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Connectedness of suborbital graphs for a special
subgroup of the modular group
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Abstract
In this paper, we investigate connectedness of suborbital graphs for a special congruence subgroups.Firstly,
conditions for being an edge self-paired are provided, then in order to make graph connected, we give
necessary and sufficient conditions for the £u,n, whose vertices form the block [∞].
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1. Introduction
Let PSL(2,R) denote the group consisting of all linear fractional transformations

θ : τ → aτ + b

cτ + d
,where a, b, c, d are real numbers and ad− bc = 1.

In terms of matrix representation, the elements of PSL(2,R) correspond to the matrices

±

(
a b

c d

)
; a, b, c, d are real numbers and ad− bc = 1.

The modular group Γ = PSL(2,Z), is the subgroup of PSL(2,R) with integral coefficients. It is generated by the
matrices

U =

(
0 −1

1 0

)
; V =

(
0 −1

1 1

)
with defining relationships U2 = V 3 = −I , where I is the identity matrix. This is the automorphism group of
the upper half plane H := {τ ∈ C : Im(τ) > 0}. Γ will denote the modular group, a special subgroup of PSL(2,R)
with integral coefficients. Γ is a Fuchsian group whose fundamental domain has finite area, so it has a signature
consisting of the geometric invariants (g;m1, . . . ,mr, s) where g is the genus of the compactified quotient space,
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m1, . . . ,mr are the periods of the elliptic elements and s is the parabolic class number.Γ has the signature (0; 2, 3,∞),
so it is isomorphic to a free product C2 ∗C3. The signature of a discrete Fuchsian group is a very interesting problem
in group theory and arithmetic-algebraic geometry.In a paper [1] Jones, Singerman and Wicks showed that the
well-known Farey Graph is an example of a suborbital graph. Then, a number of papers on suborbital graphs for
related groups were published. These papers point out the relation between elliptic elements and circuits in graphs.
This fact is important because it means that suborbital graphs have a potential to clarify signature problems.

2. Preliminaries
The principal congruence subgroup of Γ is defined to be the subgroup

Γ(n) =

{(
a b

c d

)
∈ Γ : a ≡ d ≡ 1 (mod n), b ≡ c ≡ 0 (mod n)

}
.

A subgroup of Γ is called a congruence group provided it contains the principal congruence group Γ(n).Congruence
groups have been of great interest in many fields of mathematics, number theory, group theory, etc.
Jones, Singerman and Wicks [1] used the notion of the imprimitive action [3],[4], [9] for a Γ− invariant equivalence

relation induced on Q ∪ {∞} by the congruence subgroup Γ0(n) =

{(
a b

c d

)
∈ Γ : c ≡ 0 (mod n)

}
to obtain some

suborbital graphs and examined their connectedness and forest properties.Some applications of this method can
be found in the papers,[1],[2].Particularly in [2],[12],[13] and [14] authors give some results about a connection
between the periods of elliptic elements of chosen permutation group with the circuits in suborbital graphs
of it. In this article we introduce a different invariant equivalence relation by using the congruence subgroup

Γ∗(n) =

{(
a b

c d

)
∈ Γ : b ≡ c ≡ 0 (mod n)

}
which is well known in [6], instead of Γ0(n) and obtain some results

for the newly constructed subgraphs £u,n. Our results for Γ∗(n) may help to confirm above main idea. Also, it
is worth noting that these concepts are very much related to the binary quadratic forms and modular forms in
[6],[10],[11]. In this study, we consider the action of the group Γ∗(n) on the set Q̂n :=

{
a
cn : (a, cn) = 1; a, c ∈ Z

}
in

the spirit of the theory of permutation groups, and graph arising from this action in hyperbolic geometric terms.
Every element of Q̂n can be represented as a reduced fraction x

y with x, y ∈ Z and (x, y) = 1. Also ∞ is

represented as 1
0 = −1

0 . The action of Γ∗(n) on Q̂n now becomes(
a bn

cn d

)
:

(
x

y

)
→ ax+ bny

cnx+ dy
.

Thus the matrix

(
a bn

cn d

)
on

x

y
and
−x
−y

are identical. If the determinant of the matrix

(
a bn

cn d

)
is 1 and (x, y) = 1,

then (ax+ by, cx+ dy) = 1.

Theorem 2.1. The action of Γ∗(n) on Q̂n is transitive.

