dataset, 

and if there were, we had to correct the model. 

Accordingly, in the test phase, the distributions of the 

classes are close to each other.  



 

 

Figure 2. Our proposal of dl-based classification approach for covid-19 

 

Covid, Normal and Pneumonia classes consist of 

approximately 20 images. In the train phase, the Covid 

class has more data than the other two classes. Normal 

and Pneumonia classes contain a similar number of 

images. 

 

Figure 3. Number of examples in each class 

A dataset with too many examples of one class and too 

little of another is said to be biased. Such a dataset is 

biased because the model can become more accurate for 

some classes and less accurate for others. The 

performance of the models could be improved by 

expressing each class fairly in the dataset by displaying 

the number of samples in the three classes; Normal, 

Covid, and Pneumonia. The DL techniques used to train 

the models are DL techniques that have frequently 

proven successful for computer vision problems.  

3.3. Model Architecture 

A well-known DL model called CNN is made to handle 

data with a grid-like structure, like images. The CNN 

design has been modified and Resnet50, Xception, 

DenseNet, MobileNet, VGG16, Resnet152v2, and 

Inceptionv3 models has been produced, each of which 

has been tailored for a particular job. The reason for 

choosing these models in the study is that their 

effectiveness has been proven in previous image 

classification studies and they are widely used in the 

literature. Due to the nature of this study and the limited 

analysis resources, the evaluations were limited to these 

common and proven architectures.  

Using the training collection and the preprocessed data, 

the models were trained. By changing the weights of its 

synapses, the model trains itself to find trends in the data. 

Minimizing the discrepancy between the model's 

predicts, and the real labels of the training data is the 

objective. The models used in the study are as follows: 

• CNN: The DL model has the following layers: an 

input, a Convolutional Layer (CL), a max pooling, 

a second CL, a second max pooling, a dropout, a 

flatten, and two thick layers. The input layer will 

take 224x224 images with three color channels as 

input (RGB). 32 3x3 filters with the ReLU 

Activation Function (AF) are applied in the first 

CL. A max pooling procedure with a pool 

capacity of 2x2 is carried out by the first max 

pooling layer. The 32 3x3 ReLU-activated filters 

from the second CL are applied. With a pool 

capacity of 2x2, the second max pooling layer 

executes a max pooling procedure. In order to 

avoid overfitting, the dropout layer arbitrarily 

removes 80% of the input units. The result from 

the prior layer is flattened into a 1-D vector by the 

flatten layer. 128 units make up the first thick 

layer, which employs the ReLU AF. Three units - 



 

 

one for each class - make up the second thick 

layer, which employs the Softmax AF. 

• ResNet50: First, three dense layers with rising 

amounts of nodes (2024, 2024, and 1024) and 

ReLU AFs are applied to the output of a 

pretrained model. To avoid overfitting, dropout 

layers are introduced after the second and third 

thick layers. Then, two more thick layers are 

added, each with 512 nodes and ReLU AFs, and 

then a dropout layer. The output layer also has a 

Softmax AF and three nodes that correlate to the 

dataset's three classifications. accuracy is used as 

the assessment measure, and the model is built 

using the Adam algorithm along with the sparse 

categorical cross-entropy Loss Function (LF). On 

the collection of chest X-ray images, this 

algorithm can be used to train the model and 

assess how well it performs. 

• Xception: The Flatten layer is used to first level 

the output of the basic model. Then, a number of 

completely linked levels are included, each 

containing 2048, 1024, 512, 256, and 128 

neurons. A dropout layer comes after each 

completely linked layer to avoid overfitting. The 

third and concluding layer is a dense layer with 3 

neurons that outputs class odds using the Softmax 

AF. Since the indices are numbers, the sparse 

categorical cross-entropy LF is used when 

building the model using the Adam algorithm. 

During training, the model's precision is also 

assessed. 

• DenseNet: The output of the Densenet model is 

then cycled through a number of completely 

connected layers, each of which has a dropout 

layer to avoid overfitting and a ReLU AF. The 

dropout rate falls from 0.1 to 0 as a measure of the 

density of neurons progressively declines from 

2048 to 512. A completely connected layer with 

three neurons (one for each class) and a Softmax 

AF make up the output layer, which outputs the 

class odds. 

