On (p,q) and (q,k)-extensions of a double-inequality bounding a ratio of Gamma functions

Kwara Nantomah*, Edward Prempeh and Stephen Boakye Twum

(Communicated by Nihal YILMAZ ÖZGÜR)

Abstract

In this paper, the authors present the (p,q) and (q,k)-extensions of a double inequality involving a ratio of Gamma functions. The method is based on some monotonicity properties of certain functions associated with the (p,q) and (q,k)-extensions of the Gamma function.

Keywords: Gamma function, psi function, inequality, (p,q)-extension, (q,k)-extension.

AMS Subject Classification (2010): Primary: 33B15; Secondary: 26A48; 26D15.

*Corresponding author

1. Introduction

The classical Euler's Gamma function, $\Gamma(x)$ and the classical psi or digamma function, $\psi(x)$ are usually defined for x>0 as

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt = \lim_{n \to \infty} \frac{n! n^x}{x(x+1)(x+2)\dots(x+n)}$$

and

$$\psi(x) = \frac{d}{dx} \ln \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)}.$$

The p-extension (also known as p-analogue, p-deformation or p-generalization) of the Gamma function, $\Gamma_p(x)$ is defined (see [2]) for $p \in \mathbb{N}$ and x > 0 as

$$\Gamma_p(x) = \frac{p!p^x}{x(x+1)\dots(x+p)} = \frac{p^x}{x(1+\frac{x}{1})\dots(1+\frac{x}{p})}$$

where $\lim_{p\to\infty} \Gamma_p(x) = \Gamma(x)$.

Also, the *q*-extension of the Gamma function, $\Gamma_q(x)$ is defined (see [5]) for $q \in (0,1)$ and x > 0 as

$$\Gamma_q(x) = (1-q)^{1-x} \prod_{n=0}^{\infty} \frac{1-q^{n+1}}{1-q^{n+x}} = (1-q)^{1-x} \prod_{n=1}^{\infty} \frac{1-q^n}{1-q^{n-1+x}}$$

where $\lim_{q\to 1} \Gamma_q(x) = \Gamma(x)$.

The k-extension of the Gamma function, $\Gamma_k(x)$ is similarly defined (see [3]) for k > 0 and $x \in \mathbb{C} \setminus k\mathbb{Z}^-$ as

$$\Gamma_k(x) = \int_0^\infty t^{x-1} e^{-\frac{t^k}{k}} dt = \lim_{n \to \infty} \frac{n! k^n (nk)^{\frac{x}{k}-1}}{(x)_{n,k}}$$

Received: 16-January-2016, Accepted: 15-June-2016

where $(x)_{n,k} = x(x+k)(x+2k)\dots(x+(n-1)k)$ is the k-Pochhammer symbol and $\lim_{k\to 1} \Gamma_k(x) = \Gamma(x)$.

Krasniqi and Merovci [6] defined the (p,q)-extension of the Gamma for $p \in \mathbb{N}$, $q \in (0,1)$ and x > 0 as

$$\Gamma_{p,q}(x) = \frac{[p]_q^x [p]_q!}{[x]_q [x+1]_q \dots [x+p]_q}$$

where $[p]_q = \frac{1-q^p}{1-q}$, and $\Gamma_{p,q}(x) \to \Gamma(x)$ as $p \to \infty$ and $q \to 1$. It satisfies the following identities.

$$\Gamma_{p,q}(x+1) = [x]_q \Gamma_{p,q}(x)$$

$$\Gamma_{p,q}(1) = 1.$$

The (p,q)-extension of the psi fuction is similarly defined as

$$\psi_{p,q}(x) = \frac{d}{dx} \ln \Gamma_{p,q}(x) = \frac{\Gamma'_{p,q}(x)}{\Gamma_{p,q}(x)}.$$

It satisfies the series representation:

$$\psi_{p,q}(x) = \ln[p]_q + (\ln q) \sum_{n=0}^p \frac{q^{n+x}}{1 - q^{n+x}}$$

where $\psi_{p,q}(x) \to \psi(x)$ as $p \to \infty$ and $q \to 1$.

