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ON C-TOTALLY REAL SUBMANIFOLDS OF SASAKIAN SPACE

FORMS

AHMET YILDIZ

(Communicated by Bayram S. AHİN)

Abstract. Let M̃2n+1(c) be (2n + 1)-dimensional Sasakian space form of
constant ϕ-sectional curvature c and Mn be an n-dimensional C-totally real

minimal submanifold of M̃2n+1(c). If Mn is semi-parallel and the sectional

curvature of Mn is greater than
(n−2)(c+3)
4(2n−1)

, then M n is totally geodesic. Then

we prove that a C-totally real minimal surface of a 5-dimensional Sasakian
manifold M̃(c) with constant ϕ-sectional curvature c, if M is semi-parallel

surface, then M is totally geodesic or flat.

1. Introduction

In 1976, S. Yamaguchi, M. Kon and T. Ikawa [17] introduced the notion of a
C-totally real submanifold of a Sasakian manifold and proved the following:

Theorem 1.1. Let M2n+1(c) be a (2n + 1)-dimensional Sasakian manifold with
constant ϕ-sectional curvature c and Mn be an n-dimensional compact C-totally

real minimal submanifold of M̃2n+1(c). If ‖σ‖2 < n(n+1)(c+3)
4(2n−1) or, equivalently κ >

n2(n−2)(c+3)
2(2n−1) , then M is totally geodesic, where κ is the scalar curvature.

Then S. Yamaguchi, M. Kon and Y. Miyahara [16] studied a C-totally real min-

imal surface of a 5-dimensional Sasakian manifold M̃(c) with constant ϕ-sectional
curvature c. They showed that if M is a complete nonnegative curved surface, then
M is totally geodesic or flat. Then, A. Yildiz et al. [18] studied C-totally real
pseudo-parallel submanifolds in Sasakian space forms.

Motivated by these results, in this paper we get the followings:

Theorem 1.2. Let M̃2n+1(c) be a (2n + 1)-dimensional Sasakian space form of
constant ϕ-sectional curvature c and Mn be an n-dimensional C-totally real min-
imal submanifold of M̃2n+1(c). If Mn is semi-parallel and the sectional curvature

of Mn is greater than (n−2)(c+3)
4(2n−1) , then Mn is totally geodesic.
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Theorem 1.3. Let M be a C-totally real minimal surface of a 5-dimensional
Sasakian manifold M̃(c) with constant ϕ-sectional curvature c. If M is semi-parallel
surface, then M is totally geodesic or flat.

2. Preliminaries

Let f : Mn −→ M̃2n+1(c) be an isometric immersion of an n-dimensional Rie-

mannian manifold M into (2n+1)-dimensional space form M̃2n+1(c). We denote by

∇ and ∇̃ the Levi-Civita connections of M and M̃2n+1(c) respectively, and N(M)
its normal bundle. Then for vector fields X,Y which are tangent to M, the second
fundamental form σ is given by the formula σ(X,Y ) = ∇̃XY −∇XY. Furthermore,
for ξ ∈ N(M), Aξ : TM −→ TM will denote the Weingarten operator in the di-

rection ξ, AξX = ∇⊥Xξ − ∇̃Xξ, where ∇⊥ denotes the normal connection of M .
The second fundamental form σ and Aξ are related by g̃(σ(X,Y ), ξ) = g(AξX,Y ),
where g is the induced metric of g̃ for any vector fields X,Y tangent to M . The
mean curvature vector H of M is defined to be

H =
1

n
Tr(σ).

A submanifold M is said to be a minimal submanifold in M̃ if its mean curvature
vector H is identically zero. Moreover, M is called a totally geodesic submanifold
in M̃ if its second fundamental form σ is identically zero. The covariant derivative
∇σ of σ is defined by

(2.1) (∇Xσ)(Y, Z) = ∇⊥X(σ(Y,Z))− σ(∇XY,Z)− σ(Y,∇XZ),

where, ∇σ is a normal bundle valued tensor of type (0, 3) and is called the third
fundamental form of M . The equation of Codazzi implies that ∇σ is symmetric
hence

(2.2) (∇Xσ)(Y, Z) = (∇Y σ)(X,Z) = (∇Zσ)(X,Y ).

