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DEGREES OF SOLID VARIETIES OF SEMIRINGS

HIPPOLYTE HOUNNON AND KLAUS DENECKE

(Communicated by İrfan ŞİAP)

Abstract. For any arbitrary variety V , the degree dp(V ) of V with respect

to proper hypersubstitutions was introduced in [6]. This degree of any variety

of bands was determined in [4]. In this paper we characterize the universe of
the free algebra of each solid variety of semirings and from this we derive the

degree dp(V ) if V is any solid variety of semirings.

1. Introduction

Hypersubstitutions are mappings sending operation symbols to terms and pre-
serving arities. They can be applied to algebras and equations. This gives the
concepts of a derived algebra and of a hyperidentity. If every identity of a given
variety V of algebras is a hyperidentity, then the variety V is said to be solid. More
details on the notions of hypersubstitions, hyperidentities and solid varieties can be
seen in [9], [8] and [7]. All solid varieties of semirings were determined (see in [3]).
Now, we want to investigate some properties of solid varieties of semirings. In Uni-
versal Algebra like also in other parts of Mathematics, numerical invariants play
an important role. An example of a numerical invariant in Universal Algebra is the
spectrum of a variety V which is defined as a sequence spect(V ) := (|FV (n)|)n≥1
of the cardinality of the n-generated free algebras with respect to V . In this paper,
we consider a numerical invariant related to the spectrum, the degree of a variety.
A hypersubstitution is called V -proper if it preserves all identities of the variety V .
The set of all V -proper hypersubstitions will be denoted by P (V ).
The degree dp(V ) of the variety V with respect to proper hypersubstitutions is the
cardinality of the quotient set P (V )|∼V

, where ∼V is the binary relation on the
set Hyp(τ) (of all hypersubstitutions of type τ = (ni)i∈I), introduced in [11] and
defined by ∼V : σ1 ∼V σ2 iff σ1(fi) ≈ σ2(fi) ∈ IdV for i ∈ I.
Then one can ask the following questions:
- What is the degree of a given variety?
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- For a given integer, determine all varieties which have this integer as its degree.
- What structural properties of a given variety V can be derived from informations
about the degree?
Some of these questions are already answered for varieties of semigroups. For in-
stance, dp(V ) is known for any variety V of bands (idempotent semigroups) and in
this case dp(V ) ∈ {1, 2, 3, 4, 6} (see in [4] and [13]).
In this paper, we want to answer the first question in the case of solid varieties of
semirings. To do this we need to recall some basic concepts.

1. A semiring is a non-empty set S together with two binary operations +
and · such that the algebras (S; +) and (S; ·) are semigroups which are
related by the distributive identities:

x1(x2 + x3) ≈ x1x2 + x1x3 and (x1 + x2)x3 ≈ x1x3 + x2x3.

The variety of all semirings will be denoted by SR.
2. A semiring (S; +, ·) is medial if

x1 + x2 + x3 + x4 ≈ x1 + x3 + x2 + x4 ∈ IdS and

x1x2x3x4 ≈ x1x3x2x4 ∈ IdS.
(IdS is the set of all identities satisfied in the algebra (S; +, ·)).

3. A semiring (S; +, ·) is idempotent if

x1 + x1 ≈ x1 ≈ x1 · x1 ∈ IdS.
4. A semiring (S; +, ·) is distributive if

x1x2 + x3 ≈ (x1 + x3)(x2 + x3) ∈ IdS and

x1 + x2x3 ≈ (x1 + x2)(x1 + x3) ∈ IdS.
5. A variety V of semirings is medial if all algebras in V are medial. In a

similar way one can define the varieties of distributive semirings and idem-
potent semirings, respectively.

6. An equation s ≈ t is regular if both terms s, t contain the same variables.
A variety V is regular if all identities in V are regular.
It is well known that a variety V is regular iff its basis identities are regular.

If V is a variety of semirings and Σ is a set of equations, by V (Σ) we denote the
subvariety of V which is generated by the set Σ. For reference, below we list some
varieties to be used in this paper:
VMID - the variety of all medial, idempotent and distributive semirings,
VBE := VMID({(x1 + x2)(x2 + x1) ≈ x1x2 + x2x1});
RA2,2 := SR({x1 + x2 + x3 ≈ x1 + x3, x1x2x3 ≈ x1x3, x1x1 ≈ x1 ≈ x1 + x1});
T - the trivial variety of semirings, i.e. the class of all one-element semirings.
It is clear that the varieties VMID and VBE are regular since their basis identities
are regular.