Proof. It is enough to prove that the orbit containing ∞ is Q̂n. If a
bn ∈ Q̂n then there exist α, β ∈ Z such that

aα− bβn2 = 1. Then the element

(
a βn

bn α

)
is in Q̂n and sends∞ to

(
a

bn

)
.

Lemma 2.1. The stabilizer of∞ in Q̂n is the set

{(
1 λ

0 1

)
: λ ∈ Z

}
denoted by Γ∗(n)∞.

Proof. The stabilizer of a point in Q̂n is a infinite cyclic group. Since the action is transitive, stabilizers of any two
points are conjugate. Therefore it is enough to look at the stabilizer of∞ in Γ∗(n). Let T ∈ Γ∗(n) then

T

(
1

0

)
=

(
a bn

cn d

)(
1

0

)
=

(
1

0

)
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and so

(
a

cn

)
=

(
1

0

)
, then a = d = 1, c = 0 and bn = λ ∈ Z. Hence T =

(
1 λ

0 1

)
. This shows that the stabilizer of

∞ in Γ∗(n) is

Γ∗(n)∞ :=

{(
1 bn

0 1

)
: n ∈ Z

}
=

〈(
1 n

0 1

)〉
.

We now consider the imprimitivity of the action of Γ∗(n) on Q̂n, beginning with a general discussion of
primitivity of permutation groups. Let (G,Ω) be a transitive permutation group, consisting of a group G acting on a
set Ω transitively. An equivalence relation ≈ on Ω is called G-invariant if, whenever α, β ∈ Ω satisfy α ≈ β, then
h(α) ≈ h(β) for all h ∈ G. The equivalence classes are called blocks, and the block containing α is denoted by [α].

We call (G,Ω) imprimitive if Ω admits some G-invariant equivalence relation different from
(i) the identity relation, α ≈ β if and only if α = β;
(ii) the universal relation, α ≈ β for all α, β ∈ Ω.

Otherwise (G,Ω) is called primitive. These two relations are supposed to be trivial relations. Clearly, a primitive
group must be transitive, if not, the orbits would form a system of blocks. The converse is false, but we have the
following useful result in [3].

Lemma 2.2. Let (G,Ω) be a transitive permutation group. (G,Ω) is primitive if and only if Gα,the stabilizer of α ∈ Ω, is a
maximal subgroup of G for each α ∈ Ω.

From the above lemma we see that whenever, for some α, Gα < H < G, then Ω admits some G-invariant
equivalence relation other than the trivial cases. Because of the transitivity, every element of Ω has the form h(α)
for some h ∈ G. Thus one of the non-trivial G-invariant equivalence relation on Ω by H is given as follows:

h1(α) ≈ h2(α) if and only if h2 ∈ h1H.
The number of blocks ( equivalence classes ) is the index |G : H| and the block containing α is just the orbit

H(α).
We can apply these ideas to the case where G is the Γ∗(n) and Ω is Q̂n. It is clear that Γ∗(n)∞ < Γ(n) < Γ∗(n).

We shall define an equivalence relation ≈ induced on Q̂n by Γ∗(n) for n ∈ N and n > 1. Now let r
sn ,

x
yn ∈ Q̂n.

Corresponding to these there are two matrices

T1 :=

(
r r0n

sn s0

)
, T2 :=

(
x x0n

yn y0

)

in Γ∗(n) for which T1(∞) = r
sn and T2(∞) = x

yn . We get the following imprimitive Γ∗(n)- invariant equivalence

relation on Q̂n by Γ(n) as
T1(∞) ≈ T2(∞) if and only if T−11 T2 ∈ Γ(n),

and so from the above we can easily verify that r
sn ≈

x
yn if and only if x ≡ r(modn). Indeed, let r

sn ≈
x
yn . Then

T1(∞) ≈ T2(∞) and

T−11 T2 =

(
s0 −r0n
−sn r

)(
x x0n

yn y0

)
=

(
xs0 − yr0n2 s0x0n− r0y0n
−snx+ ryn −sx0n2 + ry0

)
∈ Γ(n).

Hence these equations xs0 − yr0n2 ≡ −sx0n2 + ry0 ≡ 1(modn) and −snx + ryn ≡ s0x0n− r0y0n ≡ 0(modn) are
obtained. So xs0 ≡ ry0 ≡ 1(modn). Also, since T1, T2 ∈ Γ∗(n) ⊂ Γ, rs0 − sr0n2 = 1 and xy0 − yx0n2 = 1. Thus
rs0 ≡ 1(modn) and xy0 ≡ 1(modn). Since xs0 ≡ 1(modn) then xrs0 ≡ r(modn) and also x ≡ r(modn) is achieved.
Similarly if we use the equation ry0 ≡ 1(modn), then we get the same result.

