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Abstract

In this paper we construct an almost para-quaternionic structure on the 3-jet bundle of an almost para-
hermitian manifold and we study its integrability. We give a necessary and sufficient conditions that are
provided for these structures to become para-hyper-Kéahler and we prove that the 3-jet bundle can not be
a para-quaternionic Kédhler manifold.
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1. Introduction

A para-quaternionic structure on a manifold consists of an almost para hypercomplex structure which is a triple
of endomorphisms of the tangent bundle J = {Ji, J2, J3}, where J; is almost complex structure and J,, J3 are
almost product structures satisfying anti-commutation relations and compatible with a semi-Riemannian metric
necessarily of neutral signature. Moreover, if the structures J are parallel with respect to the Levi-Civita connection
of the compatible metric, one arrives at the concept of para-hyper-Kéahler structure and also named neutral hyper-
Kahler or hypersymplectic structure ([3], [13], [14], [16], [18]...). The para-quaternionic and para-hyperhermitian
structures are structures that appear in theorical physics, precisely, in string theory and integrable systems ([1], [9],
[11]...).

On the other hand, the 3-jet bundle or the third order tangent bundle 73 M of a smooth n-dimensional manifold
M is the 4n-dimensional smooth manifold of equivalent classes of curves c on M that agree up to their 3-velocity
or the manifold of 3-jet denoted j3c. That is a generalization of the tangent bundle 7M. This bundle has been
studied with different names by many authors (see [5], [7]) for 2-jet bundle and generalized to the r-jet bundle in
([6]), where T M is the smooth manifold of equivalent classes of curves c on M that agree up to their r-velocity or a
manifold of r-jets.

Dodson and Radivoiovici prove that 72 M becomes a vector bundle over M with structure group GL(2n; R) if
the manifold M is endowed with additional structure: a linear connection V ([7]), this result was generalized to
T"M (r > 2) in ([6]). Then, the 3-jet bundle of n-dimensional manifold M is a vector bundle when M is endowed
with a linear connection V.

The linear connection V on a manifold M defines a diffeomorphism S between the 3-jet bundle 72 M and the
Whitney sum of three copies of the tangent bundles TM. S is a fibre diffeomorphism of locally trivial bundle
but it is not an isomorphism of natural bundles. Next, using the vertical and horizontal lift (X', X#) of vector
fields X € I'(TM) we define by the A-lift the adapted frame {X°, X1, X2 X3}, so a sequence of distributions

Ey, E1, Es and E3 on T3 M such that T(T3M) = @ E;, when X = 1. Ey, E coincide with i and V respectively
i=0,3

the horizontal and the vertical subspaces of T'M. The A-lift of tensor fields on manifold M to the 3-jet bundle T3 M,

is a generalization of vertical and horizontal lift of geometric structures to the tangent bundle T'M (see [6], [10]).
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The main purpose of this paper is to construct a para-quaternionic structure or para-hyperhermitian structure on
the 3-jet bundle which is the generalization of this construction on tangent bundle (see [13], [20]), we also investigate
its integrability, we obtain the necessary and sufficient conditions for these structures to become para-hyper-Kahler
and finally we prove that the 3-jet bundle can not be a para-quaternionic Kéhler manifold.

2. Preliminaries

An almost product (resp. complex) structure on a smooth manifold M is given by a tensor field P (resp. J) of
type (1,1) on M such that,
P # +Idand P? = Id. (resp. J*> = —Id)

(M, P) (resp. (M,J)) is called an almost product (resp. complex) manifold. Moreover, if M is endowed with
pseudo-Riemannian metric g satisfying

g(PX,PY)=—g(X,Y) (resp. g(JX,JY) = g(X,Y))

for all vector fields X,Y on M, (M, g, P) (resp. (M,g,J)) is called an almost para-hermitian (resp. hermitian)
structure.

When M support three tensor fields J = (J4)a=1,2,3 where J; is an almost complex structure and J,, J3 are an
almost product structures satisfying:

J? = —¢,Id
{ Tidy = —Jody = Js @1)
where a« = 1,2, 3, €1 =1, €2 = €3 = —1, then M is said to be an almost para-hypercomplex manifold and denoted

(M, ). Its dimension is multiple of 4.
A semi-Riemannian metric g on (M, ]) is said to be compatible or adapted to the almost para-hypercomplex
structure J if it satisfies
g(N1 X, 1Y) = —g(J2 X, bY) = —g(J3X, J3Y) = g(X,Y) (22)

for all vector fields X,Y on M. The pair (g, J) is called an almost para-hyperhermitian structure on M and the triple

(M, g,]) is said to be an almost para-hyperhermitian manifold. Its adapted metric is of neutral signature (2n,2n). If

J is parallel with respect to the Levi-Civita connection of g, then the manifold is called a para-hyper-Kéhler.
Moreover, we say that J is integrable if its Nijenhuis tensor

No(X,Y) = [Ju X, JoY] = JolX, JoY] = Jo[Ju X, Y] + J2[X,Y]; 0 =1,2,3

is zero for all vector fields X and Y on M, then (A1, ]) is called a para-hypercomplex manifold. If g is a semi-
Riemannian metric adapted to structure J , then the pair (g, J) is said to be a para-hyperhermitian structure on M
and (M, g,J) is called a para-hyperhermitian manifold.

For a n-dimensional manifold M, let assume that there is a rank 3-sub bundle o of End(T'M) such that a local
basis {J1, Jo, J3} of sections of o exists satisfying the formula (2.1). Then the bundle o is called a para-quaternionic
structure on M and {J1, Jo, J3} is called a canonical local basis of . Moreover, (M, o) is said to be an almost
para-quaternionic manifold.