Díaz and Teruel [4] further defined the (q, k)-extension of the Gamma for $q \in (0, 1)$, k > 0 and x > 0 as

$$\Gamma_{q,k}(x) = \frac{(1-q^k)_{q,k}^{\frac{x}{k}-1}}{(1-q)^{\frac{x}{k}-1}} = \frac{(1-q^k)_{q,k}^{\infty}}{(1-q^x)_{q,k}^{\infty}(1-q)^{\frac{x}{k}-1}}$$

where $(x+y)_{q,k}^n := \prod_{i=0}^{n-1} (x+q^{ik}y)$, $(1+x)_{q,k}^{\infty} := \prod_{i=0}^{\infty} (1+q^{ik}x)$, and $(1+x)_{q,k}^t := \frac{(1+x)_{q,k}^{\infty}}{(1+q^{kt}x)_{q,k}^{\infty}}$ for $x,y,t \in \mathbb{R}$ and $n \in \mathbb{N}$. It also satisfies the following identities.

$$\Gamma_{q,k}(x+k) = [x]_q \Gamma_{q,k}(x)$$
$$\Gamma_{q,k}(k) = 1$$

Similarly, the (q, k)-extension of the psi function is defined as

$$\psi_{q,k}(x) = \frac{d}{dx} \ln \Gamma_{q,k}(x) = \frac{\Gamma'_{q,k}(x)}{\Gamma_{q,k}(x)}$$

satisfying the series representation (see also [9] and the references therein):

$$\psi_{q,k}(x) = -\frac{1}{k}\ln(1-q) + (\ln q)\sum_{n=0}^{\infty} \frac{q^{nk+x}}{1-q^{nk+x}}$$

where $\psi_{q,k}(x) \to \psi(x)$ as $q \to 1$ and $k \to 1$.

In 2009, Vinh and Ngoc [10] by using the Dirichlet's integral approach proved the inequality

$$\frac{\prod_{i=1}^{n} \Gamma(1+\alpha_i)}{\Gamma(\beta+\sum_{i=1}^{n} \alpha_i)} \le \frac{\prod_{i=1}^{n} \Gamma(1+\alpha_i x)}{\Gamma(\beta+\sum_{i=1}^{n} \alpha_i x)} \le \frac{1}{\Gamma(\beta)}$$
(1.1)

where $x \in [0,1], \beta \ge 1, \alpha_i > 0, n \in \mathbb{N}$. This provides a generalization of the previous results of Alsina and Tomás [1].

In the papers [8] and [12], the authors by using different procedures, proved a k-extension of (1.1) together with other results. Also in [9], the authors established amongst other results, a (q, k)-extension of the inequality (1.1).

Also, at the latter part of 2009, Ngoc, Vinh and Hien [11] further proved the following generalization of (1.1).

$$\frac{\prod_{i=1}^{n} \Gamma(b_i + \alpha_i)^{\mu_i}}{\Gamma(\beta + \sum_{i=1}^{n} \alpha_i)^{\lambda}} \le \frac{\prod_{i=1}^{n} \Gamma(b_i + \alpha_i x)^{\mu_i}}{\Gamma(\beta + \sum_{i=1}^{n} \alpha_i x)^{\lambda}} \le \frac{\prod_{i=1}^{n} \Gamma(b_i)^{\mu_i}}{\Gamma(\beta)^{\lambda}}$$
(1.2)

for $x \in [0,1]$ where b_i , α_i , β are real numbers, and μ_i , λ are positive real numbers such that $\lambda \geq \mu_i$, $\alpha_i > 0$, $\beta + \sum_{i=1}^n \alpha_i x \geq b_i + \alpha_i x > 0$ and $\psi_{p,q}(\beta + \sum_{i=1}^n \alpha_i x) > 0$, $i = 1, \ldots, n$, $n \in \mathbb{N}$.

In this paper, our main interest is to establish the (p,q) and (q,k)-extensions of (1.2) by using techniques similar to those of [11].

2. Lemmas

In order to establish our results, we need the following Lemmas.

Lemma 2.1 ([6], [7]). Let $0 < x \le y$, $p \in \mathbb{N}$ and $q \in (0, 1)$. Then,

$$\psi_{p,q}(x) \le \psi_{p,q}(y). \tag{2.1}$$

Lemma 2.2. Let b_i , μ_i , α_i , β , λ and x be positive real numbers such that $\lambda \ge \mu_i$ and $\beta \ge b_i$. If $\psi_{p,q}(\beta + \sum_{i=1}^n \alpha_i x) > 0$ where $p \in \mathbb{N}$ and $q \in (0,1)$ then,

$$\mu_i \psi_{p,q}(b_i + \alpha_i x) - \lambda \psi_{p,q}(\beta + \sum_{i=1}^n \alpha_i x) \le 0.$$