Now, we turn to the theory of hyperidentities.
Let W(2,2)(X2) be the set of all binary terms of type (2, 2) built up by variables
from the alphabet X2 = {x, y}. The operation symbols F and G will be denoted
sometimes additively and multiplicatively, respectively.
Hypersubstitutions of type τ = (2, 2) are mappings

σ : {F,G} →W(2,2)(X2)
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A hypersubstitution σ of type (2, 2) can be extended to a mapping σ̂ defined on the
set W(2,2)(X) of all terms of type (2, 2), where X = {x, y, z, u, v, · · · } is an arbitrary
countably infinite alphabet of variables, by the following steps:

(i) σ̂[t] := t, if t ∈ X is a variable, and
(ii) σ̂[f(t1, t2)] := σ(f)(σ̂[t1], σ̂[t2]), f ∈ {F,G} for composed terms.

The right hand side of (ii) must be interpreted as a superposition of term operations
of the term algebra of type (2, 2).
The hypersubstitution σ of type (2,2) such that σ(F ) = t and σ(G) = s will be
denoted by σt,s. Together with the hypersubstitution σid defined by
σid(f) = f(x, y), f ∈ {F,G}, the set of all hypersubstitutions of type (2, 2) forms a
monoid, denoted by Hyp.
An identity s ≈ t in a variety V of semirings is called a hyperidentity in V if for
every σ ∈ Hyp the equations σ̂[s] ≈ σ̂[t] belong to the set IdV of all identities
satisfied in V .
A variety V is called solid if all identities in V are satisfied as hyperidentities.
Let V be a variety. A hypersubstitution σ is called V -proper (or preserving all
identities) if for all identities s ≈ t ∈ IdV, σ̂[s] ≈ σ̂[t] ∈ IdV .
Now, we will determine the universe of the free algebra with respect to each element
of the lattice of all solid varieties of semirings. This lattice was fully described in
[3] as follows:

Theorem 1.1. [3] The lattice of all solid varieties of semirings is the
4-element chain T ⊂ RA(2,2) ⊂ VBE ⊂ VMID.

2. Free algebras with respect to Solid Varieties of Semirings

In this section we will determine the free algebra with respect to each non-trivial
solid variety of semirings.

Definition 2.1. [12] The term algebra of type τ = (ni)i∈I is the algebra
Fτ (X) := (Wτ (X); (fi)i∈I), where

fi(t1, . . . , tni
) := fi(t1, . . . , tni

) for all t1, . . . , tni
∈Wτ (X) and for all i ∈ I.

For every variety V , it is clear that IdV is a congruence relation on the term
algebra Fτ (X). Then we can construct the quotient algebra Fτ (X)/IdV which is
called free algebra with respect to V freely generated by the set X and is denoted
by FV (X). The free algebra with respect to V freely generated by the set
Xn = {x1, . . . , xn} will be denoted by FV (n).
The following results and concepts are needed.

Lemma 2.1. [3] Every subvariety V of VMID satisfies the following identities:
1. x+ xy + y ≈ x+ y, 10. xy + yxy + yx ≈ xy + yx,
2. x+ yx+ y ≈ x+ y, 11. xy + yxy + y ≈ xy + y,
3. x+ xyx+ xy ≈ x+ xy, 12. x+ xyx+ y ≈ x+ y,
4. x+ xyx+ yx ≈ x+ yx, 13. x+ yxy + y ≈ x+ y,
5. x+ yx+ yxy ≈ x+ yxy, 14. xyx+ yx+ y ≈ xyx+ y,
6. x+ xy + yxy ≈ x+ yxy, 15. xyx+ xy + y ≈ xyx+ y,
7. x+ xyx+ yxy ≈ x+ yxy, 16. xyx+ xy + yxy ≈ xyx+ yxy,
8. xy + xyx+ x ≈ xy + x, 17. xyx+ yx+ yxy ≈ xyx+ yxy,
9. xy + xyx+ yx ≈ xy + yx, 18. xyx+ yxy + y ≈ xyx+ y.
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Definition 2.2. (1) Let V be a variety. Two terms t and s are called V -
equivalent if s ≈ t ∈ IdV (see in [10]).

(2) An equation s ≈ t is outermost, if the terms s and t start with the same
variable and end also with the same variable. A variety V is called outer-
most, if all identities of IdV are outermost (see in [8]).

It is well known that a variety is outermost iff its basis identities are outermost.
Let BinG = {x, y, xy, yx, xyx, yxy}. It is clear that two different elements of BinG
are not V -equivalent for V = VMID or V = VBE because VMID and VBE are out-
ermost and regular (since the basis identities of VMID and VBE are outermost and
regular).

Lemma 2.2. [3] Let V be a subvariety of VMID. Then every binary term t is
V -equivalent to a sum of the form t1 + t2 + t3 + t4, where ti ∈ BinG, i = 1, 2, 3, 4.

