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A NEW APPLICATION OF ABSOLUTE MATRIX
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HİKMET SEYHAN ÖZARSLAN AND MEHMET ÖNER ŞAKAR

(Communicated by Nihal YILMAZ ÖZGÜR)

Abstract. In the present paper, a theorem dealing with the |N̄, pn|k summa-

bility factors of infinite series has been generalized to absolute matrix summa-
bility factors by using δ-quasi monotone sequences. This new theorem also

includes several new results.

1. INTRODUCTION

Definition 1.1. A sequence (bn) of positive numbers is said to be quasi monotone,
if n∆bn ≥ −αbn for some α and it is said to be δ-quasi monotone, if bn → 0, bn > 0
ultimately and ∆bn ≥ −δn, where (δn) is a sequence of positive numbers (see [1]).

Definition 1.2. Let
∑
an be a given infinite series with partial sums (sn). By un

and tn we denote the n-th (C, 1) means of the sequences (sn) and (nan), respectively.
The series

∑
an is said to be summable |C, 1|k, k ≥ 1, if (see [4])

∞∑
n=1

nk−1|un − un−1|k <∞.(1.1)

But since tn = n(un − un−1) (see [6]), condition (1.1) can also be written as

(1.2)

∞∑
n=1

1

n
|tn|k <∞.
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Definition 1.3. Let (pn) be a sequence of positive numbers such that

(1.3) Pn =

n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1) .

The sequence-to-sequence transformation

(1.4) σn =
1

Pn

n∑
v=0

pvsv

defines the sequence (σn) of the
(
N̄ , pn

)
mean of the sequence (sn) generated by

the sequence of coefficients (pn) (see [5]). The series
∑
an is said to be summable∣∣N̄ , pn∣∣k, k ≥ 1, if (see [2])

(1.5)

∞∑
n=1

(
Pn

pn

)k−1

|σn − σn−1|k <∞.

Definition 1.4. Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of
nonzero diagonal entries. Then A defines the sequence-to-sequence transformation,
mapping the sequence s = (sn) to As = (An(s)), where

(1.6) An(s) =

n∑
v=0

anvsv, n = 0, 1, . . .

The series
∑
an is said to be summable |A, pn|k, k ≥ 1, if (see [9])

(1.7)

∞∑
n=1

(
Pn

pn

)k−1

|∆̄An(s)|k <∞,

where

∆̄An(s) = An(s)−An−1(s).

2. Known result

In [3], Bor has proved the following main theorem dealing with
∣∣N̄ , pn∣∣k summa-

bility factors of infinite series.

Theorem 2.1. Let (Xn) be a positive non-decreasing sequence,(λn)→ 0 as n→∞
and (pn) be a sequence of positive numbers such that

(2.1) Pn = O(npn) as n→∞.
Suppose that there exist a sequence of numbers (An) which is δ-quasi monotone

with
∑
nXnδn <∞,

∑
AnXn is convergent and |∆λn| ≤ |An| for all n. If

(2.2)

m∑
n=1

pn
Pn
|tn|k = O(Xm) as m→∞,

then the series
∑
anλn is summable |N̄ , pn|k, k ≥ 1.
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3. The Main Result

The aim of this paper is to generalize Theorem 2.1 to |A, pn|k summability.
Before stating the main theorem we must first introduce some further notations.
Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv)

and Â = (ânv) as follows:

(3.1) ānv =

n∑
i=v

ani, n, v = 0, 1, ...

and

(3.2) â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ...

It may be noted that Ā and Â are the well-known matrices of series-to-sequence
and series-to-series transformations, respectively. Then, we have

(3.3) An(s) =
n∑

v=0

anvsv =

n∑
v=0

ānvav

and

(3.4) ∆̄An(s) =

n∑
v=0

ânvav.

Now we shall prove the following theorem.

Theorem 3.1. Let A = (anv) be a positive normal matrix such that

(3.5) ān0 = 1, n = 0, 1, ...,

(3.6) an−1,v ≥ anv for n ≥ v + 1,

(3.7) ann = O

(
pn
Pn

)
,

(3.8) |ân,v+1| = O (v |∆vânv|) .