Here, ∇ is called the van der Waerden-Bortolotti connection ∇ = ∇⊕∇⊥, where
∇ is the Levi-Civita connection and ∇⊥ is the normal connection of Mn. Given an
isometric immersion f : M −→ M̃ , if ∇σ = 0, then f is called parallel [10]. Then
J. Deprez ([7], [8]) defined the immersion to be semi-parallel if

R̄(X,Y ) · σ = 0.

The basic equations of Gauss and Ricci are defined by

g(R(X,Y )Z,W ) =
c+ 3

4
(g(Y,Z)g(X,W )− g(X,Z)g(Y,W ))

+
∑
α

(g(AαX,W )(g(AαY,Z)− g(AαX,Z)g(AαY,W )),(2.3)

(2.4) g(R⊥(X,Y )ξ, η) = g([Aξ, Aη]X,Y ); ξ, η ∈ N(M),

respectively. Where R⊥ is the curvature operator of the normal connection defined
by

R⊥(X,Y )Z = ∇⊥X∇⊥Y Z −∇⊥Y∇⊥XZ −∇⊥[X,Y ]Z.

An isometric immersion f (or the submanifold M) is said to have flat normal
connection (or trivial normal connection) ifR⊥ = 0. IfM has flat normal connection
then shortly we call it to be normally flat. The relation (2.4) shows that the triviality
of the normal connection of M into space form Nn+d(c) (and more generally, for
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submanifolds in a locally conformally flat space) is equivalent to the fact that all
second fundamental tensors are mutually commute, or that all second fundamental
tensors are mutually diagonalizable [5].

The sectional curvature K(X,Y ) of M determined by an orthonormal pair X,Y
is given by

K(X,Y ) =
c+ 3

4
+
∑
α

(g(AαX,X)g(AαY, Y )− g(AαX,Y )2).

The second covariant derivative ∇2
σ of σ is defined by

(∇2
σ)(Z,W,X, Y ) = (∇X∇Y σ)(Z,W )

= ∇⊥X((∇Y σ)(Z,W ))− (∇Y σ)(∇XZ,W )(2.5)

−(∇Xσ)(Z,∇YW )− (∇∇XY σ)(Z,W ).

Then we have

(∇X∇Y σ)(Z,W )− (∇Y∇Xσ)(Z,W ) = (R(X,Y ) · σ)(Z,W )

= R⊥(X,Y )σ(Z,W )− σ(R(X,Y )Z,W )(2.6)

−σ(Z,R(X,Y )W ).

where R is the curvature tensor belonging to the connection ∇.

3. C-totally real submanifolds of Sasakian space forms

Let M̃ be a (2n+1)-dimensional manifold and Γ(M̃) be the Lie algebra of vector

fields on M̃ . An almost contact structure on M̃ is defined by a (1, 1)-tensor ϕ, a

vector field ξ and a 1-form η on M̃ satisfy

ϕ2X = −X + η(X)ξ, ϕξ = 0, η(ϕX) = 0, η(ξ) = 1,

where X ∈ Γ(M̃).Manifolds equipped with an almost contact structure are called

almost contact manifolds. A Riemannian manifold M̃ with metric tensor g and
almost contact structure (ϕ, ξ, η) such that

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),

or equivalently

g(X,ϕY ) = −g(ϕX, Y ) and η(X) = g(X, ξ),

for all X,Y ∈ Γ(M̃), is almost contact metric manifold. The existence of an almost

contact metric structure on M̃ is equivalent with the existence of a reduction of the
structurel group to U (n)× 1, i.e., all the matrices of O(2n+ 1) of the form A B 0

−B A 0
0 0 1

 ,

where A and B are real (n× n)-matrices. The fundamental 2-form Ψ of an almost

contact metric manifold (M̃, ϕ, ξ, η, g) is defined by

Ψ(X,Y ) = g(ϕX, Y ),
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for all X,Y ∈ Γ(M̃), and this form satisfies η ∧ Ψn 6= 0. When Ψ = dη the

associated structure is a contact structure and M̃ is an almost Sasakian manifold.
We denote by ∇̃ the Levi-Civita connection on M̃. Then we have [13]

(∇̃Xϕ)Y = g(X,Y )ξ − η(Y )X, ∇̃Xξ = −ϕX,

for any vector fields X,Y tangent to M̃ .
If moreover the structure is normal, that is, if [ϕX,ϕY ] +ϕ2[X,Y ]−ϕ[X,ϕY ]−

ϕ[ϕX, Y ] = −2dη(X,Y )ξ, then the contact metric structure is called a Sasakian

structure (normal contact metric structure) and M̃2n+1 is called a Sasakian mani-
fold. For more details and background, see the standard references ([2], [15].

