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Abstract
In this paper the structure of the ring F3[u, v]/

< u3, v2, uv > where u3 = 0 ,v2 = 0 and uv = vu = 0 is
described. The distance function on the ring R = F3 + vF3 + uF3 + u2F3 which is isomorphic to the ring
is defined. This means that linear codes over the ring R can be written. Then it’s shown that the Gray
images of cyclic codes over the ring R are quasi-cyclic codes of index 2 over the ring F3 + vF3. Then
another Gray map from the ring F3 + vF3 to F3 is described. Thus the relation between the cyclic codes
over the ring R = F3 + vF3 + uF3 + u2F3 and quasi-cyclic codes over field F3 is established.
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1. Introduction
Cyclic codes, constacyclic codes over different rings (Finite chain rings, Frobenious rings, i.e.) were studied

before. Also the Gray images of these codes and structure of codes over fields are discussed before. Previous years
the relations between codes over the rings in one variable and the codes over fields were studied. In recent years the
relations between the codes over the rings in more variables and the codes over fields have been studied. Especially
in [9]; (1 + v) -constacyclic codes over F2 + uF2 + vF2 + uvF2 where u2 = v2 = 0 , u.v − v.u = 0 were studied by S.
Karadeniz and B. yıldız. In [10]; X. Xiaofang studied (1 + v) -constacyclic codes over the ring F2 + uF2 + vF2 where
u2 = v2 = 0 , u.v = v.u = 0. In this study a special ring in two variables is defined under certain conditions. The
structure of the cyclic codes over this ring is investigated. Relations between the codes over this ring and the codes
over a finite chain ring in one variable are obtained via a Gray map. Another Gray map from the finite chain ring to
a finite field is defined and then the images of quasi-cyclic codes are obtained. Consequently; ıt isshown that the
cyclic codes over the ring R are the quasi-cyclic codes over field F3 via the composite of two new Gray maps.

2. Preliminaries
It is known that R1 = F3 +uF3 +u2F3 where u3 = 0 and R2 = F3 + vF3 where v2 = 0 are the commutative rings.

In the ring R1; writing R2 = F3 + vF3 where v2 = 0 instead of F3 , the set R2 +uR2 +u2R2 where u3 = 0 is obtained.
Then we have R2 +uR2 +u2R2= (F3 + vF3) +u.(F3 + vF3) +u2.(F3 + vF3)= F3 + vF3 +uF3 +uvF3 +u2F3 +u2vF3
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the condition uv = vu = 0 to the conditions u3 = 0 in R1 and v2 = 0 in R2 . Then the set R2 + uR2 +
u2R2 is equal to the set R = F3 + vF3 + uF3 + u2F3. Thus is a ring with the usual addition and multiplica-
tion under the conditions u3 = 0 ,v2 = 0 , uv = vu = 0. It is easily seen that R is isomorphic to the ring
F3[u, v]/

< u3 = 0, v2 = 0, uv = vu = 0 > .
Let C be a linear [n, k, d]_ code. It means that C has the length n , it’s dimention is k and it’s minimum distance

is d . Let R be a ring. Each submodule C of Rn is called a linear code with lenght n over the ring R. A subspace
C of F3

n is called a linear code with lenght n over the field F3. Each codeword c in such a code C is a n-tuple of

the form c = (co, c1, ..., cn−1) ∈ Rn and can be represented by c = (c1, c2, ..., cn) ←→c(x) =
n∑

i=1

ci.x
i ∈ R[x] . This

notation can be written for the elements of R1
n , R2

n and Fn
3 similarly.

The Gray map from the ring R to R2
1 is defined as ;

Φ1 : R −→ R2
1

a+ bv + cu+ du2 7→ Φ1(a+ bv + cu+ du2) = Φ1(r + qv) = (2q, q + 2r)

where r = a+ cu+ du2 and q = b+ au+ (a+ c)u2. Then we have
Φ1(a + bv + cu + du2) = (2b + 2au + (2a + 2c)u2, (b + 2a) + (a + 2c)u + (a + c + 2d)u2). The map Φ1 can be

generalized to Rn as ;
Φ1(t1, t2, ..., tn) = (q1, q2, ..., qn, q1 + r1, q2 + r2, ..., qn + rn) where ti = ri + qiv such that ri = ai + ciu + diu

2 ,
qi = bi + aiu+ (ai + ci)u

2 for all i = 1, 2, ..., n . Note that the Gray map from R1 to F9
3 is defined as ;