Now, we can prove:

Lemma 2.3. Let si, ti, i ∈ {1, 2, 3, 4} be elements from BinG.
If s1 + s2 + s3 + s4 ≈ t1 + t2 + t3 + t4 ∈ IdV, with V ∈ {VMID, VBE} then
s1 = t1 and s4 = t4.

Proof: Since V is solid, applying the hypersubstitutions σx,xy (resp. σy,xy) to the
identity s1+s2+s3+s4 ≈ t1+t2+t3+t4 ∈ IdV, where si, ti ∈ BinG, (i ∈ {1, 2, 3, 4}),
we obtain in V the identity s1 ≈ t1 (resp. s4 ≈ t4). This leads to the equalities
s1 = t1 and s4 = t4 since the binary terms ti, si, i = 1, 2, 3, 4 belong to BinG and
two different elements of BinG are not V -equivalents.
The following lemma gives another generating identity of VBE .

Lemma 2.4. [3] The variety VMID(xy + xyx+ xy ≈ xy + x+ xy) is equal to the
variety VBE.

Using the previous lemma, we have:

Lemma 2.5. (1) The identities xyx+ x+ xyx ≈ xyx and
xy + yx ≈ xy + t+ yx, for t ∈ {x, y} hold in VBE but not in VMID.

(2) Let u ∈ {x, y} and ti ∈ BinG\{u}, i = 1, 2, 3.
Then t1 + t2 + t3 ≈ t1 + u+ t3 6∈ IdVMID.

Proof:

(1) From xy+yx ≈ xy+x+y+yx ∈ IdVBE , it follows the identity xyx ≈ xyx+
x+xyx ∈ IdVBE by substituting xyx for y and using the idempotency and
the medial laws. Moreover, the variety VBE satisfies the following identities:
xy+x+ yx ≈ xy+ yx+x+ yx ≈ xy+x+ y+ yx ≈ xy+ yx ≈ xy+ y+ yx,
using the idempotency, the medial law and the identity xy + x+ y + yx ≈
xy + yx ∈ IdVBE .
Assume that the variety VMID satisfies the identity xyx+ x+ xyx ≈ xyx.
Then we would get in VMID the identities
xy+xyx+xy ≈ xy+xyx+x+xyx+xy ≈ xy+x+xy by Lemma 2.1 (3).
This leads to the equalities VMID = VMID(xy+xyx+xy ≈ xy+x+xy) =
VBE (Lemma 2.4). This contradicts VMID 6= VBE .
Assume that the identity xy + x + yx ≈ xy + yx or the identity xy + y +
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yx ≈ xy + yx holds in the variety VMID. Then substituting xyx for y in
the first identity and yxy for y in the second one, leads to the equation
xyx+ x+ xyx ≈ xyx which is not satisfied as an identity in VMID.

(2) Let u, v ∈ {x, y} such that u 6= v and ti ∈ BinG\{u}, i = 1, 2, 3.
Assume that t1 + t2 + t3 ≈ t1 + u+ t3 ∈ IdVMID.
The substitution v by uvu in t1 + t2 + t3 ≈ t1 + u+ t3 ∈ IdVMID

gives uvu ≈ uvu+ u+ uvu ∈ IdVMID. This contracdicts 1.

Lemma 2.6. Let (t1, t2) ∈ ({x, xy, xyx})2 such that the equation t1 ≈ t2 is
outermost. Let (s, t) ∈ (BinG)2. If the equation s ≈ t is not outermost, then
t1 + s+ t2 ≈ t1 + t+ t2 6∈ IdVBE.

Proof: Assume that t1 + s+ t2 ≈ t1 + t+ t2 ∈ IdVBE . Since the equation s ≈ t
is not outermost, without loss of generality, we can assume that s starts with x and
t with y. Applying σx+y,x to the equation t1 + s+ t2 ≈ t1 + t+ t2 gives (using the
idempotency) the equation x ≈ x+ y + x which is not satisfied as identity in VBE
because VBE is regular.