Proof. Since $b_i + \alpha_i x \leq \beta + \sum_{i=1}^n \alpha_i x$ then by Lemma 2.1 we have $\psi_{p,q}(b_i + \alpha_i x) \leq \psi_{p,q}(\beta + \sum_{i=1}^n \alpha_i x)$. Then, $\lambda \geq \mu_i > 0$ and $\psi_{p,q}(\beta + \sum_{i=1}^n \alpha_i x) > 0$ implies

$$\lambda \psi_{p,q}(\beta + \sum_{i=1}^{n} \alpha_i x) \ge \mu_i \psi_{p,q}(\beta + \sum_{i=1}^{n} \alpha_i x) \ge \mu_i \psi_{p,q}(b_i + \alpha_i x)$$

Hence,

$$\mu_i \psi_{p,q}(b_i + \alpha_i x) - \lambda \psi_{p,q}(\beta + \sum_{i=1}^n \alpha_i x) \le 0.$$

Lemma 2.3 ([7], [9]). Let $0 < x \le y$, $q \in (0, 1)$ and k > 0. Then,

$$\psi_{a,k}(x) \le \psi_{a,k}(y). \tag{2.2}$$

Lemma 2.4. Let b_i , μ_i , α_i , β , λ and x be positive real numbers such that $\lambda \ge \mu_i$ and $\beta \ge b_i$. If $\psi_{q,k}(\beta + \sum_{i=1}^n \alpha_i x) > 0$ where $q \in (0,1)$ and k > 0 then,

$$\mu_i \psi_{q,k}(b_i + \alpha_i x) - \lambda \psi_{q,k}(\beta + \sum_{i=1}^n \alpha_i x) \le 0.$$

Proof. By using Lemma 2.3, the proof is identical to that of Lemma 2.2.

3. Main Results

We now present our results.

Theorem 3.1. Let b_i , μ_i , β , λ be positive real numbers, and α_i be real numbers such that $\lambda \ge \mu_i$ and $\beta \ge b_i$, i = 1, ..., n, $n \in \mathbb{N}$. If $\psi_{p,q}(\beta + \sum_{i=1}^n \alpha_i x) > 0$ and $\alpha_i > 0$, then the inequality

$$\frac{\prod_{i=1}^{n} \Gamma_{p,q}(b_{i} + \alpha_{i})^{\mu_{i}}}{\Gamma_{p,q}(\beta + \sum_{i=1}^{n} \alpha_{i})^{\lambda}} \leq \frac{\prod_{i=1}^{n} \Gamma_{p,q}(b_{i} + \alpha_{i}x)^{\mu_{i}}}{\Gamma_{p,q}(\beta + \sum_{i=1}^{n} \alpha_{i}x)^{\lambda}} \leq \frac{\prod_{i=1}^{n} \Gamma_{p,q}(b_{i})^{\mu_{i}}}{\Gamma_{p,q}(\beta)^{\lambda}}$$
(3.1)

holds for $x \in [0,1]$, $p \in \mathbb{N}$ and $q \in (0,1)$.

Proof. Define a function G for $x \in [0, \infty)$, $p \in \mathbb{N}$ and $q \in (0, 1)$ by

$$G(x) = \frac{\prod_{i=1}^{n} \Gamma_{p,q}(b_i + \alpha_i x)^{\mu_i}}{\Gamma_{p,q}(\beta + \sum_{i=1}^{n} \alpha_i x)^{\lambda}}.$$

Let $g(x) = \ln G(x)$. Then,

$$g(x) = \ln \frac{\prod_{i=1}^{n} \Gamma_{p,q} (b_i + \alpha_i x)^{\mu_i}}{\Gamma_{p,q} (\beta + \sum_{i=1}^{n} \alpha_i x)^{\lambda}}$$
$$= \mu_i \ln \prod_{i=1}^{n} \Gamma_{p,q} (b_i + \alpha_i x) - \lambda \ln \Gamma_{p,q} (\beta + \sum_{i=1}^{n} \alpha_i x)$$

implying that,

$$g'(x) = \sum_{i=1}^{n} \mu_i \alpha_i \frac{\Gamma'_{p,q}(b_i + \alpha_i x)}{\Gamma_{p,q}(b_i + \alpha_i x)} - \lambda \left(\sum_{i=1}^{n} \alpha_i\right) \frac{\Gamma'_{p,q}(\beta + \sum_{i=1}^{n} \alpha_i x)}{\Gamma_{p,q}(\beta + \sum_{i=1}^{n} \alpha_i x)}$$

$$= \sum_{i=1}^{n} \mu_i \alpha_i \psi_{p,q}(b_i + \alpha_i x) - \lambda \left(\sum_{i=1}^{n} \alpha_i\right) \psi_{p,q}(\beta + \sum_{i=1}^{n} \alpha_i x)$$

$$= \sum_{i=1}^{n} \alpha_i \left[\mu_i \psi_{p,q}(b_i + \alpha_i x) - \lambda \psi_{p,q}(\beta + \sum_{j=1}^{n} \alpha_j x)\right] \leq 0.$$