• MobileNet: The input layer of the pre-trained 

model serves as the input layer for the new model, 

while its output layer is linked to a newly added 

dense layer with 2024 units and a ReLU activation 

function. To assist prevent overfitting, the next 

stage is to add a dropout layer at a rate of 0.1. A 

dropout layer with a 0.1 dropout rate is introduced 

after a dense layer with 2024 units and a ReLU 

AF. A third dense layer with 1024 units and a 

same AF is then added, which is followed by a 

further dropout layer with a rate of 0.1. A dropout 

layer with a rate of 0.5 is added after the 

introduction of a fourth thick layer with 512 units 

and a ReLU AF. The output layer is then given 

three units and a Softmax AF is utilized to 

generate the predicted probabilities for the three 

categories. The model is then built using the 

Adam method, sparse category Cross-Entropy LF, 

and precision. 

• VGG16: The result of the VGG16 model is 

smoothed before being run through two dense 

layers with rates of 0.5 dropout regularization and 

ReLU AF. A Thick layer with a Softmax AF for 

multi-class categorization with three output 

classes makes up the final layer. The compiled 

model is trained with a sparse categorical cross-

entropy LF and accuracy measure using the Adam 

algorithm. This model has an output layer with 

Softmax activation as the final layer, three dense 

layers with ReLU activation, and a total of three 

dense layers. Given that this is a multi-class 

classification problem having three classes. This 

first dense layer consists of 1024 neurons, 512 

neurons in the second dense layer, and three 

neurons in the ultimate output layer. 

• ResNet152v2: Four completely connected (dense) 

layers with ReLU AF and dropout regularization 

are applied to the ResNet152V2 model's output, 

with the first three layers' dropout rates being 0.1 

and the final layer's being 0.5. The last layer is a 

Thick layer with multi-class categorization and a 

Softmax AF with three output classes. The 

compiled model with accuracy to sparse 

categorical Cross-Entropy LF was trained with 

the Adam algorithm. The final output layer with 

Softmax activation, which comprises four dense 

layers with ReLU activation, consists of four 

dense layers. The last dense layer with has 512 

neurons while the first three dense layers have in 

total 2024 neurons. 

• InceptionV3: Four completely connected layers 

with ReLU AF and dropout regularization are 

implemented on InceptionV3 model output, that 

functioning has rates 0.1 for the first three layers 

and 0.5 for the last layer. The final layer is a Thick 

layer with a Softmax AF designed for multi-class 

categorization that has three output classes. 

The selection of this DL models was guided by their 

demonstrated effectiveness in image classification tasks, 

particularly within the domain of medical imaging. 

CNNs serve as the foundational architecture for image 

analysis due to their ability to extract spatial hierarchies 

of features. Building upon CNNs, architectures such as 

ResNet and DenseNet introduce residual and dense 

connectivity, respectively, to alleviate vanishing gradient 

issues and enhance feature reuse, making them highly 

suitable for learning complex patterns in chest X-rays. 

VGG16, although deeper and computationally intensive, 

is known for its simplicity and strong performance on 

smaller datasets. MobileNet is selected for its lightweight 

architecture optimized for performance on resource-

constrained environments, which is crucial for 

deployment in clinical settings. InceptionV3 and 

Xception incorporate depthwise separable convolutions 

and inception modules, enabling the network to capture 



 

 

multi-scale features effectively. The inclusion of these 

diverse models allows for a comprehensive evaluation of 

different architectural paradigms, ensuring that the final 

selection is based on empirical performance and 

computational efficiency within the context of COVID-

19 and pneumonia detection from chest X-ray images. 

The compiled model is trained with a sparse categorical 

cross-entropy LF, and accuracy measure using the Adam 

algorithm. The model has a final output layer with 

Softmax activation, four dense layers with ReLU 

activation, and four dense layers overall. The concluding 

dense layer has 512 neurons, while the first three Dense 

levels have a total of 2024 neurons. 

The testing set was used to assess the models' efficiency 

and accuracy. A portion of the data that the algorithm has 

never seen before is the testing set. We can determine the 

model's generalizability to brand-new, untested data by 

assessing it on this collection of data. Accuracy, 

Precision, Recall, and F1-score are some of the measures 

used to evaluate the models' success. In addition to these, 

False Positive Rate (FPR), which is the rate at which 

samples that do not actually belong to that class are 

incorrectly assigned to that class, and False Negative 

Rate (FNR), which is the rate at which samples that 

actually belong to that class are incorrectly assigned to 

the class, are also considered as evaluation metrics. These 

measures are frequently employed in categorization tasks 

to rate the accuracy of the model's predictions. 

 

4.  EXPERIMENTAL RESULTS  

The given findings (Table 1, and Figure 4) are evaluation 

measures for various DL models that were trained on a 

specific dataset. A simple CNN is the first model, and it 

obtained validation accuracy of 0.9216 and validation 

loss of 0.3166. The second model, Resnet50, which is a 

variation of the Residual Network design, obtained 

validation accuracy of 0.67 and validation loss of 0.7092. 

