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Abstract
There are various generalization of the usual topological T3 and T4- axioms to topological categories
defined in [2] and [8]. [8] is shown that they lead to different T3 and T4 concepts, in general. In this
paper, an explicit characterizations of each of the separation properties T3 and T4 at a point p and the
generalized separation properties is given in the topological category of Cauchy spaces. Moreover,
specific relationships that arise among the various Ti, i = 0, 1, 2, 3, 4, PreT2, and T2 structures at p and the
generalized separation properties are examined in this category. Finally, we investigate the relationships
between the generalized separation properties and the separation properties at a point p in this category.
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1. Introduction
The theory of Cauchy spaces was initiated by H. J. Kowalsky [19]. But H. Keller [18] was the first to give the

axiomatic definition of Cauchy spaces in its currently used form, which is given briefly in the preliminaries section.
In that paper, the relation between Cauchy spaces, uniform convergence spaces, and convergence spaces was
developed. Several generalizations of Cauchy spaces have been studied, e.g. filtermerotopic spaces (shortly: filter
spaces) by M. Katětov [17] in 1965 and semiuniform convergence spaces by Preuss [28] in 1995. The category of
Cauchy spaces is also known to be a bireflective, finally dense subcategory of the category of filter spaces, FIL [27].

Baran [2] defined separation properties at a point, p i.e., locally (see [3], [5], [9] and [12]), then generalized this to
point free definitions by using the generic element, [16] p. 39, method of topos theory for an arbitrary topological
category over sets. One reason for doing this is that, in general, objects in a topos may not have points, however
they always have a generic point. The other reason is that the notions of "closedness" and "strong closedness" on
arbitrary topological catogories is defined in terms of T0 and T1 at a point, p. 335 [2]. The notions of "closedness"
and "strong closedness" in set based topological categories are introduced by Baran [2], [4], [7] and it is shown in [9],
[10], [12] that these notions form an appropriate closure operator in the sense of Dikranjan and Giuli [15] in some
well-known topological categories.

Some basic concepts in general topology are the notions of separation (T0, T1, T2, T3, T4) which appear in
many important theorems such as the Urysohn Metrization theorem, the Urysohn Lemma, the Tietze extension
theorem, among others. In view of this, it is useful to be able to extend these various notions to arbitrary topological
categories [2].

The main goal of this paper is

1. to give the characterization of each of the separation properties Ti, i = 3, 4 at a point p in the topological
category of Cauchy spaces,
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2. to examine how these generalizations are related,

3. to show that a generalized separation property implies that separation property at p in the topological category
of Cauchy spaces.

2. Preliminaries
The following are some basic definitions and notations which we will use throughout the paper.
Let E and B be any categories. The functor U : E −→ B is said to be topological or that E is a topological category

over B if U is concrete (i.e., faithful, amnestic and transportable), has small (i.e., sets) fibers, and for which every
U-source has an initial lift or, equivalently, for which each U-sink has a final lift [1].

Note that a topological functor U : E −→ B is said to be normalized if constant objects, i.e., subterminals, have a
unique structure [1], [5], [11], [24], or [26].

Recall in [1] or [26], that an object X ∈ E (where X ∈ E stands for X ∈Ob E), a topological category, is discrete
iff every map U(X)→ U(Y ) lifts to a map X → Y for each object Y ∈ E and an object X ∈ E is indiscrete iff every
map U(Y )→ U(X) lifts to a map Y → X for each object Y ∈ E .

Let E be a topological category and X ∈ E . A is called a subspace of X if the inclusion map i : A → X is an
initial lift (i.e., an embedding) and we denote it by A ⊂ X .

A filter on a set X is a collection of subsets of X , containing X , which is closed under finite intersection and
formation of supersets (it may contain ∅). Let F(X) denote the set of filters on X. If α, β ∈ F (X), then β ≥ α if
and only if for each U∈ α, ∃V∈ β such that V ⊆ U , that is equivalent to β ⊃ α. This defines a partial order relation
on F (X) .