Conversely, let x ≡ r(modn). Since r
sn ∈ Q̂n, (r, sn) = 1 and (r, sn2) = 1. Then there exist r0, s0 ∈ Z such

that rs0 − sn2r0 = 1. Similarly, for x
yn ∈ Q̂n, xy0 − yn2x0 = 1 is satisfied. Thus T1 :=

(
r r0n

sn s0

)
, T2 :=(

x x0n

yn y0

)
∈ Γ∗(n). Moreover from the above equations we have rs0 ≡ 1(modn) and xy0 ≡ 1(modn). Also,
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since x ≡ r(modn) then ry0 ≡ 1(modn) and so ry0 − sx0n2 ≡ 1(modn). Again, likewise xs0 − yr0n2 ≡ 1(modn) is

obtained. Consequently, these cases show that

(
r r0n

sn s0

)−1(
x x0n

yn y0

)
∈ Γ(n). Then T1(∞) ≈ T2(∞) and so

r
sn ≈

x
yn . The number ψ(n) of equivalence class under ≈ is given by ψ(n) = |Γ∗(n) : Γ(n)|. So the block of∞ is

obtained as

[∞] :=

{
x

yn
∈ Q̂n | x ≡ 1 (mod n)

}
.

3. Suborbital Graphs of Γ∗(n) on Q̂n

In [4], Sims introduced the idea of the suborbital graphs of a permutation group G acting on a set Ω, these are
graphs with vertex-set Ω, on which G induces automorphisms. We summarise Sims’ theory as follows:

Let (G,Ω) be transitive permutation group. Then G acts on Ω× Ω by

Θ : G× (Ω× Ω)
(g,(α,β))

−→
→

Ω× Ω
(g(α),g(β))

where g ∈ G and α, β ∈ Ω. The orbits of this action are called suborbitals of G. The orbit containing (α, β) is denoted
by O(α, β). From O(α, β) we can form a suborbital graph G(α, β) : its vertices are the elements of Ω, and there is a
directed edge from γ to δ if (γ, δ) ∈ O(α, β). A directed edge from γ to δ is denoted by γ → δ. If (γ, δ) ∈ O(α, β),
then we will say that there exists an edge γ → δ in G(α, β). This theory reveals the relationship between graphs
and permutation groups. In this paper our calculation concerns Γ∗(n), so we can draw this edge as a hyperbolic
geodesic in the upper half-plane H, that is, as Euclidean semi-circles and half-lines perpendicular to the real line.

The orbit O(β, α) is also a suborbital graph and it is either equal to or disjoint from O(α, β). In the latter case
G(β, α) is just G(α, β) with the arrows reserved and we call, in this case, G(α, β) and G(β, α) paired suborbital graphs.
In the former case G(α, β) = G(β, α) and the graph consists of pairs of oppositely directed edges; it is convenient to
replace each such pair by a single undirected edge, so that we have an undirected graph which we call self paired.

Definition 3.1. By a directed circuit in Gu,mn we mean that a sequence v1, v2, . . . , vk of different vertices such that
v1 −→ v2 −→ . . . −→ vk −→ v1, where k ∈ N and k ≥ 3; an anti-directed circuit will denote a configuration like
the above with at least an arrow ( not all ) reversed.

If m = 2, then we will say the configuration v1 −→ v2 −→ v1 a self paired edge: it consists of a loop based at
each vertex.

If m = 3 or m = 4, then the circuit, directed or not, is called a triangle or quadrilateral.
A graph which contains no circuit is called a forest.

 

 

  

                   𝛾                        𝛿                       𝛼                     𝑣1            𝑣2             𝑣3            𝑣4 

Figure 1. Circuits

Since Γ∗(n) acts transitively on Q̂n, each suborbital contains a pair (∞, v) for some v ∈ Q̂n; writing v = u
mn with

(u,mn) = 1 we denote this suborbital by Ou,mn and the corresponding suborbital graph by Gu,mn. If v =∞, we
would have the simplest suborbital graph, namely G1,0 = G−1,0. The above ideas are also described in [8].