Lemma 2.7. There are exactly (up to permutation of variables x and y) the follow-
ing binary terms which are VMID-equivalent to sums consisting of three summands
from BinG, these sums cannot be VMID-equivalent to sums consisting of at most
two summands from BinG :
1. x+ xy + t, t ∈ {x, xyx, yx}, 9. xyx+ yxy + t, t ∈ {x, xyx},
2. x+ y + t, t ∈ BinG\{y}, 10. xyx+ yx+ t, t ∈ {x, xy, xyx},
3. x+ yx+ t, t ∈ {x, xyx, xy}, 11. xy + x+ t, t ∈ BinG\{x},
4. x+ yxy + t, t ∈ {x, xyx}, 12. xy + yx+ t, t ∈ BinG\{yx},
5. x+ xyx+ x, 13. xy + y + t, t ∈ BinG\{y},
6. xyx+ x+ t, t ∈ BinG\{x}, 14. xy + xyx+ xy,
7. xyx+ y + t, t ∈ BinG\{y}, 15. xy + yxy + xy.
8. xyx+ xy + t, t ∈ {x, yx, xyx},

Proof: To prove that s ≈ t 6∈ IdVMID, we will show sometimes that
s ≈ t 6∈ IdVBE , since VBE ⊂ VMID so IdVMID ⊆ IdVBE .
I) First, we show that each term in the list of Lemma 2.7 cannot be VMID-equivalent
to a sum of at most two elements from BinG.
• To prove that each term in the list (Lemma 2.7) cannot be VMID-equivalent to
an element from BinG, using Lemma 2.3, we have to consider the equations
x+ t1 + x ≈ x, t1 ∈ BinG\{x}; xy + t2 + xy ≈ xy, t2 ∈ BinG\{xy};
xyx+ t3 +x ≈ xyx, t3 ∈ BinG\{xyx}; and to show that the variety VMID does not
satisfy one of them as identities.
Indeed, the idempotency and Lemma 2.6 ensure that none of the identities
x+ t1 + x ≈ x, t1 ∈ BinG\{x, xyx}; xy + t2 + xy ≈ xy, t2 ∈ BinG\{xy});
xyx+t3+x ≈ xyx, t3 ∈ BinG\{xyx, x} is satisfied in VBE . The regularity property
of VBE guaranties that x+ xyx+ x ≈ x 6∈ IdVBE .
We conclude that xyx+ x+ xyx ≈ xyx 6∈ IdVMID [see Lemma 2.5 (1)].
• Now, we prove that none of the terms in the list of Lemma 2.7 can be
VMID-equivalent to a sum consisting of two terms of BinG.
Lemma 2.3, the idempotency and Lemma 2.6 ensure that we have to consider only
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the equations:

i. x+ xy + yx ≈ x+ yx xiv. xyx+ yx+ xy ≈ xyx+ xy
ii. x+ y + xy ≈ x+ xy xv. xy + x+ y ≈ xy + y

iii. x+ y + yx ≈ x+ yx xvi. xy + x+ yx ≈ xy + yx
iv. x+ y + yxy ≈ x+ yxy xvii. xy + x+ xyx ≈ xy + xyx
v. x+ yx+ xy ≈ x+ xy xviii. xy + x+ yxy ≈ xy + yxy
vi. xyx+ x+ xy ≈ xyx+ xy xix. xy + yx+ x ≈ xy + x
vii. xyx+ x+ yx ≈ xyx+ yx xx. xy + yx+ y ≈ xy + y
viii. xyx+ x+ yxy ≈ xyx+ yxy xxi. xy + yx+ xyx ≈ xy + xyx

ix. xyx+ x+ y ≈ xyx+ yxy xxii. xy + yx+ yxy ≈ xy + yxy
x. xyx+ y + xy ≈ xyx+ xy xxiii. xy + y + x ≈ xy + x
xi. xyx+ y + yx ≈ xyx+ yx xxiv. xy + y + yx ≈ xy + yx

xii. xyx+ y + yxy ≈ xyx+ yxy xxv. xy + y + xyx ≈ xy + xyx
xiii. xyx+ xy + yx ≈ xyx+ yx xxvi. xy + y + yxy ≈ xy + yxy

and to show that the variety VMID satisfies none of them as identities.
Assume that the previous identities (except iv.,vi., vii., viii.,ix., xii., xvi., xvii.,xxiv.,
xxvi.) are satisfied in VBE .
Since VBE is solid, using the hypersubstitution σx+y,x or σx+y,y, we will get the
contradiction x + y + x ≈ x ∈ IdVBE . Therefore, we conclude that none of the
identities (i.,ii.,iii. v., x.,xi.,xiii., xiv., xv., xviii.,xix.,xx., xxi., xxii.,xxiii. and xxv.)
is satisfied in VBE .
Lemma 2.5 (2) guarantees that none of the identities (iv.,vi., vii., viii.,ix., xii., xvi.,
xvii.,xxiv. and xxvi.) is satisfied in VBE .
II) Secondly, we will prove that each term in the list is VMID-equivalent to itself
only.
Using Lemma 2.3 and Lemma 2.6, we have to consider only the equation t1+t2+t3 ≈
t1 + t4 + t3 (where both binary terms t1 + t2 + t3 and t1 + t4 + t3 belong to the list of
Lemma 2.7, and the terms ti, i = 1, · · · , 4 do not satisfy the conditions of Lemma
2.6) and to show that the variety VMID does not satisfy one of them as identity.
1. We consider only the equation x+ xy + yx ≈ x+ y + yx.
By Lemma 2.5 (2), one has x+ xy + yx ≈ x+ y + yx 6∈ IdVMID.
2. We consider the equations x + y + x ≈ x + yxy + x, x + y + xy ≈ x + yx +
xy, and x+ y + xyx ≈ x+ yxy + xyx.
By Lemma 2.5 (2), none of these identities holds in VMID.
3. There is no equation to consider.
4. and 5. are similar to 3.
6. We assume that the following identities hold in VBE :
a. xyx+ x+ xy ≈ xyx+ y + xy b. xyx+ x+ xy ≈ xyx+ yx+ xy
c. xyx+ x+ yx ≈ xyx+ y + yx d. xyx+ x+ yx ≈ xyx+ xy + yx
e. xyx+ x+ yxy ≈ xyx+ y + yxy