This is as a result of Lemma 2.2. That implies g is decreasing on $x \in [0, \infty)$. As a result, G is decreasing on $x \in [0, \infty)$ and for $x \in [0, 1]$ we have

$$G(1) \le G(x) \le G(0)$$

yielding the result as in (3.1).

Corollary 3.1. *If* $x \in (1, \infty)$ *in Theorem 3.1, then the inequality*

$$\frac{\prod_{i=1}^{n} \Gamma_{p,q}(b_i + \alpha_i x)^{\mu_i}}{\Gamma_{p,q}(\beta + \sum_{i=1}^{n} \alpha_i x)^{\lambda}} < \frac{\prod_{i=1}^{n} \Gamma_{p,q}(b_i + \alpha_i)^{\mu_i}}{\Gamma_{p,q}(\beta + \sum_{i=1}^{n} \alpha_i)^{\lambda}}$$
(3.2)

is satisfied.

Proof. For $x \in (1, \infty)$, we have G(x) < G(1) ending the proof.

Theorem 3.2. Let b_i , μ_i , β , λ be positive real numbers, and α_i be real numbers such that $\lambda \ge \mu_i$ and $\beta \ge b_i$, i = 1, ..., n, $n \in \mathbb{N}$. If $\psi_{q,k}(\beta + \sum_{i=1}^n \alpha_i x) > 0$ and $\alpha_i > 0$, then the inequality

$$\frac{\prod_{i=1}^{n} \Gamma_{q,k}(b_i + \alpha_i)^{\mu_i}}{\Gamma_{q,k}(\beta + \sum_{i=1}^{n} \alpha_i)^{\lambda}} \le \frac{\prod_{i=1}^{n} \Gamma_{q,k}(b_i + \alpha_i x)^{\mu_i}}{\Gamma_{q,k}(\beta + \sum_{i=1}^{n} \alpha_i x)^{\lambda}} \le \frac{\prod_{i=1}^{n} \Gamma_{q,k}(b_i)^{\mu_i}}{\Gamma_{q,k}(\beta)^{\lambda}}$$
(3.3)

holds for $x \in [0,1], q \in (0,1)$ and k > 0.

Proof. Similarly, define a function H for $x \in [0, \infty)$, $q \in (0, 1)$ and k > 0 by

$$H(x) = \frac{\prod_{i=1}^{n} \Gamma_{q,k} (b_i + \alpha_i x)^{\mu_i}}{\Gamma_{q,k} (\beta + \sum_{i=1}^{n} \alpha_i x)^{\lambda}}.$$

Let $h(x) = \ln H(x)$. Then, by following the steps of Theorem 3.1, in conjunction with Lemma 2.4, we arrive at

$$h'(x) = \sum_{i=1}^{n} \alpha_i \left[\mu_i \psi_{q,k} (b_i + \alpha_i x) - \lambda \psi_{q,k} (\beta + \sum_{j=1}^{n} \alpha_j x) \right] \le 0$$

implying that h is decreasing on $x \in [0, \infty)$. Consequently H is decreasing on $x \in [0, \infty)$ and for $x \in [0, 1]$ we have

yielding the result (3.3).

Corollary 3.2. If $x \in (1, \infty)$ in Theorem 3.2, then the inequality

$$\frac{\prod_{i=1}^{n} \Gamma_{q,k}(b_i + \alpha_i x)^{\mu_i}}{\Gamma_{q,k}(\beta + \sum_{i=1}^{n} \alpha_i x)^{\lambda}} < \frac{\prod_{i=1}^{n} \Gamma_{q,k}(b_i + \alpha_i)^{\mu_i}}{\Gamma_{q,k}(\beta + \sum_{i=1}^{n} \alpha_i)^{\lambda}}$$
(3.4)

is satisfied.

Proof. For $x \in (1, \infty)$, we have H(x) < H(1) yielding the result.