Φ2 : R1 −→ F9
3

x+ yu+ zu2 7→ Φ2(x+ yu+ zu2)

here Φ2(x+ yu+ zu2) = (z, y + z, 2y + z, x+ z, x+ y + z, x+ 2y + z, 2x+ z, 2x+ y + z, 2x+ 2y + z).
The map Φ2 can be generalized to Rn

1 as ;

Φ2(b1, b2, ..., bn) = (z1, z2, ..., zn, y1 + z1, y2 + z2, ..., yn + zn, 2y1 + z1, 2y2 + z2, ..., 2yn + zn,

x1 + z1, x2 + z2, ..., xn + zn, x1 + y1 + z1, x2 + y2 + z2, ..., xn + yn + zn,

x1 + 2y1 + z1, x2 + 2y2 + z2, ..., xn + 2yn + zn, 2x1 + z1, 2x2 + z2, ..., 2xn + zn,

2x1 + y1 + z1, 2x2 + y2 + z2, ..., 2xn + yn + zn, 2x1 + 2y1 + z1, 2x2 + 2y2 + z2, ...,

2xn + 2yn + zn)

For each (b1, b2, ..., bn) ∈ Rn
1 , where bi = xi + yiu+ ziu

2,xi, yi, zi ∈ F3 , for i = 1, 2, ..., n . The weight function
wR for each element r of R =F3 + vF3 + uF3 + u2F3 is defined as ;

wR(r) =


12 ; r ∈ R−R1.u

15 ; r ∈ R1.u−R1.u
2

9 ; r ∈ R1.u
2

0 ; r = 0

Then wR(r) =
n∑

i=1

wR(ri) is satisfied for each element r = (r1, r2, ..., rn) ∈ Rn . It is known that the homogeneous

weight of each s ∈ R1 is defined as ;

whom(s) =


6 ; s ∈ R1 −R1.u

2

9 ; s ∈ R1.u
2 − {0}

0 ; s = 0

Then whom(s) =
n∑

i=1

whom(si) is satisfied for each element s = (s1, s2, ..., sn) ∈ Rn
1 . The Hamming weight on F3 is

defined as wH(0) = 0 , wH(1) = 1 , wH(2) = 1 . Hence wH(c) =
n∑

i=1

wH(ci) is hold for each c = (c1, c2, ..., cn) ∈ Fn
3 .
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The minimum distance of a code C is defined as ;
dR(C) = min{dR(x, y)} , here x, y ∈ C , x 6= y if C is a code over R ,
dhom(C) = min{dhom(x, y)} , herex, y ∈ C , x 6= yif C is a code over R1 and
dH(C) = min{dH(x, y)} , here x, y ∈ C , x 6= y if C is a code over F3. Each element of R is written as

a + bv + cu + du2 = r + qv where r = a + cu + du2 ∈ R1, q = b + au + (a + c)u2 ∈ R1 . It is clearly seen that the
equalities wR(r) = whom(Φ1(r)) = wH(Φ2(Φ1(r))) for each r ∈ Rn are satisfied. Therefore it means that Φ1 is an
isometry from (Rn, dR) to (R2n

1 , dhom) and Φ2 is an isometry from (R2n
1 , dhom) to (F8n

2 , dH). Expressing elements of
R as a+ bv + cu+ du2 = r + qv where r = a+ cu+ du2 ∈ R1 and q = b+ au+ (a+ c)u2 ∈ R1 are both in R1 ,

we see that
wR( a+ bv + cu+ du2) = wR( r + qv) = whom(2q, q + 2r) = whom( 2b+ 2au+ (2a+ 2c)u2, (b+ 2a) +

(a+ 2c)u+ (a+ c+ 2d)u2) = wH(2a+ 2c, a+ c+ 2d, a+ 2c, 2a+ 2d, 2c, 2c+ 2d, 2a+ 2b+ 2c, b+ c+ 2d,
a+ 2b+ 2c, a+ b+ 2d, 2b+ 2c, 2a+ b+ 2c+ 2d, 2a+ b+ 2c, 2a+ 2b+ c+ 2d, a+ b+ 2c, 2b+ 2d, b+ 2c,
a+ 2b+ 2c+ 2d)

A cyclic shift on Rn is a permutation σ such that

σ(co, c1, ..., cn−1) = (cn−1, c0, ..., cn−2) .