The third model, called Xception, had a loss of 0.3420 

and an accuracy of 0.87. It is a deep CNN with an 

Inception-like design. With a loss of 0.1127 and an 

accuracy of 0.89, the fourth model, DenseNet, a deep 

neural network with tightly linked blocks, performed the 

best. 

With a validation loss of 0.3360 and a validation 

accuracy of 0.924, the fifth model, MobileNet, a 

lightweight deep neural network made for mobile and 

embedded devices, performed well. A deep CNN with 16 

layers and a loss of 0.0142, and a precision of 0.924 make 

up the sixth model, called VGG16. A more advanced 

version of the Residual Network design, the seventh 

model, Resnet152v2, obtained an accuracy of 0.87 and a 

loss of 0.00092. Inceptionv3, the eighth model, is a deep 

CNN with a design resembling that of the original 

Inception. It obtained a loss of 0.0268 and an accuracy of 

0.83. 

As a result (Table 1, and Figure 4) each model has 

attained different degrees of accuracy and loss, according 

to the assessment metrics given for the various DL 

models trained on the dataset. On the validation 

collection, some models, like MobileNet and VGG16, 

attained high accuracy, whereas Resnet50 and 

Inceptionv3 attained lesser accuracy. The various model 

designs, including CNN, Resnet, and DenseNet, also play 

a role in the variations in precision  and loss that can be 

obtained. Ultimately, the assessment measures 

emphasize how crucial it is to pick the best architecture 

and adjust the model parameters to obtain the best 

possible results for a specific dataset. 

The findings of the evaluation of various DL models for 

the classification of COVID-19 into three classes Covid 

(0), Normal (1), and Pneumonia (2) are displayed in the 

confusion matrices (Figure 5) that are given. The actual 

class of the instances is displayed in the appropriate row, 

and each cell in the matrix reflects the number of 

instances predicted by the model for a specific class. 

All cases in the Covid and Normal classes were properly 

classified by the first model, CNN, while only four 

instances in the Pneumonia class were incorrectly 

classified (Figure 5). More misclassifications were 

observed in the second model, ResNet50, including four 

misclassified instances in the Normal class and eighteen 

in the Pneumonia class, while the Covid class was 

perfectly classified. 

The confusion matrix for the Xception model (the third 

model) showed perfect classification for the Pneumonia 

class. In contrast, three misclassifications were observed 

in the Covid class (two as Normal, one as Pneumonia) 

and five errors in the Normal class, all being 

misclassified as Pneumonia. 

When the confusion matrix of the DenseNet model (the 

fourth model) is evaluated, it is seen that high accuracy 

rates are achieved in all classes. Only one error was made 

in the Covid class. The confusion of 5 samples in the 

Normal class with Pneumonia showed that it is relatively 

more difficult to distinguish between these two classes. 

The Pneumonia class was also predicted with 95% 

accuracy. 

 

Table 1. Loss and accuracy results according to the models 

 

Model Loss Accuracy 

CNN 0.3166 0.9216 

Resnet50 0.7092 0.67 

Xception 0.3420 0.87 

DenseNet 0.1127 0.89 

MobileNet 0.3360 0.924 

VGG16 0.0142 0.924 

Resnet152v2 0.00092 0.87 

Inceptionv3 0.0268 0.83 



 

 

Figure 4. Accuracy and loss curves of different dl models 

 

The confusion matrix for the MobileNet model (the fifth 

model) indicated perfect classification accuracy (100%) 

for both the Covid and Pneumonia classes, with all 

respective sampled correctly predicted. However, five 

instances from the Normal class were misclassified as 

Pneumonia, resulting in a slightly lower accuracy (75%) 

for that class. 

The confusion matrix for the VGG16 model (the sixth 

model) showed perfect classification for both the Covid 

and Pneumonia classes, achieving 100% accuracy in 

both. However, five instances from the Normal class 

were misclassified as Pneumonia, resulting in a 75% 

accuracy for the Normal class. 

The confusion matrix for the ResNet152v2 model (the 

seventh model) indicated high but not perfect 

classification performance across all three classes. The 

model achieved an accuracy of 92.3% for Covid, 80% for 

Normal, and 90% for Pneumonia. 

The confusion matrix for the Inceptionv3 model (the last 

model) revealed notable misclassifications across all 

three classes. While the model achieved 92.3% accuracy 

for the Covid class, the performance was lower for 

Normal (75%) and Pneumonia (80%) classes. 