Lemma 2.5 (2) shows that none of the above mentioned identities is satisfied in
VMID.
7. can be proved in a similar way as in part 6.
8.,9. and 10. are similar to 3.
11. We have to consider the equations
a. xy + x+ y ≈ xy + yx+ y b. xy + x+ xy ≈ xy + xyx+ xy
c. xy + x+ yx ≈ xy + y + yx d. xy + x+ xyx ≈ xy + yx+ xyx
e. xy + x+ xyx ≈ xy + y + xyx f. xy + x+ yxy ≈ xy + y + yxy.
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Lemma 2.5 (2) guarantees that none of the identities a.), b.),c.),e.),f.) is satisfied
in VMID.
Assume that the identity d.) holds in VBE . Since VBE is solid, applying the
hypersubstitution σx+y,y to d.) we will obtain y + x + y ≈ y ∈ IdVBE . This
contradicts the regularity property of VBE .
12. is similar to 2.
13. is similar to 2.
14. Nothing to prove.
III) It is left to prove that any binary term that is a sum of three different elements
from BinG, is VMID-equivalent to one of the terms in our list. This was done in
[10].

Lemma 2.8. There are exactly (up to permutation of variables x and y) the fol-
lowing binary terms which are VMID-equivalent to sums consisting of four different
elements from BinG, these sums cannot be VMID-equivalent to sums consisting of
at most three summands from BinG:

1. xyx+ x+ y + t, t ∈ BinG\{x, y} 5. xy + x+ yx+ t, t ∈ {xy, xyx}
2. xyx+ x+ xy + t, t ∈ {xyx, yx} 6. xy + yx+ y + t ∈ {xy, yxy}
3. xyx+ x+ yx+ t, t ∈ {xyx, xy} 7. xy + x+ y + t, t ∈ BinG\{x, y}.
4. xyx+ x+ yxy + xyx

Proof: In the following lines, the idempotency and the medial laws will be used
but for reference, we will not mention this on each occasion.
I) We prove first that any binary term of the list cannot be VMID-equivalent to a
sum of at most three elements from BinG.
1. Let t ∈ BinG\{x, y}. Assume that there exists t1 ∈ BinG such that
xyx+ x+ y + t ≈ xyx+ t1 + t ∈ IdVMID.
• If t1 ∈ BinG\{x}, substituting y 7→ xyx in xyx+x+y+t ≈ xyx+t1+t ∈ IdVMID,
we would have xyx+ x+ xyx ≈ xyx ∈ IdVMID. This contradicts Lemma 2.5 (1).
• If t1 = x substituting x 7→ yxy in xyx+ x+ y + t ≈ xyx+ t1 + t ∈ IdVMID, we
would have yxy + y + yxy ≈ yxy ∈ IdVMID. This contradicts Lemma 2.5 (1).
2. Let t ∈ {xyx, yx}. Assume that there exists t2 ∈ BinG such that
xyx+ x+ xy + t ≈ xyx+ t2 + t ∈ IdVMID.
• If t2 ∈ BinG\{x}, substituting y 7→ xyx in the identity xyx + x + xy + t ≈
xyx + t1 + t ∈ IdVMID, we would have xyx + x + xyx ≈ xyx ∈ IdVMID. This
contradicts Lemma 2.5 (1)
• If t2 = x, since VMID is solid, applying the hypersubstitution σx+y,y to the
identities xyx+x+xy+xyx ≈ xyx+x+xyx and xyx+x+xy+yx ≈ xyx+x+yx,
we would get x ≈ x+ y+ x ∈ IdVMID. This contradicts the regularity property of
VMID.
3. Let t ∈ {xyx, xy}. Assume that there exists t3 ∈ BinG such that xyx+x+yx+
t ≈ xyx+ t3 + t ∈ IdVMID.
• If t3 ∈ BinG\{x}, the substitution y 7→ xyx, gives a contradiction xyx+x+xyx ≈
xyx ∈ IdVMID [Lemma 2.5 (1)].
• If t3 = x, since VMID is solid, applying the hypersubstitution σx+y,x to the
identity xyx+x+ yx+xyx ≈ xyx+x+xyx and xyx+x+ yx+xy ≈ xyx+x+xy
we would get x ≈ x+ y+ x ∈ IdVMID. This contradicts the regularity property of
VMID.
4. The proof is similar to 3.
5. The proof is similar to 3.
6. The proof is similar to 2.
7. The proof is similar to 1.
II) Secondly, we prove that each term in the list of Lemma 2.8 is VMID-equivalent
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to itself only. Using Lemma 2.3, we have to consider the identities:

a. xyx + x + y + xy ≈ xyx + x + yx + xy b. xyx + x + y + xyx ≈ xyx + x + xy + xyx
c. xyx + x + y + xyx ≈ xyx + x + yx + xyx d. xyx + x + y + xyx ≈ xyx + x + yxy + xyx

e. xyx + x + y + yx ≈ xyx + x + xy + yx f. xyx + x + xy + xyx ≈ xyx + x + yx + xyx

g. xyx + x + xy + xyx ≈ xyx + x + yxy + xyx h. xyx + x + yx + xyx ≈ xyx + x + yxy + xyx
i. xy + x + yx + xy ≈ xy + yx + y + xy k. xy + x + yx + xy ≈ xy + x + y + xy

l. xy + x + yx + xyx ≈ xy + x + y + xyx n. xy + x + yx + yxy ≈ xy + x + y + yxy

and have to show that the variety VMID satisfies none of them.
Assume that these identities are satisfied in VMID. The substitution
x 7→ yxy (resp. y 7→ xyx) in a.,b.,c.,d.,e.,k.,l.,n.,(resp. i.) gives the identity
xyx+ x+ xyx ≈ xyx which is not satisfied in VMID.
Since VMID is solid, applying the hypersubstitution σx+y,x (resp.to σx+y,y) to f.
and g. (resp. h), one obtains x + y + x ≈ x ∈ IdVMID. This contradicts the
regularity property of VMID.
We conclude that none of these identities are satisfied in VMID.
III) The last step of this proof is to show that any binary term which is a sum of
four different elements from BinG, is VMID-equivalent to one of the terms in our
list. This was done in [10].

Using Lemma 2.2, Lemma 2.3, Lemma 2.7, Lemma 2.8 and the idempotent laws,
we have the following result:

Theorem 2.1. The universe of the free algebra with respect to VMID freely gen-
erated by two variables x, y consists of [t]IdVMID

, t ∈ {x, xy, xyx}, the terms x +
t with t ∈ BinG\{x}, xy + t with t ∈ BinG\{xy}, xyx + t with t ∈ BinG\{xyx},
the terms from Lemma 2.7 and Lemma 2.8 and all of the terms arising from the
aforementioned terms by permuting the variables x and y.

Now, we turn to the variety VBE . The following result gives a description of all
binary terms over the variety VBE .

Theorem 2.2. Every binary term is VBE-equivalent to a sum of the form t1 + t2 +
t3 (tj ∈ BinG, j = 1, 2, 3), consisting of at most three summands.

Proof: Let V be a subvariety of VMID. Lemma 2.2 shows that every binary term
is V -equivalent to a sum consisting of at most four summands. Some of these sums
were reduced (over the variety VMID) to sums consisting of at most three summands
([3]). The same goes for the variety VBE , since IdVMID ⊂ IdVBE . Thus, it is left
to show that the terms in the list of Lemma 2.8 can be shortened (over the variety
VBE) to sums consisting of at most three summands from BinG. This is clear by
using Lemma 2.5 (1), Lemma 2.1 and the identity xy + yx ≈ xy + x+ y + yx.

Lemma 2.9. There are exactly (up to permutation of variables x and y) the fol-
lowing binary terms which are VBE-equivalent to sums consisting of three different
elements from BinG, these sums cannot be VBE-equivalent to sums consisting of at
most two summands from BinG:
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1. x+ xy + t, t ∈ {x, xyx} 10. xyx+ yx+ t, t ∈ {x, xyx}
2. x+ y + t, t ∈ BinG\{y, yxy} 11. xy + x+ t, t ∈ {y, xy, yxy}
3. x+ yx+ t, t ∈ {x, xyx} 12. xy + yx+ xy
5. x+ xyx+ x 13. xy + y + t, t ∈ {x, xy, xyx}
7. xyx+ y + t, t ∈ BinG\{y, yxy}
8. xyx+ xy + t, t ∈ {x, xyx}.