Graph Gu,n

We now investigate the suborbital graphs for the action Γ∗(n) on Q̂n.
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Lemma 3.1. Let v, v
′ ∈ Q̂n. O(∞, v) = O(∞, v′

) if and only if v, v
′

in the same orbit of Γ∗(n)∞. That is, there exists
g ∈ Γ∗(n) such that g(v) = v

′
.

Proof. Assume that O(∞, v) = O(∞, v′
). Then (∞, v) ∈ O(∞, v′

).Therefore there exists g ∈ Γ∗(n) such that
g(∞, v) = (∞, v′

). Since (g(∞), g(v)) = g(∞, v) = (∞, v′
) then (g(∞), g(v)) = (∞, v′

) and g(∞) =∞, g(v) = v
′
.So

g ∈ Γ∗(n)∞.
Conversely, we suppose that v, v

′
in the same orbit of Γ∗(n)∞. Then there exists g ∈ Γ∗(n)∞ such that g(∞) =

∞, g(v) = v
′
.Hence g(∞, v) = (g(∞), g(v)) = (∞, v′

) ∈ O(∞, v′
).Thus (∞, v) ∈ O(∞, v′

) and O(∞, v)∩O(∞, v′
) 6=

∅ are obtained.In this way O(∞, v) = O(∞, v′
) is achieved.

Corollary 3.1. Gu,mn = Gu′ ,m′n if and only if m = m
′

and u
′ ≡ u(modmn2).

Proof.
Suppose that O(∞, v) = O(∞, v′

). Then (∞, v) ∈ O(∞, v′
). Let v = u

mn , v
′

= u
′

m′n
. So there exists g ∈ Γ∗(n)∞

such that g(∞) = ∞ and g( u
′

m′n
) =

u

mn
. Since Γ∗(n)∞ is generated by z : v → v + n, there exists k ∈ Z such that

u
mn = g( u

′

m′n
) = u

′

m′n
+ kn.Thus

v =
u

mn
= g(

u
′

m′n
) =

u
′

m′n
+ kn =

u
′
+ kmn2

m′n
⇔ m = m

′

and
u

′
+ kmn2 = u⇔ m = m

′
, u

′
≡ u(modmn2).

Corollary 3.2. For each integer n ≥ 1 there are ψ(mn2) distinct suborbital graphs Gu,mn one for some unit u ∈ Umn2 .

We will write r
sn →

x
yn in Gu,mn if ( r

sn ,
x
yn ) ∈ Ou,mn, that is, if there is a directed edge from r

sn to x
yn in Gu,mn.

We use the following theorem frequently in our calculation.

Theorem 3.1. r
sn →

x
yn in Gu,mn if and only if either

(i) x ≡ ur(modmn2), y ≡ us(modm) and ry − sx = m or

(ii) x ≡ −ur(modmn2), y ≡ −us(modm) and ry − sx = −m.

Proof. If r
sn →

x
yn in Gu,mn, then there exists some g ∈ Γ∗(n) such that g sends the pair ( 1

0 ,
u
mn ) to the pair ( r

sn ,
x
yn );

that is, g(∞) = r
sn = −r

−sn and g( u
mn ) = x

yn = −x
−yn for g =

(
a bn

cn d

)
∈ Γ∗(n), detg = 1. So we have the matrix

equation

±

(
a bn

cn d

)(
1 u

0 mn

)
=

(
r x

sn yn

)
.

If the plus sign is valid, then a = r, c = s, x = au + bmn2 and y = cu + dm, so that x ≡ ur(modmn2), y ≡
us(modm).Taking determinants in the matrix equation we see that ry − sx = m. Similarly, if the minus sign is valid,
we satisfy (i).

Conversely, let be x ≡ ur(modmn2), y ≡ us(modm) and ry − sx = m. We get g :=

(
r bn

sn d

)
. Then g(∞) =(

r bn

sn d

)(
1

0

)
=

(
r

sn

)
and g

(
u

mn

)
=

(
r bn

sn d

)(
u

mn

)
=

(
x

yn

)
. So g(∞, u

mn ) = ( r
sn ,

x
yn ) is achieved.Then

there exist b, d ∈ Z such that x = ur + bmn2, y = us+ dm. If we put these equivalence in ry − sx = m, we obtain
r(us+ dm)− s(ur + bmn2) = m. Since(

r bn

sn d

)(
1 u

0 mn

)
=

(
r ur + bmn2

sn usn+ dmn

)
,

we have rd− bsn2 = 1. Consequently, g ∈ Γ∗(n).
We can prove case (ii) similarly.
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Theorem 3.2. Gu,mn is self-paired if and only if u2 + 1 ≡ 0(modmn2).