Generally, the analysis of the confusion matrices reveals 

that some models are better adapted to the three-class 

classification task (i.e., COVID-19, Normal, and 

Pneumonia), achieving high accuracy with minimal 

misclassifications. In contrast, other models exhibit 

significant confusion between classes and may benefit 

from further optimization or alternative architectural 

choices. 

The findings (Table 2) demonstrate how various DL 

models perform when given the job of categorizing chest 

X-ray images into three groups: Covid, Normal, and 

Pneumonia. Precision, recall, and F1-score are the 

metrics that are used to assess the models and give 

information on how well they work generally and for 

each class. 

 

 



 

 

Figure 5. Confusion matrix of dl models 

 

Precision refers to the percentage of samples from a 

given class that were correctly predicted out of all 

samples predicted as belonging to that class. Recall 

denotes the percentage of samples in a given class that 

were correctly predicted out of all actual samples from 

that class. The F1-score is the harmonic mean of 

precision and recall, providing a balanced measure of 

both metrics. 

Table 2. Results obtained with performance metrics 
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CNN Covid 1.00 1.00 1.00 1.00 

Normal 0.83 0.95 0.88 0.91 

Pneumonia 0.94 0.80 0.86 0.98 

Resnet50 Covid 0.68 1.00 0.81 0.70 

Normal 0.67 0.80 0.73 0.83 

Pneumonia 0.50 0.10 0.17 0.96 

Xception Covid 1.00 0.88 0.94 1.00 

Normal 0.88 0.75 0.81 0.96 

Pneumonia 0.77 1.00 0.87 0.87 

DenseNet Covid 1.00 0.96 0.98 1.00 

Normal 0.94 0.75 0.83 0.98 

Pneumonia 0.76 0.95 0.84 0.87 

MobileNet Covid 1.00 1.00 1.00 1.00 

Normal 1.00 0.75 0.86 1.00 

Pneumonia 0.80 1.00 0.89 0.89 

VGG16 Covid 1.00 1.00 1.00 1.00 

Normal 1.00 0.75 0.86 1.00 

Pneumonia 0.80 1.00 0.89 0.89 

Resnet152v2 Covid 1.00 0.92 0.96 1.00 

Normal 0.89 0.80 0.84 0.96 

Pneumonia 0.75 0.90 0.82 0.87 

Inceptionv3 Covid 0.86 0.92 0.89 0.90 

Normal 0.88 0.75 0.81 0.96 

Pneumonia 0.76 0.80 0.78 0.89 

 

Class-based FPR and FNR analysis results are given in 

Table 3. Accordingly, MobileNet and VGG16 models 

provide quite reliable results, especially in Covid and 

Pneumonia classes. However, it was observed that 

samples belonging to the Normal class were incorrectly 

classified by up to 25% in both models. Apart from this, 

the ResNet50 model has high FPR and serious error rates, 

especially in the Pneumonia class, with 90% FNR. 

Therefore, it should not be considered a reliable model. 

In general, the DenseNet model stands out as one of the 

models that offers the most balanced performance in 

terms of both FPR and FNR. According to the statements 

above, the top models are CNN, MobileNet, and VGG16, 

which have a 92% total accuracy rate. 

Table 3. Class-based fpr and fnr values for all models  

Model Class FPR FNR 

CNN Covid 0.0244 0.0000 

Normal 0.0870 0.0952 

Pneumonia 0.0213 0.2000 

Resnet50 Covid 0.3000 0.0000 

Normal 0.1739 0.2000 

Pneumonia 0.0435 0.9000 

Xception Covid 0.0000 0.1154 

Normal 0.0435 0.2500 

Pneumonia 0.1304 0.0000 

DenseNet Covid 0.0000 0.0385 

Normal 0.0217 0.2500 

Pneumonia 0.1304 0.0500 

MobileNet Covid 0.0000 0.0000 

Normal 0.0000 0.2500 

Pneumonia 0.1087 0.0000 

VGG16 Covid 0.0000 0.0000 

Normal 0.0000 0.2500 

Pneumonia 0.1087 0.0000 

Resnet152v2 

 

Covid 0.0000 0.0769 

Normal 0.0435 0.2000 

Pneumonia 0.1304 0.1000 

Inceptionv3 Covid 0.1000 0.0769 

Normal 0.0435 0.2500 

Pneumonia 0.1087 0.2000 



 

 

The Covid class, which is the most important class here, 

has the highest sensitivity and specificity for these 

models. On the other hand, ResNet50 is the lowest model 

with an accuracy 67%, the lowest sensitivity and 

specificity for the Pneumonia class; therefore, it is the 

worst model. 