·
x = [{x}] is the filter generated by the singleton set {x} where [·] means generated filter and α∩β =

[{ U ∪ V | U ∈ α, V ∈ β }] . If U∩V 6= ∅, for all U∈ α and V∈ β, then α ∨ β is the filter [{U ∩ V | U ∈ α, V ∈ β }] . If
∃U∈ α and V∈ β such that U∩V=∅, then we say that α ∨ β fails to exist.

Let A be a set and q be a function on A that assigns to each point x of A a set of filters (proper or not, where a
filter δ is proper iff δ does not contain the empty set, ∅, i.e., δ 6= [∅]) (the filters converging to x) is called a convergence
structure on A ((A, q) a convergence space (in [26], it is called a convergence space)) iff it satisfies the following three
conditions ([25] p. 1374 or [26] p. 142):

1. [x] = [{x}] ∈ q (x) for each x ∈ A (where [F ] = {B ⊂ A : F ⊂ B}).
2. β ⊃ α ∈ q (x) implies β ∈ q (x) for any filter β on A.
3. α ∈ q(x)⇒ α ∩ [x] ∈ q(x).
A map f : (A, q) → (B, s) between two convergence spaces is called continuous iff α ∈ q (x) implies f (α) ∈

s (f (x)) (where f (α) denotes the filter generated by {f (D) : D ∈ α}). The category of convergence spaces and
continuous maps is denoted by Con (in [26] Conv).

For filters α and β we denote by α ∪ β the smallest filter containing both α and β.

Definition 2.1. (cf. [18]) Let A be a set and K ⊂ F (A) be subject to the following axioms:
1. [x] = [{x}] ∈ K for each x ∈ A (where [x] = {B ⊂ A : x ∈ B});
2. α ∈ K and β ≥ α implies β ∈ K (i.e., β ⊃ α ∈ K implies β ∈ K for any filter β on A);
3. if α, β ∈ K and α ∨ β exists (i.e., α ∪ β is proper), then α ∩ β ∈ K.
Then K is a precauchy (Cauchy) structure if it obeys 1-2 (resp. 1-3) and the pair (A,K) is called a precauchy

space (Cauchy space), resp. Members of K are called Cauchy filters. A map f : (A,K)→ (B,L) between Cauchy
spaces is said to be Cauchy continuous (Cauchy map) iff α ∈ K implies f (α) ∈ L (where f (α) denotes the filter
generated by {f (D) : D ∈ α}). The concrete category whose objects are the precauchy (Cauchy) spaces and whose
morphisms are the Cauchy continuous maps is denoted by PCHY (CHY), respectively.

2.2. A source {fi : (A,K)→ (Ai,Ki) , i ∈ I} in CHY is an initial lift iff α ∈ K precisely when fi (α) ∈ Ki for
all i ∈ I [22], [27] or [29].

2.3. An epimorphism f : (A,K)→ (B,L) in CHY (equivalently, f is surjective) is a final lift iff α ∈ L implies
that there exists a finite sequence α1, ..., αn of Cauchy filters in K such that every member of αi intersects every

member of αi+1 for all i < n and such that
n
∩
i=1
f (αi) ⊂ α [22], [27] or [29].

2.4. Let B be set and p ∈ B. Let B ∨p B be the wedge at p ([2] p. 334), i.e., two disjoint copies of B iden-
tified at p, i.e., the pushout of p : 1 → B along itself (where 1 is the terminal object in Set). An epi sink
{i1, i2 : (B,K)→ (B ∨p B,L) } , where i1, i2 are the canonical injections, in CHY is a final lift if and only if
the following statement holds. For any filter α on the wedge B ∨p B, where either α ⊃ ik(α1) for some k = 1, 2 and
some α1 ∈ K, or α ∈ L, we have that there exist Cauchy filters α1, α2 ∈ K such that every member of α1 intersects
every member of α2 (i.e., α1 ∪ α2 is proper) and α ⊃ i1α1 ∩ i2α2. This is a special case of 2.3.
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2.5. The discrete structure (A,K) on A in CHY is given by K = {[a] | a ∈ A} ∪ {[∅]} [22] or [27].
2.6. The indiscrete structure (A,K) on A in CHY is given by K = F (A) [22] or [27].
CHY is a normalized topological category. The category of Cauchy spaces is cartesian closed, and contains the

category of uniform spaces as a full subcategory [27].