Proof. We suppose that Gu,mn is self-paired.Then

O(∞, u

mn
) = O(

u

mn
,∞).

Therefore there are T ∈ Γ∗(n) such that T (∞, u
mn ) = ( u

mn ,∞). So(
a bn

cn d

)(
1 u

0 mn

)
=

(
u 1

mn 0

)
.

Thus a = u, c = m, au+ bmn2 = 1 and cnu+ dmn = 0. If c = m then mn(u+ d) = 0. Since mn > 0, d = −u is held.
So

T =

(
a bn

cn d

)
=

(
u bn

mn −u

)
and detT = −u2 − bmn2 = 1. As a result we have that u2 + 1 ≡ 0(modmn2).

Conversely, assume that u2 + 1 ≡ 0(modmn2). There exists some integer b such that −u2 − bmn2 = 1.Hence

S :=

(
u bn

mn −u

)
. So

(
u bn

mn −u

)(
1

0

)
=

(
u

mn

)
, and

(
u bn

mn −u

)(
u

mn

)
=

(
−1

0

)
=

(
1

0

)
are obtained.That is,

S(∞) = u
mn and S( u

mn ) =∞. Consequently O(∞, u
mn ) = O( u

mn ,∞) and so Gu,mn is self-paired.

If r
sn →

x
yn in Gu,mn, then Theorem 3.1 implies that ry− sx = ±m, so r

sn ≈
x
yn . Thus each connected component

of Gu,mn lies in a single block for ≈, of which there are ψ(n), so we have:

Corollary 3.3. The graph Gu,mn is a disjoint union of ψ(n) subgraphs.

Subgraph £u,n
In this section, we will investigate suborbital graph Gu,n by taking m = 1 in the graph Gu,mn. As we see, each

Gu,n is a disjoint union of ψ(n) subgraphs, the vertices of each subgraph forming a single block with respect to
the relation ≈. Since Γ∗(n) acts transitively on Q̂n, it permutes these blocks transitively, so the subgraphs are all
isomorphic. Let £u,n be the subgraph of Gu,n whose vertices form the block [∞], so that Gu,n consists of ψ(n)
disjoint copies of £u,n. The elements of £u,n has the form an+1

bn where a, b ∈ Z. And also Farey graph is the same
graph with £1,1 graph.

Now let us give the conditions of being an edge in £u,n graph;

Theorem 3.3. Let r
sn and x

yn be in the block [∞].Then there is an edge r
sn →

x
yn in £u,n if and only if either

(i) x ≡ ur(modn2) and ry − sx = 1 or

(ii) x ≡ −ur(modn2) and ry − sx = −1.

Proof. It is clear from Theorem 3.1.
An automorphism of the graph £u,n is a permutation of [∞] which takes edges to edges. In view of this it can

easily seen that Γ(n) < Aut£u,n.

Theorem 3.4. Γ(n) permutes the vertices and the edges of £u,n transitively.

Proof. Suppose that u, v ∈ [∞]. As Γ∗(n) acts on Q̂n transitively, g(u) = v for some g =

(
a bn

cn d

)
∈ Γ∗(n). Since

u ≈ ∞ and ≈ is Γ∗(n)-invariant equivalence relation, g(u) ≈ g(∞); that is v ≈ g(∞). Thus, as v ≈ g(∞), g ∈ Γ(n).
Assume that v, w ∈ [∞]; k1, k2 ∈ [∞] and v → w, k1 → k2 ∈ £u,n. Then (v, w), (k1, k2) ∈ O

(
∞, u

mn

)
. Therefore,

for some S, T ∈ Γ∗(n);
S(∞) = v, S(

u

mn
) = w and T (∞) = k1, T (

u

mn
) = k2.

Hence S, T ∈ Γ(n) as S(∞), T (∞) ∈ [∞].We see that, furthermore TS−1(v) = k1 and TS−1(w) = k2; that is
TS−1 ∈ Γ(n).
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Corollary 3.4. No edges of £u,n cross in H.

Proof. Without loss of generality, since the action on Q̂n is transitive, suppose that ∞ → u

n
,
x1
nn1

→ x2
nn2

and
x1
nn1

<
u

n
<

x2
nn2

, where all letters are positive integer.