It is important to keep in mind that these reports barely 

scratch the surface in terms of how well these models did 

on our particular dataset; they might not do as well on 

other datasets or tasks. We can judge the models based 

on AUC-ROC or AUC-PR and the outcome of the 

models’ performance can be optimized through the 

ensembling and hyperparameter tuning technique as 

well. 

 

5. DISCUSSION  

To evaluate the effectiveness of our proposed DL 

framework for classifying chest X-ray images into 

COVID-19, pneumonia, and normal categories, we 

conducted a comprehensive comparative analysis with 

several state-of-the-art methods from recent literature. 

Our results demonstrate that the proposed approach, 

particularly when utilizing fine-tuned versions of 

MobileNet, CNN, and VGG16 architectures, consistently 

outperforms many existing models, especially in terms of 

classification accuracy, generalizability, and practical 

applicability.  

Notably, our best-performing models achieved an 

accuracy of 92.4% on a multi-class dataset, surpassing 

the performance of various studies that employed either 

binary classification or more computationally complex 

ensemble strategies. For instance, in the study by 

Aljawarneh et al. [42], the enhanced CNN model reached 

92.4% accuracy on pneumonia detection, while 

ResNet50 performed considerably lower at 82.8%. 

Similarly, Shah et al. [31] introduced a CNN-based CT 

model that achieved only 82.1% accuracy for two-class 

classification, highlighting the limitations of CT imaging 

alone and the effectiveness of our CXR-based approach. 

Other frameworks such as the CNN-LSTM with moth 

flame optimization by Hamza et al. [24] reported variable 

performance across datasets, with the lowest accuracy at 

93%, but required heavy fusion techniques that increased 

computational complexity and training time. In contrast, 

our method remains lightweight and easily deployable in 

clinical settings. Furthermore, while Reshan et al. [27] 

evaluated eight pre-trained models and found MobileNet 

to perform best with 94.23% and 93.75% on two datasets, 

their study was constrained by dataset imbalance and 

lacked a unified preprocessing strategy.  

Our frameworks addresses these issues by implementing 

data normalization, class balancing, and consistent 

evaluation metrics. Additionally, our method maintains 

high precision and recall across all classes, which is 

crucial for minimizing false negatives in COVID-19 

detection. Taken together, the comparative results clearly 

establish the superiority of our proposed approach in 

terms of classification performance, architectural 

efficiency, and its potential utility as a reliable diagnostic 

support tool in real-world medical applications. 

 

6. CONCLUSION AND FUTURE WORKS   

The research explored the performance of various DL 

models, including CNN, Resnet50, Xception, DenseNet, 

Mobilenet, VGG16, Resnet152v2, and Inceptionv3, on 

the classification of chest X-ray images as Covid, 

Normal, and Pneumonia classes for a COVID-19 

recognition scenario. The COVID-19 class achieved the 

highest sensitivity across all models, with CNN, 

MobileNet, and VGG16 reaching the highest overall 

accuracy of approximately 92%. However, the 

classification performance for the Pneumonia class was 

notably lower, especially in the case of ResNet50, which 

yielded the poorest results among all models. In contrast, 

MobileNet and VGG16 demonstrated balanced and 

reliable performance across all three classes. The results 

indicate that computer-aided diagnostic technologies 

may be beneficial in the COVID-19 detection and 

treatment process. The results are specific to the dataset. 

Therefore, it is necessary to conduct more experiments to 

establish how well the models work for other datasets and 

challenges. The performance of the models can be 

enhanced by adding more optimization strategies, and 

preprocessing stages such as hyperparameters tuning, 

data augmentation and architecture compositions. In 

addition to X-ray images, CT scan images can also be 

studied, which can provide detailed anatomical 

information at higher resolution and increase accuracy. 

A future path to increase the DL models’ performance is 

by using ensemble voting for COVID-19 diagnosis 

through chest X-ray images. Ensemble learning is a 

method that uses multiple models to maximize accuracy 

and minimize overfitting. One kind of ensemble learning 

is ensemble voting, which is where the predictions of 

multiple models are consolidated to select the class that 

has the maximum votes as the final estimate. 

We could apply DL models such as CNN, Resnet50, 

Xception, DenseNet, Mobilenet, VGG16, Resnet152v2, 

and Inceptionv3 and combine their predictions with a 

voting mechanism. Different voting processes could be 

attempted, such as majority voting or weighted voting, 

where the model which performs better or bests correctly 

for one class is weighted more. 

Although this study focused solely on image-based 

model evaluation, the integration of patient clinical data 

and the use of hybrid approaches combining multiple 

models are expected to improve diagnostic accuracy. 

Therefore, such clinically supported and multi-model 

frameworks are considered promising directions for 

future research. 