Notice that this enumeration corresponds exactly to that used in Lemma 2.7.

Proof of Lemma 2.9: In Lemma 2.7, we already showed that over the variety
VMID some sums consisting of three summands can be reduced. The same reduc-
tions are valid over VBE since IdVMID ⊆ IdVBE . Therefore, using the list of all
binary terms in Lemma 2.7, we have first to check whether reductions can be made
by additional identities valid in VBE .
1. One has x+ xy + yx ≈ x+ xy + y + yx ≈ x+ y + yx by Lemma 2.5 (1) and by
Lemma 2.1 (1). The last term is considered in part 2 .
2. The identity x+ y + yxy ≈ x+ yxy arises from Lemma 2.5 (1).
3. In a similar way as we did in part 1, we can prove x+ yx+ xy ≈ x+ y + xy.
4. One has x + yxy + x ≈ x + yxy + y + x ≈ x + y + x by Lemma 2.5 (1) and
Lemma 2.1 (13).
One has also x+ yxy+xyx ≈ x+ y+ yxy+xyx ≈ x+ y+xy by using the identity
xyx+ x+ xyx ≈ xyx and Lemma 2.5 (1).
5. There is nothing to prove.
6. The identity xyx+ x+ t ≈ xyx+ t is clear by Lemma 2.5(1).
7. Can be proved in a similar way as in part 2.
8. In a similar way as we did in part 2., we have xyx + xy + yx ≈ xyx + y + yx.
The last term is already considered in part 7.
9. We have xyx + yxy + x ≈ xyx + yxy + y + x ≈ xyx + y + x by Lemma 2.5
(1) and Lemma 2.1 (18). The last term already occurs in part 7. Also we have
xyx + yxy + xyx ≈ xyx + y + yxy + xyx ≈ xyx + y + xyx by Lemma 2.5 (1) and
Lemma 2.1 (7). The last term is considered in part 7.
10. In a similar way as we did in part 1., one has xyx + yx + xy ≈ xyx + y + xy.
The last term is considered in part 7.
11. Lemma 2.5 (1) shows that xy+x+ yx ≈ xy+ yx and xy+x+xyx ≈ xy+xyx.
12. In a similar way as we did in part 1., we get xy+ yx+ y ≈ xy+x+ y and xy+
yx+ x ≈ xy+ y+ x. The last terms already occur in part 11. As we did in part 8,
we get xy + yx+ xyx ≈ xy + y + xyx and xy + yx+ yxy ≈ xy + x+ yxy. The last
terms are already considered in part 11.
13. Can be shown in a similar way as 11.
14. One has xy+xyx+xy ≈ xy+xyx+x+xy ≈ xy+x+xy by using the identity
xyx+ x+ xyx ≈ xyx and Lemma 2.1 (8). see 11. for the last term.
15. On has xy + yxy + xy ≈ xy + yxy + y + xy ≈ xy + y + xy by Lemma 2.5 (1)
and Lemma 2.1 (11). The last term occurs in 13.
It is left to prove that each term in the list of Lemma 2.9 is only VBE-equivalent to
itself. This was already proved in Lemma 2.7.

From Theorem 2.2, every binary term is VBE-equivalent to a sum consisting of
at most three summands. Using Lemma 2.3, Lemma 2.9 and the idempotency, we
have the following results:
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Theorem 2.3. The universe of the free algebra with respect to VBE freely generated
by two variables x, y is {[t]IdVBE

, t ∈ NW(2,2)(X2)(VBE)}, with NW(2,2)(X2)(VBE)
is the set consisting of elements from {x, xy, xyx}, the terms x + t with t ∈
BinG\{x}, xy + t with t ∈ BinG\{xy}, xyx + t with t ∈ BinG\{xyx}, the terms
x+t with t ∈ BinG\{x}, xy+t with t ∈ BinG\{xy}, xyx+t with t ∈ BinG\{xyx},
the terms of the list of Lemma 2.9 and all of the terms arising from the aforemen-
tioned terms by permuting the variables x and y.

The last step of this section will be devoted to the solid variety RA(2,2).

Lemma 2.10. If s1 + s2 ≈ t1 + t2 ∈ IdRA(2,2), where si, ti ∈ BinG,
i ∈ {1, 2}, then s1 ≈ t1 ∈ IdRA(2,2) and s2 ≈ t2 ∈ IdRA(2,2).

Proof: Assume that s1 + s2 ≈ t1 + t2 ∈ IdRA(2,2), where si, ti ∈ BinG with i ∈
{1, 2}. Since RA(2,2) is solid, applying the hypersubstitutions σx,xy and σy,xy to
the previous identity, we obtain in RA(2,2) the identities s1 ≈ t1 and s2 ≈ t2.