A plane section in the tangent space TXM̃ at x ∈ M̃ is called a ϕ-section if
it is spanned by a vector X orthogonal to ξ and ϕX. The sectional curvature
K(X,ϕX) with respect to a ϕ-section determined by a vector X is called a ϕ-
sectional curvature. A Sasakian manifold with constant ϕ-sectional curvature c is
a Sasakian space form and is denoted by M̃(c). The curvature tensor of a Sasakian

space form M̃(c) is given by

R̃(X,Y )Z =
1

4
(c+ 3) {g(Y, Z)X − g(X,Z)Y }

−1

4
(c− 1)

 η(Y )η(Z)X − η(X)η(Z)Y + g(Y,Z)η(X)ξ
−g(X,Z)η(Y )ξ − g(ϕY,Z)ϕX
+g(ϕX,Z)ϕY + 2g(ϕX, Y )ϕZ

 .

Example 3.1. [2] Let R2n+1 be a Euclidean space with cartesian coordinates
(xi, yi, z). Then a Sasakian structure on R2n+1 is defined by (ϕ, ξ, η, g) such that

ξ = 2
∂

∂z
, η =

1

2
(dz −

m∑
i=1

yidxi), g =
1

4
[η ⊗ η +

m∑
i=1

((dxi)2 + (dyi)2)],

and the tensor field ϕ is given by matrix 0 δij 0
−δij 0 0

0 yj 0

 .

With such a structure, R2n+1 is of constant ϕ-sectional curvature −3 and denoted
by R2n+1(−3).

Example 3.2. [1] For θ ∈ (0, π/2), the immersion

F (u, v, w, s, t) = 2(u, 0, w, 0, v cos θ, v sin θ, s cos θ, s sin θ, t),

defines a 5-dimensional submanifold M in R9(−3). We consider on M the induced
almost contact structure (ϕ, ξ, η, g), where ϕ = (sec θ)T , T being the tangential
component of ϕ. It can be checked that

(∇Xϕ)Y = cos θ(g(X,Y )ξ − η(Y )X),

for any vector fields X,Y tangent to M .

We remark that the immersion F in the Example 2 defines a 5-dimensional
minimal submanifold M in a Sasakian space form R9(−3).

A submanifold M of a Sasakian manifold M̃ is called a C-totally real submanifold
if and only if ϕ(TxM) ⊂ T⊥x M for all x ∈M (TxM and T⊥x M are respectively the
tangent space and normal space of M at x).
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When ξ is tangent to M (e.g., when m = n−1), M is a C-totally real submanifold
if and only if ∇Xξ = 0 for all X ∈ TM , where ∇ is the connection on M induced
from the Levi-Civita connection ∇̃ on M̃ . For a C-totally real submanifold Mm+1

in M̃2(m+p)+1 with m ≥ 1 it is impossible for M to be totally umbilical [11].
When ξ is normal to M then the submanifold M is automatically anti-invariant

in M̃ with m ≤ n and also η(X) = g(X, ξ) = 0 for X ∈ TM [14]. On the

other hand, η = 0 defines a n-dimensional distribution on M̃, the so called contact
distribution D. This distribution admits integral submanifolds up to (and including)

dimension n. Moreover, it is proved that a manifold M immersed in M̃ is an integral
submanifold of D if and only if TxM ⊂ Dx for x ∈M and ϕ(TxM) ⊂ T⊥x M [3]. The
integral submanifols of the contact distribution of a Sasakian manifold are called
C-totally real submanifolds. It is easy to see that the C-totally real submanifolds
M of M̃ are the submanifolds with ξ ∈ T⊥M.