Since
x1
nn1

→ x2
nn2

and
x1
nn1

<
u

n
< x2

nn2
then nn2x1 − nn1x2 = −1 and

x1
n1

< u <
x2
n2

respectively. Therefore

x1
n1
− x2
n2

< u− x2
n2

< 0. Then
x1n2 − x2n1

n1
< un2−x2 < 0. So − 1

nn1
< un2−x2 < 0 is obtained. This is impossible.

Definition 3.2. Let £u,n and £v,k be two suborbital graphs. If the map µ is a bijective function from the vertex set of
£u,n to that of £v,k and sends the edges of £u,n to the edges of £v,k then µ is called a suborbital graph isomorphism
and it will be denoted by µ : £u,n → £v,k.

Lemma 3.2. (i) There is a suborbital graph isomorphism £u,n → £−u,n given by v → −v for all vertices v of £u,n.

(ii) If k|n then there is a suborbital graph isomorphism from £u,n to a subgraph of £u,k, given by µ(v) = nv
k for all vertices

v of £u,n.

Corollary 3.5. There is a suborbital graph isomorphism from £u,n to a subgraph of £1,1, given by µ(v) = nv for all vertices
v of £u,n if and only if k = 1.

4. Main Calculations
In this last section, we examine the connectedness of £u,n.

Definition 4.1. A subgraph K of Gu,n is called connected if any pair of its vertices can be joined by a path in K.

Theorem 4.1. £1,2 is connected.

Proof. We will show that each vertex v = a
2b b ≥ 1,(a, 2b) = 1 of £1,2 is joined to∞ by a path in £1,2. Since the

pattern is periodic with period 2, we can show by induction on b. If b = 1, then v = a
2 can be joined with∞. If a = 1,

it is clear that 1
0 →

1
2 . If a = 3, then 3

2 →
1
0 because 1 ≡ −3 (mod 4) and 3 · 0− 2 · 1 = −2. If a = 5, then 1

0 →
5
2 . The

same holds for the rest periodically. So we can assume that b ≥ 2. 

                                           ∞                                      ∞                                        ∞ 

 

 

 

 

 

            
1

2
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5

2
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Figure 2. £1,2 graph

To complete the proof, we show that v is adjacent to a vertex w = a
2b1

with b1 < b. It means that, w is connected
by a path to∞, and hence so is v. As (a, b) = 1, there exist integers c, d such that ad − bc = 1. For some k ∈ Z,
replacing c and d by c+ ka and d+ kb, without loss of generality we can suppose that 0 < d < b.

(i) If c is odd, then w = c
2d can be joined with a

2b . Indeed, a
2b

>−→ c
2d gives that a · 2d− c · 2b = 2 and c ≡ a (mod 4).

If c 6≡ a (mod 4), taking c ≡ −a (mod 4) we obtain a
2b

<←− c
2d by 2bc− 2ad = −2. Hence, if c is odd, a

2b is adjacent to
c
2d in £1,2.

(ii) If c is even, then a− c is odd. As 0 < b− d < b, we can take w = a−c
2(b−d) , adjacent to a

2b .If a
2b

<−→ a−c
2(b−d) then

2(bc− ad) = −2 and 2a− c ≡ 0 (mod 4) . Here, if 2a− c 6≡ 0 (mod 4) then this edge must be a−c
2(b−d)

>−→ a
2b and so

we have that c ≡ 0 (mod 4) and 2(ad− bc) = 2.
Consequently, £1,2 is connected.
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Corollary 4.1. £3,2 is connected.

Proof. By the suborbital graph isomorphism £1,2
v

−→
→

£−1,2
−v

= £3,2, £3,2 is also connected.

Theorem 4.2. If n ≥ 3, then £u,n is not connected.

Proof. Since n ≥ 3 and u ≡ 1(modn) it has the form u = kn+ 1. Also k + 1
2 and k + 1 are not in [∞]. We will show

that vertices of £u,n which between lines Rez = k + 1
2 and Rez = k + 1 can not adjacent with vertices which are

outside the lines. Of course, there is at least some vertex of £u,n in this strip.Such as there is k + n+1
2n elements of

£u,n. Suppose there is an edge mn+1
sn → ln+1

yn for mn+1
sn < 2k+1

2 < ln+1
yn . Then we have mn+1

s < n(2k+1)
2 < ln+1

y .
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Figure 3. £u,n graph

(i) If n is even then n(2k+1)
2 ∈ Z. Thus the edges mn+1

s → ln+1
y with ∞ → n(2k+1)

2 cross in £1,1. This is a
contradiction. So n is not even.