Theorem 2.4. The universe of the free algebra FRA(2,2)
(X2) with respect to RA(2,2)

freely generated by two variables x, y is {[t]IdRA(2,2)
, t ∈ NW(2,2)(X2)(RA(2,2))}, with

NW(2,2)(X2)(RA(2,2)) = {x, y, xy, yx, x+ y, x+xy, x+ yx, y+x, y+xy, y+ yx, xy+
x, xy + y, xy + yx, yx+ x, yx+ y, yx+ xy}.

Proof: Let t ∈W(2,2)(X2). Then, it is easy to verify that t is RA(2,2)-equivalent
to t1 + t2 where ti ∈ {x, xy, yx, y}, i = 1, 2 because of Lemma 2.10 and the iden-
tities xyz ≈ xz as well as x+ y + z ≈ x+ z satisfied in RA(2,2).
Thus we have only to consider the binary terms that are sums consisting of ex-
actly two binary terms from BinG. Since the variety RA(2,2) is outermost, for
r, s, t, u ∈ {x, y, xy, yx} with r 6= s and u 6= t the equation s + t ≈ r + u is not an
identity in RA(2,2). We conclude that the universe of the free algebra FX2

(RA(2,2))
is {[t]IdRA(2,2)

, t ∈ {x, y, xy, yx, x+y, x+xy, x+yx, y+x, y+xy, y+yx, xy+x, xy+

y, xy + yx, yx+ x, yx+ y, yx+ xy}}.

Now, we will determine the degree of each solid variety of semirings.

3. Degrees of Solid Varieties of Semirings

First, we give a characterisation of the trivial variety of any type τ .

Theorem 3.1. Let V be a variety of type τ = (ni)i∈I such that nj ≥ 2 for some
j ∈ I. Then V is a solid variety and dp(V ) = 1 if and only if V is trivial.

Proof: It is clear that the trivial variety T is solid and dp(T ) = 1. Let V be a
variety of type τ = (ni)i∈I such that nj ≥ 2 for some j ∈ I. Assume that V is solid
and dp(V ) = 1. Then |P (V )|∼V | = |Hyp(τ)|∼V | = 1. Moreover, because of nj ≥ 2
for some j ∈ I, there exist at least two hypersubstitutions σ1 and σ2, belonging to
the class of σid, such that σ1(fj) = xnj1 and σ2(fj) = xnj2 , with xnj1 6= xnj2 . Thus
we have xnj1 ≈ fj(x1, · · · , nj) ≈ xnj2 ∈ IdV . It follows that xnj1 ≈ xnj2 ∈ IdV .
Therefore V is trivial.

The following result shows a connection betweenW(2,2)({x, y})|IdV andHyp(2, 2)|∼V
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Lemma 3.1. Let V be a variety of type (2, 2). The map

Φ : (W(2,2)({x, y})|IdV )2 −→ Hyp(2, 2)|∼V

([s]IdV , [t]IdV ) 7−→ [σs,t]∼V

is bijective.

Proof: Let s1, t1, s, and t four binary terms.
We have the following equivalences

([s1]IdV , [t1]IdV ) = ([s]IdV , [t]IdV ) ⇐⇒
{
s1 ≈ s ∈ IdV
t1 ≈ t ∈ IdV

⇐⇒
{
σs1,t1(F ) ≈ σs,t(F ) ∈ IdV
σs1,t1(G) ≈ σs,t(G) ∈ IdV

⇐⇒ σs1,t1 ∼V σs,t
It follows that Φ is well defined and is injective. By the definition Φ is onto.

Therefore Φ is bijective.

Now, we have all tools to prove:

Theorem 3.2. The degrees of non trivial solid varieties of semirings with respect
to proper hypersubstitution are

(1) dp(VMID) = 1682

(2) dp(VBE) = 822

(3) dp(RA(2,2)) = 162

Proof: By Theorem 1.1, there are three non trivial solid varieties of semirings,
namely VMID, VBE and RA(2,2). For any solid variety V of semirings, we have
dp(V ) = |P (V )|∼V

| = |Hyp(2, 2)|∼V
|.

But Lemma 3.2 ensures that

|Hyp(2, 2)|∼V
| =

∣∣∣(W(2,2)({x, y})|IdV
)2∣∣∣ =

(∣∣W(2,2)({x, y})|IdV
∣∣)2.

Therefore, using Theorem 2.1, Theorem 2.3 and Theorem 2.4 we have the results.
This means, if V is a solid variety of semirings, then dp(V ) ∈ {1, 1682, 822, 162}.
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