If (Xn) is a non-decreasing sequence and the conditions of Theorem 2.1 are
satisfied, then the series

∑
anλn is summable |A, pn|k, k ≥ 1.

Remark 3.1. It should be noted that, if we take (Xn) as a positive non-decreasing

sequence and anv =
pv
Pn

for all values of n in Theorem 3.1, then we get Theorem 2.1.

Also, if we take pn = 1, anv =
pv
Pn

and Xn = log n for all values of n in Theorem

3.1, then we get a result due to Mazhar [7].

Lemma 3.1. (see [3]) Under the conditions of Theorem 3.1, we have that

(3.9) |λn|Xn = O (1) as n→∞.
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Lemma 3.2. (see [3]) If (An) is δ-quasi monotone with
∑
nXnδn <∞,

∑
AnXn

is convergent, then

(3.10) mXmAm = O(1) as m→∞,

(3.11)

∞∑
n=1

nXn|∆An| <∞.

4. Proof of Theorem 3.1

Let (Tn) denotes A-transform of the series
∑
anλn. Then, we have by (3.3) and

(3.4)

Tn =

n∑
v=0

anv

v∑
i=0

aiλi =

n∑
v=0

avλvānv.

Hence we get

∆̄Tn =

n∑
i=0

aiλiāni −
n−1∑
i=0

aiλiān−1,i =

n∑
i=0

âniλi
i

iai.

By Abel’s transformation, we have

∆̄Tn =

n−1∑
v=1

∆v

( ânvλv
v

) v∑
r=1

rar +
ânnλn
n

n∑
r=1

rar

=

n−1∑
v=1

∆v

( ânvλv
v

)
(v + 1)tv +

ânnλn
n

(n+ 1)tn

=
n+ 1

n
annλntn +

n−1∑
v=1

v + 1

v
∆v(ânv)λvtv

+

n−1∑
v=1

v + 1

v
ân,v+1∆λvtv +

n−1∑
v=1

ân,v+1λv+1
tv
v

= Tn,1 + Tn,2 + Tn,3 + Tn,4, say.

Since

|Tn,1 + Tn,2 + Tn,3 + Tn,4|k ≤ 4k(|Tn,1|k + |Tn,2|k + |Tn,3|k + |Tn,4|k)

to complete the proof of Theorem 3.1, it is sufficient to show that

∞∑
n=1

(
Pn

pn

)k−1

|Tn,r|k <∞ for r = 1, 2, 3, 4.
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Firstly, by using (3.7) condition, we have that

m∑
n=1

(Pn

pn

)k−1

|Tn,1|k = O(1)

m∑
n=1

(Pn

pn

)k−1

aknn|λn|k|tn|k

= O(1)

m∑
n=1

pn
Pn
|λn||λn|k−1|tn|k

= O(1)

m−1∑
n=1

∆|λn|
n∑

r=1

( pr
Pr

)
|tr|k +O(1)|λm|

m∑
r=1

( pr
Pr

)
|tr|k

= O(1)

m−1∑
n=1

|∆λn|Xn +O(1)|λm|Xm

= O(1)

m−1∑
n=1

|An|Xn +O(1)|λm|Xm

= O(1)

m−1∑
n=1

AnXn +O(1)|λm|Xm = O(1) as m→∞,

by the hypotheses of Theorem 3.1 and Lemma 3.1. Now, applying Hölder’s inequal-
ity with indices k and k′ where 1/k + 1/k′ = 1, as in Tn,1 we have that

m+1∑
n=2

(Pn

pn

)k−1

|Tn,2|k = O(1)

m+1∑
n=2

(Pn

pn

)k−1( n−1∑
v=1

|∆v(ânv)||λv||tv|
)k

= O(1)

m+1∑
n=2

(Pn

pn

)k−1( n−1∑
v=1

|∆v(ânv)||λv|k|tv|k
)