A linear code C over R of lenght n is said to be cyclic code if it is satisfied the equality σ(C) = C . Let a ∈ R2n
1 with

a = (a0, a1, ..., an−1) = (a(0)
∣∣a(1) ) , a(i) ∈ Rn

1 , for all i = 0, 1. Let σ⊗2 be the map from R2n
1 to R2n

1 given by

σ⊗2(a) = (σ(a(0))
∣∣σ(a(1)) )

where σ is the usual cyclic shift. A code D of lenght 2n over R1 is said to be quasicyclic code of index 2 of
σ⊗2(D) = D . A cyclic shift on R2n

1 is a permutation τ such that

τ(do, d1, ..., d2n−1) = (d2n−1, d0, ..., d2n−2) .

A linear code D′ over R1 of lenght 2n is said to be cyclic code if it is satisfied the equality τ(D′) = D′. Let
a ∈ F18n

3 with a = (a0, a1, ..., an−1) = (a(0)
∣∣a(1) ∣∣a(2) ∣∣... ∣∣a(8) ) , a(i) ∈ Fn

3 , for all i = 0, 1, ..., 8 . Let σ⊗9 be the map
from F18n

3 to F18n
3 given by

σ⊗9(a) = (σ(a(0))
∣∣σ(a(1))

∣∣σ(a(2))
∣∣... ∣∣σ(a(8)) )

where σ is the usual cyclic shift. A code C ′ of lenght 18n over F3 is said to be quasicyclic code of index 9 of
σ⊗9(C ′) = C ′ .

3. Gray images of codes over the ring R

In this section firstly it will be shown that the Φ1 Gray image of a cyclic code over R is a quasi-cyclic code of
index 2 with even length. Secondly it will be shown that the Φ2 Gray image of a cyclic code over R1 is a quasi-cyclic
code of index 9 with even length.

Lemma 3.1. Φ1.σ = σ⊗2.Φ1 is satisfied.

Proof. Let c = (c0, c1, ..., cn−1) ∈ Rn where ci = ri + qiv for 0 <= i <= n− 1.
If Φ1(c) = Φ1(c0, c1, ..., cn−1) =Φ1(r0 + q0v, r1 + q1v, ..., rn−1 + qn−1v). = (2q0, 2q1, ..., 2qn−1, q0 + 2r0, q1 +

2r1, ..., qn−1 + 2rn−1) then σ⊗2 (Φ1(c)) = (2qn−1, 2q0, ..., 2qn−2, qn−1 + 2rn−1, q0 + 2r0, ..., qn−2 + 2rn−2)
On the other hand, σ(c) = σ(c0, c1, ..., cn−1) = (cn−1, c0, ..., cn−2) .

Then Φ1 (σ(c)) = Φ1 (σ(c)) = Φ1 σ(c0, c1, ..., cn−1) = Φ1 (cn−1, c0, ..., cn−2) = Φ1(rn−1 + vqn−1, r0 + vq0, ..., rn−2 +
vqn−2) = (2qn−1, 2q0, ..., 2qn−2, qn−1 + 2rn−1, q0 + 2r0, ..., qn−2 + 2rn−2) .

Theorem 3.1. A code C with length n over R is a cyclic code if and only if Φ1(C) is a quasi-cyclic code of index 2 with length
2n over R1 .

Proof. Suppose that C is a cyclic code. Then σ(C) = C . By applying Φ1, we have Φ1(σ(C)) = Φ1(C). By
using the Lemma 3.1, we have σ⊗2(Φ1(C)) = Φ1(σ(C)) = Φ1(C) . So Φ1(C) is a quasi-cyclic code of index 2 .
Conversely, if Φ1(C) is a quasi-cyclic code of index 2, then σ⊗2(Φ1(C)) = Φ1(C). By using the Lemma 3.1, we have
σ⊗2(Φ1(C)) = Φ1(σ(C)) = Φ1(C) . Since Φ1 is injective then σ(C) = C.
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Lemma 3.2. σ⊗9.Φ2 = Φ2.τ is satisfied.