3. T3 and T4-Objects at p

In this section, we give explicit characterizations of the generalized separation properties at p for the topological
category of Cauchy spaces, CHY.

Let B be set and p ∈ B. Let B ∨p B be the wedge at p ([2] p. 334), i.e., two disjoint copies of B identified at p, i.e.,
the pushout of p : 1→ B along itself (where 1 is the terminal object in Set). More precisely, if i1 and i2 : B → B∨pB
denote the inclusion of B as the first and second component, respectively, then i1p = i2p is the pushout diagram. A
point x in B ∨pB will be denoted by x1(x2) if x is in the first (resp. second) component of B ∨pB. Note that p1 = p2.

The principal p-axis map, Ap : B ∨p B → B2 is defined by Ap(x1) = (x, p) and Ap(x2) = (p, x). The skewed
p-axis map, Sp : B ∨p B → B2 is defined by Sp(x1) = (x, x) and Sp(x2) = (p, x).

The fold map at p,5p : B ∨p B → B is given by5p(xi) = x for i = 1, 2 [2], [4].
Note that the maps Sp and 5p are the unique maps arising from the above pushout diagram for which

Spi1 = (id, id) : B → B2, Spi2 = (p, id) : B → B2, and 5pij = id, j = 1, 2, respectively, where, id : B → B is the
identity map and p : B → B is the constant map at p.

Remark 3.1. We define p1, p2 by 1 + p, p + 1 : B ∨p B → B, respectively where 1 : B → B is the identity map,
p : B → B is constant map at p (i.e., having value p). Note that π1Ap = p1 = π1Sp, π2Ap = p2, π2Sp = ∇p, where
πi : B2 → B is the i-th projection, i = 1, 2. When showing Ap and Sp are initial it is sufficient to show that (p1 and
p2) and (p1 and ∇p) are initial lifts, respectively [2], [4].

The infinite wedge product ∨∞p B is formed by taking countably many disjoint copies of B and identifying
them at the point p. Let B∞ = B × B × ... be the countable cartesian product of B. Define A∞p : ∨∞p B → B∞ by
A∞p (xi) = (p, p, ..., p, x, p, ...), where xi is in the i-th component of the infinite wedge and x is in the i-th place in
(p, p, ..., p, x, p, ...) (infinite principal p-axis map), and5∞p : ∨∞p B −→ B by5∞p (xi) = x for all i ∈ I (infinite fold
map), [2], [4].

Note, also, that the map A∞p is the unique map arising from the multiple pushout of p : 1 → B for which
A∞p ij = (p, p, ..., p, id, p, ...) : B → B∞, where the identity map, id, is in the j-th place [10].

Definition 3.1. (cf. [2], [4] or [10]) Let U : E −→ Set be a topological functor, X an object in E with U(X) = B. Let F
be a nonempty subset of B. We denote by X/F the final lift of the epi U -sink q : U(X) = B → B/F = (B\F ) ∪ {∗},
where q is the epi map that is the identity on B\F and identifying F with a point ∗ [2]. Let p be a point in B.

1. X is T 0 at p iff the initial lift of the U -source {Ap : B ∨p B → U(X2) = B2 and∇p : B ∨p B → UD(B) = B} is
discrete, where D is the discrete functor which is a left adjoint to U .

2. X is T ′0 at p iff the initial lift of the U -source {id : B∨pB → U(X ∨pX) = B∨pB and∇p : B∨pB → UD(B) =
B} is discrete, where X ∨p X is the wedge in E i.e., the final lift of the U-sink {i1, i2 : U(X) = B → B ∨p B}
where i1, i2 denote the canonical injections.