×
( n−1∑

v=1

|∆v(ânv)|
)k−1

= O(1)

m+1∑
n=2

(Pn

pn

)k−1( n−1∑
v=1

|∆v(ânv)||λv|k|tv|k
)
× ak−1

nn

= O(1)

m∑
v=1

|λv|k|tv|k
m+1∑

n=v+1

|∆v(ânv)|

= O(1)

m∑
v=1

|λv||tv|k
m+1∑

n=v+1

|∆v(ânv)|

= O(1)

m∑
v=1

|λv||tv|kavv

= O(1)

m∑
v=1

|λv||tv|k
pv
Pv

= O(1) as m→∞.
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Now, since vAv = O
( 1

Xv

)
= O(1), by (3.8), we have that

m+1∑
n=2

(Pn

pn

)k−1

|Tn,3|k = O(1)

m+1∑
n=2

(Pn

pn

)k−1( n−1∑
v=1

|ân,v+1||∆λv||tv|
)k

= O(1)

m+1∑
n=2

(Pn

pn

)k−1( n−1∑
v=1

|ân,v+1||Av||tv|
)k

= O(1)

m+1∑
n=2

(Pn

pn

)k−1 n−1∑
v=1

|ân,v+1||Av||tv|k

×
( n−1∑

v=1

|ân,v+1||Av|
)k−1

= O(1)

m+1∑
n=2

(Pn

pn

)k−1 n−1∑
v=1

v|∆v(ân,v)||Av||tv|k

×
( n−1∑

v=1

v|∆v(ân,v)||Av|
)k−1

= O(1)

m+1∑
n=2

(Pn

pn

)k−1 n−1∑
v=1

v|∆v(ân,v)||Av||tv|k

×
( n−1∑

v=1

|∆v(ân,v)|
)k−1

= O(1)

m+1∑
n=2

n−1∑
v=1

v|∆v(ân,v)||Av||tv|k

= O(1)

m∑
v=1

v|Av||tv|k
m+1∑

n=v+1

|∆v(ânv)|

= O(1)

m∑
v=1

v|Av||tv|k
pv
Pv

= O(1)

m−1∑
v=1

∆(v|Av|)
v∑

r=1

pr
Pr
|tr|k +m|Am|

m∑
r=1

pr
Pr
|tr|k

= O(1)

m−1∑
v=1

v∆(|Av|)Xv +O(1)

m−1∑
v=1

|Av+1|Xv +O(1)m|Am|Xm

= O(1)

m−1∑
v=1

v|∆Av|Xv +O(1)

m−1∑
v=1

Av+1Xv +O(1)mAmXm

= O(1) as m→∞,

by virtue of the hypothesises of Theorem 3.1 and by Lemma 3.2.
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Finally, as in Tn,1, we have that

m+1∑
n=2

(Pn

pn

)k−1

|Tn,4|k ≤
m+1∑
n=2

(Pn

pn

)k−1( n−1∑
v=1

|ân,v+1||λv+1|
|tv|
v

)k
= O(1)

m+1∑
n=2

(Pn

pn

)k−1( n−1∑
v=1

v|∆v(ânv)||λv+1|
|tv|
v

)k
= O(1)

m+1∑
n=2

(Pn

pn

)k−1 n−1∑
v=1

|∆v(ân,v)||λv+1||tv|k

×
( n−1∑

v=1

|∆v(ân,v)|
)k−1

= O(1)

m+1∑
n=2

n−1∑
v=1

|∆v(ânv)||λv+1|k|tv|k

= O(1)
m∑

v=1

|λv+1||tv|k
m+1∑

n=v+1

|∆v(ânv)|

= O(1)

m∑
v=1

pv
Pv
|λv+1||tv|k

= O(1) as m→∞.

Therefore, we obtain that

m∑
n=1

(
Pn

pn
)k−1|Tn,r|k = O(1) as m→∞, for r = 1, 2, 3, 4.

This completes the proof of the Theorem 3.1.
It should be noted that, if we take anv = pv

Pn
for all values of n, then we get The-

orem 2.1. Also, if we take pn = 1 for all values of n, then we get |A|k summability
(see [8]). Furthermore, if we take pn = 1 and anv = pv

Pn
for all values of n, then we

get |C, 1|k summability. Finally, if we take pn = 1, anv = pv

Pn
and Xn = logn for

all values of n, then we get a result due to Mazhar [7].
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