Proof. Let t = (t0, t1, ..., t2n−1) ∈ R2n
1 where ti = xi + yiu + ziu

2 for 0 <= i <= 2n− 1.
If τ(t) = ν(t0, t1, ..., t2n−1) =(t2n−1, t0, ..., t2n−2) , then Φ2.τ(t) = Φ2(t2n−1, t0, ..., t2n−2)

= (z2n−1, z0, ..., z2n−2, y2n−1 + z2n−1, y0 + z0, ..., y2n−2 + z2n−2, 2y2n−1 + z2n−1,

2y0 + z0, ..., 2y2n−2 + z2n−2, x2n−1 + z2n−1, x0 + z0, ..., x2n−2 + z2n−2,

x2n−1 + y2n−1 + z2n−1, x0 + y0 + z0, ..., x2n−2 + y2n−2 + z2n−2,

x2n−1 + 2y2n−1 + z2n−1, x0 + 2y0 + z0, ..., x2n−2 + 2y2n−2 + z2n−2,

2x2n−1 + z2n−1, 2x0 + z0, ..., 2x2n−2 + z2n−2, 2x2n−1 + y2n−1 + z2n−1, 2x0 + y0 + z0, ...,

2x2n−2 + y2n−2 + z2n−2, 2x2n−1 + 2y2n−1 + z2n−1, 2x0 + 2y0 + z0, ...,

2x2n−2 + 2y2n−2 + z2n−2).

On the other hand, if Φ2(t) = Φ2(t0, t1, ..., t2n−1)

= (z0, z1, ..., z2n−1, y0 + z0, y1 + z1, ..., y2n−1 + z2n−1, 2y0 + z0, 2y1 + z1, ..., 2y2n−1 + z2n−1,

x0 + z0, x1 + z1, ..., x2n−1 + z2n−1, x0 + y0 + z0, x1 + y1 + z1, ..., x2n−1 + y2n−1 + z2n−1,

x0 + 2y0 + z0, x1 + 2y1 + z1, ..., x2n−1 + 2y2n−1 + z2n−1, 2x0 + z0, 2x1 + z1, ..., 2x2n−1 + z2n−1,

2x0 + y0 + z0, 2x1 + y1 + z1, ..., 2x2n−1 + y2n−1 + z2n−1,

2x0 + 2y0 + z0, 2x1 + 2y1 + z1, ..., 2x2n−1 + 2y2n−1 + z2n−1)

then we have σ⊗9.Φ2(t) = σ⊗9(t0, t1, ..., t2n−1)

= (z2n−1, z0, ..., z2n−2, y2n−1 + z2n−1, y0 + z0, ..., y2n−2 + z2n−2, 2y2n−1 + z2n−1,

2y0 + z0, ..., 2y2n−2 + z2n−2, x2n−1 + z2n−1, x0 + z0, ..., x2n−2 + z2n−2,

x2n−1 + y2n−1 + z2n−1, x0 + y0 + z0, ..., x2n−2 + y2n−2 + z2n−2,

x2n−1 + 2y2n−1 + z2n−1, x0 + 2y0 + z0, ..., x2n−2 + 2y2n−2 + z2n−2,

2x2n−1 + z2n−1, 2x0 + z0, ..., 2x2n−2 + z2n−2,

2x2n−1 + y2n−1 + z2n−1, 2x0 + y0 + z0, ..., 2x2n−2 + y2n−2 + z2n−2,

2x2n−1 + 2y2n−1 + z2n−1, 2x0 + 2y0 + z0, ..., 2x2n−2 + 2y2n−2 + z2n−2).

Theorem 3.2. A code C with length 2n over R1 is a cyclic code if and only if Φ2(C) is a quasicyclic code of index 9, with
length 18n over F3 .

Proof. If C is a cyclic code , τ(C) = C . Then have Φ2(τ(C)) = Φ2(C) , we have σ⊗9(Φ2(C)) = Φ2(τ(C)) = Φ2(C)
from Lemma 3.2. So Φ2(C) is quasicyclic code of index 9 . Conversely, if Φ2(C) is quasicyclic code of index 9 , then
σ⊗9(Φ2(C)) = Φ2(C) . By using the Lemma 3.2 , we have σ⊗9(Φ2(C)) = Φ2(τ(C)) = Φ2(C) . Since Φ2 is injective
then τ(C) = C .

Using the above theories the main conclusion is given below:
Corollary 3.1. A code C with odd lenght n over R is a cyclic code if and only if Φ2(Φ1(C)) is quasicyclic code

of index 9 and with lenght 18n over F3 .

4. Conclusion

It is presented the finite ring F3 + vF3 + uF3 + u2F3 where u3 = 0,v2 = 0 and uv = vu = 0. It is acquired that the
Gray image of a cyclic code over R with lenght n.
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