A potential avenue for future research is the exploration 

of transfer learning techniques. This approach entails pre-

training models on a large-scale dataset before refining 

them for a particular objective. The core idea is to utilize 

insights gained from large datasets to improve 

performance on smaller ones, thereby reducing both 



 

 

computational cost and processing time. Consequently, 

pre-trained models can be adapted for COVID-19 

detection by fine-tuning them with a combination of a 

small COVID-19 dataset and a larger chest X-ray dataset, 

such as the ChestX-ray14. 

Finally, investigation of the possible solution is to 

increase the precision  of the diagnostic. The latter may 

lead to explore possible merger of imaging techniques 

and clinical data, for example, involving patient 

demographics, medical history, and laboratory findings. 

Thus, the information about the patient can be more 

beneficial and may help to examine accurately COVID. 

 

DECLARATION OF ETHICAL STANDARDS 

The author(s) of this article declare that the materials and 

methods used in this study do not require ethical 

committee permission and/or legal-special permission. 

 

AUTHORS’ CONTRIBUTIONS 

Maral A. Mustafa: Performed the experiments, 

analyzed and evaluated the results, and drafted the 

manuscript. 

O. Ayhan ERDEM: Observed the results obtained, and 

reviewed the manuscript.  

Esra SÖĞÜT: Reviewed the experiments, analyzed the 

results, and reviewed the manuscript. 

 

CONFLICT OF INTEREST 

There is no conflict of interest in this study.  

 

REFERENCES 

[1] Zhu, N., Zhang, D. Wang, W. Li, X. Yang, B. Song, J. 

Zhao, X. Huang, B. Shi, W. Lu, R., et al. “A novel 

coronavirus from patients with pneumonia in China, 

2019”, New England journal of medicine, 382(8): 727–

733, (2020). 

[2] Barth, R. F., Buja, L., Barth, A. L., Carpenter, D. E., and 

Parwani, A. V., “A Comparison of the Clinical, Viral, 

Pathologic, and Immunologic Features of Severe Acute 

Respiratory Syndrome (SARS), Middle East Respiratory 

Syndrome (MERS), and Coronavirus 2019 (COVID-19) 

Diseases”, Archives of Pathology & Laboratory 

Medicine, 145(10): 1194–1211, (2021). 

[3] Cui, J., Li, F., and Shi, Z. L., "Origin and evolution of 

pathogenic coronaviruses", Nature reviews 

microbiology, 17(3): 181-192, (2019). 

[4] Wong, C. K., Lau, K. T., Au, I. C., Xiong, X., Lau, E. H., 

and Cowling, B. J., "Clinical improvement, outcomes, 

antiviral activity, and costs associated with early 

treatment with remdesivir for patients with coronavirus 

disease 2019 (COVID-19)", Clinical Infectious 

Diseases, 74(8): 1450-1458, (2022).  

[5] Ravi, V., Narasimhan, H., Chakraborty, C., and Pham, T. 

D., "Deep learning-based meta-classifier approach for 

COVID-19 classification using CT scan and chest X-ray 

images", Multimedia systems, 28(4): 1401-1415, (2022). 

[6] Verma, A., Amin, S. B., Naeem, M., & Saha, M., 

"Detecting COVID-19 from chest computed tomography 

scans using AI-driven android application", Computers 

in biology and medicine, 143: 105298, (2022). 

[7] Wang, S., Kang, B., Ma, J., Zeng, X., Xiao, M., Guo, J., 

et al., "A deep learning algorithm using CT images to 

screen for Corona Virus Disease (COVID-19)", 

European radiology, 31: 6096-6104, (2021). 

[8] Nanda, A., Barik, R. C., and Bakshi, S., "SSO-RBNN 

driven brain tumor classification with Saliency-K-means 

segmentation technique", Biomedical Signal Processing 

and Control, 81: 104356, (2023). 

[9] Littrup, P. J., Freeman-Gibb, L., Andea, A., White, M., 

Amerikia, K. C., Bouwman, D., Harb, T., and Sakr, W.,  

"Cryotherapy for breast fibroadenomas", Radiology, 

234(1): 63-72, (2005). 

[10] Darıcı, M. B., "Performance analysis of combination of 

cnn-based models with adaboost algorithm to diagnose 

covid-19 disease", Journal of Polytechnic, 26(1): 179-

190, (2023). 

[11] Zieleskiewicz, L., Markarian, T., Lopez, A., Taguet, C., 

Mohammedi, N., Boucekine, M., Baumstarck, K., Besch, 

G., Mathon, G., Duclos, G., et al., "Comparative study of 

lung ultrasound and chest computed tomography scan in 

the assessment of severity of confirmed COVID-19 

pneumonia", Intensive care medicine, 46: 1707-1713, 

(2020). 