3. X is T1 at p iff the initial lift of the U -source {Sp : B ∨p B → U(X2) = B2 and∇p : B ∨p B → UD(B) = B} is
discrete.

4. p is closed iff the initial lift of the U−source {A∞p : ∨∞p B −→ U(X∞) = B∞ and ∇∞p : ∨∞p B −→ UD(B) = B} is
discrete.

5. F ⊂ X is closed iff {∗}, the image of F , is closed in X/F or F = ∅.

6. F ⊂ X is strongly closed iff X/F is T1 at {∗} or F = ∅.

7. If B = F = ∅, then we define F to be both closed and strongly closed.

8. X is PreT 2 at p iff the initial lift of the U-source {Sp : B ∨p B → U(X2) = B2} and the initial lift of the
U-source {Ap : B ∨p B → U(X2) = B2} agree.

9. X is PreT ′2 at p iff the initial lift of the U-source {Sp : B ∨p B → U(X2) = B2} and the final lift of the U-sink
{i1, i2 : U(X) = B → B ∨p B} agree.
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10. X is T 2 at p iff X is T 0 at p and PreT 2 at p.

11. X is T ′2 at p iff X is T ′0 at p and PreT ′2 at p.

Remark 3.2. 1. Note that for the category Top of topological spaces we have:
(i) T 0 at p is equivalent to T ′0 at p and they both reduce to the following (called T0 at p in [6]): for each point x

distinct from p, there exists a neighborhood of x missing p or there exists a neighborhood of p missing x [2].
(ii) The notion of closedness coincides with the usual closedness [2] and M is strongly closed iff M is closed and

for each x /∈ M there exists a neighborhood of M missing x, [2]. If a topological space is T1, then the notions of
closedness and strong closedness coincide [2].

(iii) PreT 2 at p is equivalent to PreT ′2 at p and they both reduce to the following (called PreT2 at p in [6]): for
each point x distinct from p, if the set {x, p} is not indiscrete, then there exist disjoint neighborhoods of p and x [2].

(iv) T 2 at p is equivalent to T ′2 at p and they both reduce to (called T2 at p in [6]): for each point x distinct from p,
there exist disjoint neighborhoods of x and p [2].

2. In general, for an arbitrary topological category, the notions of closedness and strong closedness are indepen-
dent of each other [4]. Even if X ∈ E is T1, where E is a topological category, then these notions are still independent
of each other [8], [9].

Definition 3.2. (cf. [2], [4] or [10])

1. X is ST 3 at p iff X is T1 at p and X/F is PreT 2 at p for all strongly closed F 6= ∅ in U(X) missing p.

2. X is ST ′3 at p iff X is T1 at p and X/F is PreT ′2 at p for all strongly closed F 6= ∅ in U(X) missing p.

3. X is T 3 at p iff X is T1 at p and X/F is PreT 2 at p for all closed F 6= ∅ in U(X) missing p.

4. X is T ′3 at p iff X is T1 at p and X/F is PreT ′2 at p for all closed F 6= ∅ in U(X) missing p.

Definition 3.3. (cf. [2], [4] or [10])

1. X is ST 4 at p iff X is T1 at p and X/F is ST 3 at ∗ for all strongly closed F in U(X) containing p.

2. X is ST ′4 at p iff X is T1 at p and X/F is ST ′3 at ∗ for all strongly closed F in U(X) containing p.

3. X is T 4 at p iff X is T1 at p and X/F is T 3 at ∗ for all closed F in U(X) containing p.

4. X is T ′4 at p iff X is T1 at p and X/F is T ′3 at ∗ for all closed F in U(X) containing p.

Remark 3.3. Note that for the category Top of topological spaces we have:
(1) T 3 at p and T ′3 at p are equivalent and both reduce to: for each x 6= p in U(X), there exists a neighborhood of

x missing p and a neighborhood of p missing x, and for any nonempty closed set F missing p, there exist disjoint
open sets containing F and p, respectively [2].