4. Concluding Remarks

In this section, we make the following remarks concerning our results.

Remark 4.1. If in Theorem 3.1, $\alpha_i < 0$ such that $0 < b_i + \alpha_i x \le \beta + \sum_{i=1}^n \alpha_i x$ and $\psi_{p,q}(\beta + \sum_{i=1}^n \alpha_i x) > 0$, then the inequalities (3.1) and (3.2) are reversed.

Remark 4.2. Also, if in Theorem 3.2, $\alpha_i < 0$ such that $0 < b_i + \alpha_i x \le \beta + \sum_{i=1}^n \alpha_i x$ and $\psi_{q,k}(\beta + \sum_{i=1}^n \alpha_i x) > 0$, then the inequalities (3.3) and (3.4) are reversed.

Remark 4.3. If we allow $p \to \infty$ in Theorem 3.1, or we set k = 1 in Theorem 3.2, then we obtain a q-extension of (1.2).

Remark 4.4. If we allow $q \rightarrow 1$ in Theorem 3.1, then we obtain a p-extension of (1.2).

Remark 4.5. If we allow $q \rightarrow 1$ in Theorem 3.2, then we obtain a k-extension of (1.2).

Remark 4.6. If we allow $p \to \infty$ as $q \to 1$ in Theorem 3.1, or we allow $q \to 1$ as $k \to 1$ in Theorem 3.2, then we obtain (1.2).

Remark 4.7. If we set $\mu_i = 1$, $b_i = k$ for i = 1, ..., n, and $\lambda = 1$ in Theorem 3.2, then we obtain the (q, k)-extension of (1.1) as established in [9].

Acknowledgements

The authors are grateful to the anonymous referees for their useful comments and suggestions, which helped in improving the quality of this paper.

References

- [1] C. Alsina and M. S. Tomás, A geometrical proof of a new inequality for the gamma function, *J. Ineq. Pure Appl. Math.*, 6(2)(2005), Art. 48.
- [2] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
- [3] R. Díaz and E. Pariguan, On hypergeometric functions and Pachhammer k-symbol, *Divulgaciones Matemtícas*, 15(2)(2007), 179-192.
- [4] R. Díaz and C. Teruel, q, k-generalized gamma and beta functions, J. Nonlin. Math. Phys., 12(2005), 118-134.
- [5] F. H. Jackson, On a q-Definite Integrals, Quarterly Journal of Pure and Applied Mathematics, 41(1910), 193-203.
- [6] V. Krasniqi and F. Merovci, Some Completely Monotonic Properties for the (p,q)-Gamma Function, *Mathematica Balkanica*, *New Series*, 26(2012), Fasc. 1-2.
- [7] K. Nantomah, Some Inequalities for the Ratios of Generalized Digamma Functions, *Advances in Inequalities and Applications*, 2014(2014), Article ID 28.
- [8] K. Nantomah and M. M. Iddrisu, The *k*-analogue of some inequalities for the Gamma function, *Electron. J. Math. Anal. Appl.*, 2(2)(2014), 172-177.
- [9] K. Nantomah, E. Prempeh and S. B. Twum, The (q, k)-extension of some Gamma function inequalities, *Konuralp Journal of Mathematics*, 4(1)(2016), 148-154.
- [10] N. V. Vinh and N. P. N. Ngoc, An inequality for the Gamma Function, *International Mathematical Forum*, 4(28)(2009), 1379-1382.

- [11] N. P. N. Ngoc, N. V. Vinh and P. T. T. Hien, Generalization of Some Inequalities for the Gamma Function, *Int. J. Open Problems Compt. Math.*, 2(4)(2009), 532-535.
- [12] J. Zhang and H. Shi, Two double inequalities for *k*-gamma and *k*-Riemann zeta functions, *Journal of Inequalities and Applications*, 2014, 2014:191.

Affiliations

KWARA NANTOMAH

ADDRESS: Department of Mathematics, University for Development Studies, Navrongo Campus, P. O. Box 24, Navrongo, UE/R, Ghana.

E-MAIL: mykwarasoft@yahoo.com, knantomah@uds.edu.gh

EDWARD PREMPEH

ADDRESS: Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. **E-MAIL:** eprempeh.cos@knust.edu.gh

STEPHEN BOAKYE TWUM

ADDRESS: Department of Mathematics, University for Development Studies, Navrongo Campus, P. O. Box 24, Navrongo, UE/R, Ghana. **E-MAIL:** stwum@uds.edu.gh