[12] Khan, E., Rehman, M. Z. U., Ahmed, F., Alfouzan, F. A., 

Alzahrani, N. M., and Ahmad, J., "Chest X-ray 

classification for the detection of COVID-19 using deep 

learning techniques", Sensors, 22(3): 1211, (2022). 

[13] Castiglioni, I., Rundo, L., Codari, M., Di Leo, G., 

Salvatore, C., Interlenghi, M., Gallivanone, F., Cozzi, A., 

D’Amico, N. C., Sardanelli, F., "AI applications to 

medical images: From machine learning to deep 

learning", Physica medica, 83: 9-24, (2021). 

[14] Çelikdemir, M. Y., and Akbal, A., "A Deep Learning 

Based on Automatic Cerebral Aneurysm Detection in 

Brain Computed Tomography Angiography Scan 

Images", Journal of Polytechnic, 28(1): 147-157, (2025). 

[15] Marentakis, P., Karaiskos, P., Kouloulias, V., Kelekis, N., 

Argentos, S., Oikonomopoulos, N., and Loukas, C., 

"Lung cancer histology classification from CT images 

based on radiomics and deep learning models", Medical 

& biological engineering & computing, 59: 215-226, 

(2021). 

[16] Roy, S., Meena, T., and Lim, S. J., "Demystifying 

supervised learning in healthcare 4.0: A new reality of 

transforming diagnostic medicine", Diagnostics, 12(10): 

2549, (2022). 

[17] Dündar Ö., and Koçer S., “Pneumonia detection from 

pediatric lung X-ray images using artificial neural 

networks”, Journal of Polytechnic, 27(5): 1843-1852, 

(2024). 

[18] Kaya, Y., Yiner, Z., Kaya, M., and Kuncan, F., "A new 

approach to COVID-19 detection from X-ray images 

using angle transformation with GoogleNet and LSTM", 

Measurement Science and Technology, 33(12): 124011, 

(2022). 

[19] Ismael, A. M., and Şengür, A., "Deep learning approaches 

for COVID-19 detection based on chest X-ray images", 

Expert Systems with Applications, 164: 114054, (2021). 



 

 

[20] Yılmaz, A. "Diagnosing COVID-19 from X-Ray images 

with using multi-channel CNN architecture", Journal of 

the Faculty of Engineering and Architecture of Gazi 

University, 36(4): 1761-1774, (2021). 

[21] Nair, R., Alhudhaif, A., Koundal, D., Doewes, R. I., and 

Sharma, P., "Deep learning-based COVID-19 detection 

system using pulmonary CT scans", Turkish Journal of 

Electrical Engineering and Computer Sciences, 29(8): 

2716-2727, (2021). 

[22] Khan, M. A., Azhar, M., Ibrar, K., Alqahtani, A., Alsubai, 

S., Binbusayyis, A., Kim, Y.J., and Chang, B., "COVID‐

19 classification from chest X‐ray images: a framework 

of deep explainable artificial intelligence", 

Computational Intelligence and Neuroscience, 2022(1): 

4254631, (2022). 

[23] Iqbal, A., Usman, M., and Ahmed, Z., "Tuberculosis 

chest X-ray detection using CNN-based hybrid 

segmentation and classification approach," Biomedical 

Signal Processing and Control, 84: 104667, (2023). 

[24] Hamza, A., Attique Khan, M., Wang, S. H., Alqahtani, 

A., Alsubai, S., Binbusayyis, A., Hussein, H.S., 

Martinetz, T.M., and Alshazly, H., "COVID-19 

classification using chest X-ray images: A framework of 

CNN-LSTM and improved max value moth flame 

optimization", Frontiers in Public Health, 10: 948205, 

(2022). 

[25] Fan, X., Feng, X., Dong, Y., and Hou, H., "COVID-19 

CT image recognition algorithm based on transformer 

and CNN", Displays, 72: 102150, (2022). 

[26] Garg, A., Salehi, S., La Rocca, M., Garner, R., and 

Duncan, D., "Efficient and visualizable convolutional 

neural networks for COVID-19 classification using Chest 

CT", Expert Systems with Applications, 195: 116540, 

(2022). 

[27] Reshan, M. S. A., Gill, K. S., Anand, V., Gupta, S., 

Alshahrani, H., Sulaiman, A., and Shaikh, A., "Detection 

of pneumonia from chest X-ray images utilizing 

mobilenet model", Healthcare, 11(11): 1561, (2023). 