(2) ST 3 at p and ST ′3 at p are equivalent and both reduce to: for each x 6= p in U(X), there exists a neighborhood
of x missing p and a neighborhood of p missing x, and for any nonempty closed set F missing p for which each
point x is not in F there exists a neighborhood of F missing x (i.e. F is strongly closed set), there exist disjoint open
sets containing F and p, respectively [2].

(3) T 4 at p and T ′4 at p are equivalent and both reduce to: for each x 6= p in U(X), there exists a neighborhood of
x missing p and a neighborhood of p missing x, and for any disjoint strongly closed subset F and nonempty closed
subset F ′ of U(X) with p ∈ F , there exist disjoint open sets containing F and F ′, respectively [2].

(4) ST 4 at p and ST ′4 at p are equivalent and they both reduce to: for each x 6= p there exists a neighborhood of x
missing p and a neighborhood of p missing x, and for any disjoint strongly closed subsets F and F ′ of U(X) with
p ∈ F and F ′ 6= ∅, there exist disjoint open sets containing F and F ′, respectively [2], [8], [9].

Theorem 3.1. Let (A,K) be a Cauchy space and p ∈ A. (A,K) is
−
T0 at p iff for each α ∈ K such that α 6= [p] , there exists

U ∈ α such that p /∈ U [21].

Theorem 3.2. All (A,K) in CHY are T ′0 at p [21].

Theorem 3.3. Let (A,K) be a Cauchy space and p ∈ A. (A,K) is T1 at p iff for each α ∈ K such that α 6= [p] , there exists
U ∈ α such that p /∈ U [20].
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Theorem 3.4. All (A,K) in CHY are Pre
−
T2 at p [21].

Theorem 3.5. Let (A,K) be in CHY. (A,K) is PreT ′2 at p iff α ∩ [p] ∈ K for any α ∈ K [21].

Theorem 3.6. (A,K) in CHY is
−
T2 at p iff for each α ∈ K such that α 6= [p] , there exists U ∈ α such that p /∈ U [21].

Theorem 3.7. (A,K) in CHY is T ′2 at p iff for any α ∈ K, we have α ∩ [p] ∈ K [21].

Theorem 3.8. {p} in A is closed for (A,K) in CHY iff for each α ∈ K such that α 6= [p] , there exists U ∈ α such that
p /∈ U [20].

Theorem 3.9. Let (A,K) be in CHY. ∅ 6= F ⊂ A is closed iff for each a ∈ A with a /∈ F and for all α ∈ K, α ∪ [F ] is
improper or α * [a] [20].

Theorem 3.10. Let (A,K) be in CHY. ∅ 6= F ⊂ A is strongly closed iff for each a ∈ A with a /∈ F and for all α ∈ K,
α ∪ [F ] is improper or α * [a] [20].

Theorem 3.11. A Cauchy space (A,K) is ST 3 at p iff for each α ∈ K such that α 6= [p] , there exists U ∈ α such that p /∈ U .

Proof. It follows from Definition 3.2, Theorems 3.3 and Theorems 3.4.

Theorem 3.12. A Cauchy space (A,K) is ST ′3 at p iff A is a point or the empty set.

Proof. Suppose (A,K) is ST ′3 at p and CardA > 1. Since (A,K) is T1 at p, by Theorem 3.3, for each α ∈ K such that
α 6= [p] , there exists U ∈ α such that p /∈ U . If α is in K, q(α) ∈ L, where L is the structure on A/F induced by q.
Since (A/F,L) is PreT ′2, by Theorem 3.5, α ∩ [p] ∈ L for any α ∈ L. F is closed iff by Definition 3.1, ∗ is closed in
A/F iff by Theorem 3.8, for each α ∈ L such that α 6= [∗], there exists U ∈ α such that ∗ /∈ U iff for each a 6= ∗ in
A/F , [{a, ∗}] /∈ L. It follows easily that p 6= ∗ and [p] ∩ [∗]=[{p, ∗}] /∈ L. This contradicts the fact that (A/F,L) is
PreT ′2 at p.