Then we have known dimM ≤ n and the following theorem has been proved
[12]:

Theorem 3.1. Let M be an m (m ≤ n) dimensional C-totally real submanifold

in a Sasakian manifold M̃2n+1 with structure tensors (ϕ, ξ, η, g). Then we have the
following:

(i): The second fundamental form of ξ direction is identically zero.
(ii): If X ∈ χ(M), then ϕX ∈ χ⊥(M).
(iii): If m = n, then AϕX(Y ) = AϕY (X), X, Y ∈ χ(M).

Also, we need the followings:

Lemma 3.1. [15] Let M be an n-dimensional C-totally real submanifold of a

(2n+ 1)-dimensional Sasakian manifold M̃. If the second fundamental form of M

is parallel, then M is totally geodesic in M̃.

Lemma 3.2. [2] If the sectional curvature of Mn is greater than δ, then

1

2
∆(‖σ‖2) ≥

∥∥∇σ∥∥2 + (1 + a)nδ ‖σ‖2 − na(c+ 3)− (c− 1)

4
‖σ‖2

+
1− a

2

∑
α,β

tr(AαAβ −AβAα)2 + a
∑
α,β

tr(AαAβ)2(3.1)

for any real number a ≥ −1.

Lemma 3.3. [2]
∥∥∇σ∥∥2 ≥ ‖σ‖2 .

Proposition 3.1. [9] If M is an n-dimensional C-totally real submanifold of a

Sasakian space form M̃(c), then the following conditions are equivalent: (i) M is
minimal; (ii) the mean curvature vector H of M is parallel .

4. Proofs of the Theorems

Let M be an n-dimensional C-totally real submanifold of (2n + 1)-dimensional

Sasakian space form M̃2n+1(c) of constant ϕ-sectional curvature c. We choose an
orthonormal bases {e1, e2, ..., en, ϕe1 = e1∗ , ..., ϕen = en∗ , e(n+1)∗ = ξ}. Then for
1 ≤ i, j ≤ n, n+ 1 ≤ α ≤ 2n+ 1, the components of the second fundamental form
σ are given by

(4.1) σαij = g(σ(ei, ej), eα).
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Similarly, the components of the first and the second covariant derivative of σ
are given by

(4.2) σαijk = g((∇ekσ)(ei, ej), eα) = ∇αekσij ,
and

σαijkl = g((∇el∇ekσ)(ei, ej), eα)

= ∇αelσijk(4.3)

= ∇el∇
α

ek
σij ,

respectively. If f is semi-parallel, then by definition, the condition

(4.4) R(el, ek) · σ = 0.

By (2.6), we have

(4.5) (R(el, ek) · σ)(ei, ej) = (∇el∇ekσ)(ei, ej)− (∇ek∇elσ)(ei, ej).

Making use of (4.1), (4.3), (4.5), the semi-parallelity condition (4.4) turns into

(4.6) σαijkl − σαijlk = 0.

Recall that the Laplacian ∆σαij of σαij is defined by

(4.7) ∆σαij =

n∑
i,j,k=1

σαijkk.

Then we obtain

(4.8)
1

2
∆(‖σ‖2) =

n∑
i,j,k=1

p∑
α=1

σαijσ
α
ijkk +

∥∥∇σ∥∥2 ,
where

(4.9) ‖σ‖2 =

n∑
i,j,k=1

p∑
α=1

(σαij)
2,

and

(4.10)
∥∥∇σ∥∥2 =

n∑
i,j,k=1

p∑
α=1

(σαijkk)2,

are the square of the length of the second and the third fundamental forms of Mn,
respectively. In addition, making use of (4.1) and (4.3), we obtain

σαijσ
α
ijkk = g(σ(ei, ej), eα)g((∇ek∇ekσ)(ei, ej), eα)

= g((∇ek∇ekσ)(ei, ej)g(σ(ei, ej), eα), eα)(4.11)

= g((∇ek∇ekσ)(ei, ej), σ(ei, ej)).

Due to (4.11), the equation (4.8) becomes

(4.12)
1

2
∆(‖σ‖2) =

n∑
i,j,k=1

g((∇ek∇ekσ)(ei, ej), σ(ei, ej)) +
∥∥∇σ∥∥2 .