[28] AbdElhamid, A. A., AbdElhalim, E., Mohamed, M. A., 

and Khalifa, F., "Multi-classification of chest X-rays for 

COVID-19 diagnosis using deep learning algorithms", 

Applied Sciences, 12(4): 2080, (2022). 

[29] Gampala, V., Rathan, K., S, C. N., Shajin, F. H., and 

Rajesh, P., "Diagnosis of COVID-19 patients by adapting 

hyper parametertuned deep belief network using hosted 

cuckoo optimization algorithm", Electromagnetic 

Biology and Medicine, 41(3): 257-271, (2022). 

[30] Thakur, S., and Kumar, A., "X-ray and CT-scan-based 

automated detection and classification of covid-19 using 

convolutional neural networks (CNN)", Biomedical 

Signal Processing and Control, 69: 102920, (2021). 

[31] Shah, V., Keniya, R., Shridharani, A., Punjabi, M., Shah, 

J., and Mehendale, N., "Diagnosis of COVID-19 using 

CT scan images and deep learning techniques", 

Emergency Radiology, 28: 497-505, (2021). 

[32] Muhammad, G., and Hossain, M. S., "COVID-19 and 

non-COVID-19 classification using multi-layers fusion 

from lung ultrasound images", Information Fusion, 72: 

80-88, (2021). 

 

 

[33] Hussain, E., Hasan, M., Rahman, M. A., Lee, I., 

Tamanna, T., and Parvez, M. Z., "CoroDet: A deep 

learning based classification for COVID-19 detection 

using chest X-ray images", Chaos, Solitons & Fractals, 

142: 110495, (2021). 

[34] Ezzat, D., Hassanien, A. E., and Ella, H. A., "An 

optimized deep learning architecture for the diagnosis of 

COVID-19 disease based on gravitational search 

optimization", Applied Soft Computing, 98: 106742, 

(2021). 

[35] Nandhini Abirami, R., Durai Raj Vincent, P. M., 

Rajinikanth, V., and Kadry, S., "COVID-19 classification 

using medical image synthesis by generative adversarial 

networks", International Journal of Uncertainty, 

Fuzziness and Knowledge-Based Systems, 30(03): 385-

401, (2022). 

[36] Abirami, N., Vincent, D. R., and Kadry, S., "P2P-

COVID-GAN: Classification and segmentation of 

COVID-19 lung infections from CT images using GAN", 

International Journal of Data Warehousing and 

Mining, 17(4): 101-118, (2021). 

[37] Khan, I. U., and Aslam, N., "A deep-learning-based 

framework for automated diagnosis of COVID-19 using 

X-ray images", Information, 11(9): 419, (2020). 

[38] Ullah, N., Khan, J. A., Almakdi, S., Khan, M. S., 

Alshehri, M., Alboaneen, D., and Raza, A., "A novel 

CovidDetNet deep learning model for effective COVID-

19 infection detection using chest radiograph images", 

Applied Sciences, 12(12): 6269, (2022). 

[39] Arman, S. E., Rahman, S., and Deowan, S. A., 

"COVIDXception-Net: A Bayesian optimization-based 

deep learning approach to diagnose COVID-19 from X-

Ray images", SN Computer Science, 3(2): 115, (2022). 

[40] Abad, M., Casas-Roma, J., and Prados, F., "Generalizable 

disease detection using model ensemble on chest X-ray 

images", Scientific Reports, 14(1): 5890, (2024). 

[41] Singh, T., Mishra, S., Kalra, R., Satakshi, Kumar, M., and 

Kim, T., "COVID-19 severity detection using chest X-ray 

segmentation and deep learning", Scientific Reports, 

14(1): 19846, (2024). 

[42] Aljawarneh, S. A., and Al-Quraan, R., "Pneumonia 

detection using enhanced convolutional neural network 

model on chest x-ray images", Big Data, 13(1): 16-29, 

(2025). 

[43] Prince, R., Niu, Z., Khan, Z. Y., Chambua, J., Yousif, A., 

Patrick, N., and Jennifer, B., "Interpretable COVID-19 

chest X-ray detection based on handcrafted feature 

analysis and sequential neural network", Computers in 

Biology and Medicine, 186: 109659, (2025). 

[44] El-Ghandour, M., and Obayya, M. I., "Pneumonia 

detection in chest x-ray images using an optimized 

ensemble with XGBoost classifier", Multimedia Tools 

and Applications, 84(9): 5491-5521, (2025). 

[45] https://www.sirm.org/category/senza-categoria/covid-

19/, “COVID-19 Database”, (2020). 