Conversely, A = {x}, i.e., a singleton, then clearly, (A,K) is ST ′3.

Theorem 3.13. A Cauchy space (A,K) is T 3 at p iff for each α ∈ K such that α 6= [p] , there exists U ∈ α such that p /∈ U .

Proof. It follows from Definition 3.2, Theorems 3.3 and Theorems 3.4.

Theorem 3.14. A Cauchy space (A,K) is T ′3 at p iff A is a point or the empty set.

Proof. It follows from Definition 3.2, Theorems 3.3 and Theorems 3.5.

Theorem 3.15. A Cauchy space (A,K) is ST 4 at p iff for each α ∈ K such that α 6= [p] , there exists U ∈ α such that p /∈ U .

Proof. It follows from Definition 3.2, Theorems 3.3 and Theorems 3.11.

Theorem 3.16. A Cauchy space (A,K) is ST ′4 at p iff A is a point or the empty set.

Proof. It follows from Definition 3.2, Theorems 3.3 and Theorems 3.12.

Theorem 3.17. A Cauchy space (A,K) is T 4 at p iff for each α ∈ K such that α 6= [p] , there exists U ∈ α such that p /∈ U .

Proof. It follows from Definition 3.2, Theorems 3.3 and Theorems 3.13.

Theorem 3.18. A Cauchy space (A,K) is T ′4 at p iff A is a point or the empty set.

Proof. It follows from Definition 3.2, Theorems 3.3 and Theorems 3.14.

Remark 3.4. By Theorem 3.11, Theorem 3.12, Theorem 3.13, Theorem 3.14, Theorem 3.15, Theorem 3.16, Theorem
3.17 and Theorem 3.18, (A,K) is ST 3 at p or T 3 at p or ST 4 at p or T 4 at p if (A,K) is ST ′3 at p or T ′3 at p or ST ′4 at p
or T ′4 at p. However, the converse is not true generally. For example, let A = {a, b}, p = a and K = {[a] , [b] , [∅]}.
Then (A,K) is ST 3 at p or T 3 at p or ST 4 at p or T 4 at p but it is not (A,K) is ST ′3 at p or T ′3 at p or ST ′4 at p or T ′4 at
p since CardA > 1.
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4. Separation properties

Let B be a nonempty set, B2 = B ×B be cartesian product of B with itself and B2 ∨∆ B2 be two distinct copies
of B2 identified along the diagonal. A point (x, y) in B2 ∨∆ B2 will be denoted by (x, y)1(or (x, y)2) if (x, y) is in
the first (or second) component of B2 ∨∆ B2, respectively. Clearly (x, y)1 = (x, y)2 iff x = y [2].

The principal axis map A : B2 ∨∆ B2 → B3 is given by A(x, y)1 = (x, y, x) and A(x, y)2 = (x, x, y). The
skewed axis map S : B2 ∨∆ B2 → B3 is given by S(x, y)1 = (x, y, y) and S(x, y)2 = (x, x, y) and the fold map,
∇ : B2 ∨∆ B2 → B2 is given by ∇(x, y)i = (x, y) for i = 1, 2. Note that π1S = π11 = π1A, π2S = π21 = π2A,
π3A = π12, and π3S = π22, where πk : B3 → B the k-th projection k = 1, 2, 3 and πij = πi + πj : B2 ∨∆ B2 → B,
for i, j ∈ {1, 2} [2].

Definition 4.1. (cf. [2] and [11]) Let U : E → Set be a topological functor, X an object in E with U(X) = B.

1. X is T0 iff the initial lift of the U-source {A : B2 ∨∆ B2 → U(X3) = B3 and ∇ : B2 ∨∆ B2 → UD(B2) = B2}
is discrete, where D is the discrete functor which is a left adjoint to U .