(ii) If n is odd then there exists t ∈ Z such that n(2k+1)
2 = (2t+1)(2k+1)

2 = 2tk + t+ k + 1
2 is obtained. Therefore

s = y = 1. Alsomn+1 = 2tk+t+k and 2tk+t+k+1 = ln+1 are held. From 2tk+t+k = ln, n|2tk+t+k = mn+1.
So n|1 is obtained.This is impossible because of n ≥ 3. It means that no vertices of £u,n between Rez = k + 1

2 and
Rez = k + 1 can not connect with vertices which are outside the lines. Consequently, £u,n is not connected.

Theorem 4.3. £u,n is connected if and only if n ≤ 2.

Proof. If n = 1, 2 then the result follows from [1], otherwise it follows from Theorem 4.2.

Theorem 4.4. If n > 1, then there is no triangle in £u,n.

Proof. Assume that £u,n contains a directed triangle. Since Γ∗(n) acts transitively on Q̂n, the form of directed
triangle can be taken as∞→ u

n →
x
n →∞ for some integer x. By using Theorem 3.3, as u

n →
x
n , then u− x = ±1

and x = u+ 1 or x = u− 1.
If x = u + 1 then ∞ → u

n →
u+1
n → ∞. From u+1

n → ∞, 1 ≡ −u(u + 1)(modn2) is achieved.That is,
u2 − u + 1 ≡ 0(modn2). Since u

n ∈ [∞], 1 ≡ u(modn). Thus 1 ≡ 0(modn) is obtained. Hence n = 1 which is a
contradiction. Similarly, ∞ → u

n →
u−1
n → ∞, the second case can be shown.As a result there is not directed

triangle in £u,n.
In addition, ∞ → u

n →
u+1
n ← ∞ or ∞ → u

n →
u−1
n ← ∞ can not be hold. Indeed, if u+1

n ← ∞ then
u + 1 ≡ u(modn2) and so 1 ≡ 0(modn2) is obtained. This is impossible. Likewise the case u−1

n ← ∞ is also a
contradiction. Last of all, for n > 1 there is no triangle in £u,n.

Theorem 4.5. £u,n contains a triangle if and only if n = 1.

Proof. Let κ be a triangle in £u,n. We may suppose that κ has the form∞→ v1 → v2 →∞ or∞→ v1 ← v2 →∞.
Let us make calculations only for the first triangle. We easily seen that v1 = x

n and v2 = y
n for some x, y ∈ Z. By

using Theorem 3.3, if xn
<−→ y

n then xn− yn = −1. Since x
n ,

y
n ∈ [∞], x ≡ y(modn). So x− y ≡ 0(modn) is obtained.

Therefore n = 1. If xn
>−→ y

n then xn− yn = 1. And so, again, n = 1. Conversely if n = 1 then we have the triangle
1
0 →

1
1 →

2
1 →

1
0 .

Lemma 4.1. If £u,n contains a triangle then, Γ(n) contains an elliptic element of order 3.
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Proof. If £u,n contains a triangle, then by Theorem 4.5 n = 1 is achieved. So Γ(1) = Γ∗(1) = Γ and φ :=

(
1 −3

1 −2

)
∈

Γ(1) is an elliptic element of order 3. That is, φ3 = I . And also, it is clear that

φ(∞) = 1, φ(1) = 2, φ(2) =∞.

The transformation φ establish a connection between circuits in the graph and elliptic elements in the graph Γ(n).
In general, the converse of Lemma 4.1 may not true.

Remark 4.1. One can show the similar conclusion in the Theorem 3.3 for the block [0]. Without loss of generality,
since the equation (

a bn

cn d

)(
0 n

1 u

)
=

(
sn yn

r x

)

holds for T =

(
a bn

cn d

)
∈ Γ(n), x ≡ ±ur(modn2) and ry − sx = ±1 are obtained.

Example 4.1. Let u = 1. Then the triangle circuits in £1,1 and κ1,1 denote the subgraphs in G1,1 whose vertices
form the block [∞] and [0] respectively.
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Figure 4. Directed Triangles in [∞] and [0]
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