Further, by the use of (4.4) and (4.5), we get

g((∇ek∇ekσ)(ei, ej), σ(ei, ej) = g((∇ek∇eiσ)(ek, ej), σ(ei, ej))(4.13)

= g((∇ei∇ekσ)(ej , ek), σ(ei, ej))
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Substituting (4.13) into (4.12), we have

1

2
∆(‖σ‖2) =

n∑
i,j,k=1

[g((∇ei∇ejσ)(ek, ek), σ(ei, ej))

+
∥∥∇σ∥∥2(4.14)

Furthermore, by the definition

(4.15) ‖σ‖2 =

n∑
i,j=1

g(σ(ei, ej), σ(ei, ej)),

(4.16) Hα =

n∑
k=1

σαkk,

(4.17) ‖H‖2 =
1

n2

p∑
α=1

(Hα)2.

After some calculations, we get

1

2
∆(‖σ‖2) =

n∑
i,j=1

p∑
α=1

σαij(∇ei∇ejHα)(4.18)

+
∥∥∇σ∥∥2 .

Using minimallity condition, the equation (4.18) reduces to

(4.19)
1

2
∆(‖σ‖2) =

∥∥∇σ∥∥2 .
On the other hand Blair [2] shown that

1

2
∆(‖σ‖2) ≥

∥∥∇σ∥∥2 + (1 + a)nδ ‖σ‖2 − (na− 1)(c+ 3)

4
‖σ‖2

−(1− a) ‖σ‖4 +

n∑
i=1

(trA2
i )

2,(4.20)

for −1 ≤ a ≤ 1. Hence using (4.19) in (4.20), we have

0 > (1 + a)nδ ‖σ‖2 − (na− 1)(c+ 3)

4
‖σ‖2

−(1− a) ‖σ‖4 +

n∑
i=1

(trA2
i )

2

for −1 ≤ a ≤ 1. Moreover one can easily show that
n∑

α,β=1

(trAαAβ)2 >
1

n
‖σ‖4 .

Thus we have

0 > (1 + a)nδ ‖σ‖2 − (na− 1)(c+ 3)

4
‖σ‖2

+(
1

n
− (1− a)) ‖σ‖4 .(4.21)
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Setting a = 1− 1
n in (4.21), we obtain

0 > [(2n− 1)δ − (n− 2)(c+ 3)

4
] ‖σ‖2 .

If δ > (n−2)(c+3)
4(2n−1) then ‖σ‖2 = 0, i.e. σ = 0. This completes the proof of Theorem

2.
Now we assume that M̃(c) is a 5-dimensional Sasakian manifold with constant

ϕ-sectional curvature c and M is a C-totally real minimal surface of M̃(c). Now we
take a frame e1, e2 for Tp(M) and a frame ϕe1, ϕe2, ξ for Tp(M)⊥. Then the second
fundamental form can be expressed as:

(4.22) Aϕe1 =

(
b 0
0 −b

)
, Aϕe2 =

(
0 −b
−b 0

)
, Aξ =

(
0 0
0 0

)
.

From (2.3) and (2.4), we obtain

R(e1, e2)e1 = (−c+ 3

4
+ 2b2)e2,

R(e1, e2)e2 = (
c+ 3

4
− 2b2)e1,

R⊥(e1, e2)ϕe1 = 2b2ϕe2,(4.23)

R⊥(e1, e2)ϕe2 = −2b2ϕe1.

Moreover, by the Gauss equation, we have

(4.24) 2b2 =
c+ 3

4
− γ,

where γ denotes the Gauss curvature of M. If M is semi-parallel surface, then we
obtain

(R(e1, e2) · σ)(e1, e1) = 6b3 − b(c+ 3)

2
= 0,

(R(e1, e2) · σ)(e2, e2) = −6b3 +
b(c+ 3)

2
= 0,(4.25)

(R(e1, e2) · σ)(e1, e2) = 6b3 − b(c+ 3)

2
= 0,

which give that

(4.26) (b2 − γ)b = 0.

Now we have two cases:
Case i) If γ = b2 > 0, then from [16], we can say that M is totally geodesic or,
Case ii) If b = 0, then we can say that M is flat.
This completes the proof of Theorem 1.3.
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