2. X is T ′0 iff the initial lift of the U-source {id : B2 ∨∆ B2 → U(B2 ∨∆ B2)
′

= B2 ∨∆ B2 and ∇ : B2 ∨∆ B2 →
UD(B2) = B2} is discrete, where (B2 ∨∆ B2)

′
is the final lift of the U -sink {i1, i2 : U(X2) = B2 → B2 ∨∆ B2}

and D(B2) is the discrete structure on B2. Here, i1 and i2 are the canonical injections.

3. X is T0 iff X does not contain an indiscrete subspace with (at least) two points [31] or [23].

4. X is T1 iff the initial lift of the U-source {S : B2 ∨∆ B2 → U(X3) = B3 and ∇ : B2 ∨∆ B2 → UD(B2) = B2}
is discrete.

5. X is PreT2 iff the initial lifts of the U-source {A : B2 ∨∆ B2 → U(X3) = B3} and {S : B2 ∨∆ B2 → U(X3) =
B3} coincide.

6. X is PreT ′2 iff the initial lift of the U-source {S : B2 ∨∆ B2 → U(X3) = B3} and the final lift of the U-sink
{i1, i2 : U(X2) = B2 → B2 ∨∆ B2} coincide, where i1 and i2 are the canonical injections.

7. X is T2 iff X is T0 and PreT2 [2].

8. X is T ′2 iff X is T ′0 and PreT ′2 [2].

9. X is ST2 iff ∆, the diagonal, is strongly closed in X2 [4].

10. X is ∆T2 iff ∆, the diagonal, is closed in X2 [4].

Remark 4.1. 1. Note that for the category Top of topological spaces, T0, T ′0, T0, or T1, or PreT2, PreT ′2, or T2, T ′2,
ST2, ∆T2 reduce to the usual T0, or T1, or PreT2 (where a topological space is called PreT2 if for any two distinct
points, if there is a neighbourhood of one missing the other, then the two points have disjoint neighbourhoods), or
T2 separation axioms, respectively [2].
2. Let (X, τ) be a topological space. By Theorem 1.5 (5) of [6], (X, τ) is Ti, i = 0, 1, 2 iff (X, τ) is Ti at p for all p in X ,
i = 0, 1, 2.
3. For an arbitrary topological category,

(i) By Theorem 3.2 of [13] or Theorem 2.7(1) of [14], T0 implies T ′0 but the converse of implication is generally
not true. Moreover, there are no further implications between T0 and T0 (see [13] 3.4(1) and (2)) and between T ′0 and
T0 (see [13] 3.4(1) and (3)).

(ii) By Theorem 3.1(1) of [7], if X is PreT ′2, then X is PreT2. But the converse of implication is generally not true.
4. By Theorem 2.6 and Corollary 2.7 of [5], if U : E → Set is normalized, then T0, T1, PreT2, and T2 imply T0 at p,
T1 at p, PreT2 at p, and T2 at p, respectively.

Definition 4.2. A Cauchy space (A,K) is said to be T2 if and only if x = y, whenever [x] ∩ [y] ∈ K [30].

Theorem 4.1. (A,K) in CHY is T 0 iff it is T0 iff it is T1 iff for each distinct pair x and y in A, we have [x] ∩ [y] /∈ K [20].

Theorem 4.2. All objects (A,K) in CHY are T ′0 [20].

Remark 4.2. If a Cauchy space (A,K) is
−
T0 or T0 (T1) then it is T ′0. However, the converse is not true generally. For

example, let A = {x, y} and K = {[x] , [y] , [{x, y}] , [∅]}. Then (A,K) is T ′0 but it is not
−
T0 or T0 (T1) [20].
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Theorem 4.3. All objects (A,K) in CHY are Pre
−
T2 [20].

Theorem 4.4. Let (A,K) be in CHY. (A,K) is PreT ′2 iff for each pair of distinct points x and y in A, we have [x] ∩ [y] ∈
K(equivalently, for each finite subset F of A, we have [F ] ∈ K) [20].

Remark 4.3. If a Cauchy space (A,K) is PreT ′2 then it is Pre
−
T2. However, the converse is not true, in general. For

example, let A = {x, y} and K = {[x] , [y] , [∅]}. Then (A,K) is Pre
−
T2 but it is not PreT ′2 [20].

Theorem 4.5. Let (A,K) be a Cauchy space. (A,K) is
−
T2 iff for each distinct pair x and y in A, we have [x] ∩ [y] /∈ K [20].

Theorem 4.6. Let (A,K) be a Cauchy space. (A,K) is T ′2 iff for each distinct points x and y in A, we have [x] ∩ [y] ∈
K(equivalently, for each finite subset F of A, we have [F ] ∈ K) [20].

Remark 4.4. (A,K) be in CHY. By Theorem 4.5 and Theorem 4.6, the following are equivalent:
(a) (A,K) is T2 and T ′2.
(b) A is a point or the empty set [20].

Corollary 4.1. Let (A,K) be in CHY. (A,K) is ST2 iff it is ∆T2 iff for each pair of distinct points x and y in A and for
any α, β ∈ K, α ∪ β is improper if α ⊂ [x] and β ⊂ [y] [20].

We give explicit relationships between the generalized separation properties Ti, i = 0, 1, 2, PreT2, T2, the usual
T2, ST2 or ∆T2 and the separation properties at a point p in the topological category of Cauchy spaces.

Remark 4.5. Let (A,K) be a Cauchy space and p ∈ A. Since there is only one Cauchy structure on the empty set and
on a point, U : CHY → Set is normalized.

1. By Theorem 3.1, Theorem 4.1, Definition 4.2 and Corollary 4.1, (A,K) is
−
T0 at p if (A,K) is T 0 or T2 or T1 or

T0 or ST2 or ∆T2.
2. By Theorem 3.3, Theorem 4.1, Definition 4.2 and Corollary 4.1, (A,K) is T1 at p if (A,K) is T1 or T2 or T0 or

−
T0 or ST2 or ∆T2.

3. By Theorem 3.2 and Theorem 4.2, (A,K) is T ′0 at p for all p ∈ A iff (A,K) is T ′0.

4. By Theorem 3.2, Definition 4.2 and Corollary 4.1, (A,K) is T ′0 at p if (A,K) is T2 or
−
T0 or T0 or T1 or ST2 or

∆T2.

5. By Theorem 3.4 and Theorem 4.3, (A,K) is Pre
−
T2 at p for all p ∈ A iff (A,K) is Pre

−
T2.

6. By Theorem 3.4, Definition 4.2 and Corollary 4.1, (A,K) is Pre
−
T2 at p if (A,K) is T2 or

−
T0 or T0 or T1 or ST2

or ∆T2.
7. By Theorem 3.5 and Theorem 4.4(Theorem 3.7 and Theorem 4.6), (A,K) is PreT ′2 (T ′2) at p for all p ∈ A iff

(A,K) is PreT ′2 (T ′2).
8. By Theorem 3.5 (Theorem 3.7) and Definition 4.2, the following are equivalent:
(a) (A,K) is PreT ′2 (T ′2) at p for all p ∈ A and T2.
(b) A is a point or the empty set.

9. By Theorem 3.11, Theorem 3.13, Theorem 3.15, Theorem 3.17, Definition 4.2 and Corollary 4.1, (A,K) is
−
T3 at

p or (A,K) is
−
ST4 at p or (A,K) is

−
T4 at p if (A,K) is T 0 or T2 or T1 or T0 or ST2 or ∆T2.

10. By Theorem 3.12, Theorem 3.14, Theorem 3.16, Theorem 3.18, (A,K) is ST ′3 at p or (A,K) is T ′3 at p or (A,K)
is ST ′4 at p or (A,K) is T ′4 at p iff A is a point or the empty set.
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