A pseudo-Riemannian metric g is said to be adapted to the para-quaternionic structure o if any local basis
{J1, J2, J3} of o satisfies the formula (2.2). (M, 0, g) is said to be an almost hermitian para-quaternionic manifold.

3. Bundle of the 3-jet
Let M be an n-dimensional smooth differentiable manifold. For each = € M, we define an equivalence relation
on the set C, = {c: (—¢,e) = M / cis smooth and ¢(0) = z,& > 0} by
ey h <= D(0) =hrD0) fori=T1,3,
where ¢(?) denote the derivation of order i of ¢ :

de (t)

@) . (_ . =\
(=) > TM 5 t— | ) ]
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Definition 3.1. The 3-jet space or the third order tangent space of M at the point z denoted by T2 M is the quotient
Cy/ =, and the 3-jet-bundle or the third order tangent bundle of M is the union of all the 3-jets spaces

T3M = U T3M.
xeM

We denote by j3c the equivalence class of ¢ with respect to ~,and by j3c an element of T3 M.

Moreover, when M is endowed with a linear connection, 72 M becomes a vector bundle with structure group
the general linear group GL(2n;R) and (3 + 1)n-dimensional smooth manifold.

Now, let V be a linear connection on M. Let w3 : T3M — M be the projection defined by 73(j3¢c) = ¢(0), if
(U,2',...,2") is a chart on M, then we consider the induced chart (m3 ' (U), 2 ),_17 \_g3 on T°M defined by

. N .
2" ([cls) = 3y gex (2" 0 €)(0).
Using the connection V we can define the diffeomorphism S by

S . T°M-o>TM+TM+TM

V. denotes the covariant derivation along c and c is the velocity vector field of ¢, with

K dQCl

3 0 P
Vee = (g

i X d’c i
+p1)a?gi and V.V.c = (W +p2)azi

where pj (resp. p}) is a polynomial of degree one (resp. two) on d;ti,.j with & <1 (resp. k < 2) and the coefficients of

pi (resp. p) depend on the connection coefficients T, (resp. Dy I, with [a| < 1).

4. Lift from M to T3 M

Let (M, g) be a pseudo-Riemannian manifold, V it’s Levi-Civita connection and R it’s curvature tensor.

Some results of the lift from )M to 7'M
Let be f a function on M. For any vector field X on M, we denote by fV the vertical lift of f to TM defined by

fV = fom;nis projection from TM to M

Let be X a vector field on M. Then there is one and only one vector field XV on T'M called the vertical lift of X
such that

XY(fY) =0, forevery f
The connection V define a horizontal distribution H on T'M such that

T(TM)=V ®H whereV = kerdnr 4.1)

Since for every point z of 7'M
dZTr/Hz cH, — Tﬂ.(z)M

is an isomorphism, then, if X is a vector field on M, we can define
XM (2) = (demjp.) ™ (X))

X1 is a vector field on TM called the horizontal lift of X to T M.
Consequently, { X*, XV} is a 2n-frame which is called the adapted frame to V in T'M.
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Lift from M to T3 M
Let X € I'(TM) be a vector field on M. For A = 0, 3, the A—lift of X to T3 M is defined by
X0 = SN (XM XX )
X1 =5-4x",0,0)
X2 =8-%0,XxV,0)
X3 =8:50,0,X")

when )\ = 1 the A\—lift of (X°, X!) coincide with (X, XV)in TM. If A = 2, the A\—lift was studied in ([5]) and for
any X > 1, it was studied in ([6]). {X*}, |, is a 4n-frame called the adapted frame in 7% M.

Proposition 4.1. For all vector fields X,Y € T'(T M) and p € T3 M, we have the identities

(X0, = X Y]~ (RX,Y)u)' + (R(X,Y)w)” + (R(X,Y)z)*)
(XY = (VxY)

[XLY] = —(VyX)'

X,V = 0

where (u,w,z2) = S(p) and i,j = 1, 3.
Proof. For proof see [5] and [6]. O
Definition 4.1. The diagonal lift of g to 73 M denoted by Pg is defined by

i) b (Xi7Yi) = g(X,Y)

fori,j =0,3 (i # j) and X,Y vector fields in TM. P g coincide with Sasaki metric on TM. (see [6])

The Levi-Civita connection PV of g is given by Koszul formula as following

(PVxoY?), = (VxY)p— 3((R(X,Y)u)" + (R(X,Y)w)* + (R(X,Y)2)*)

(PVxoY?), = (VxY), + 5(R(X, ))O (43)
(PVxiY?), = F(R(X,Y)u)

(PVxiY?), = 0 fori,j#0

for all vector fields X, Y in TM, p € T®M and (u,w, z) = S(p).

Now, we suppose for sections 5 and 6 that (M, P, g) be an almost para-hermitian n-dimensional manifold.

5. Para-hyperhermitian structures

Definition 5.1. We define three tensor fields J = (Jo)a=1230nT3M by the equalities:

L X0 = X2 JoX0 = PX? J3 X0 = PXO
LX' = X3 JoX' = PX? J X' = PX!
JX2=-X"" ) RX2=PX°° ) JX?=-PX?"
LX3=-X' | LX?=PX' | J3X?=-PX?

Then we have the theorem

Theorem 5.1. The 3-jet bundle T M admits an almost para-hypercomplex structure I which is a para-hyperhermitian with
respect to P g.
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Proof. From the definition (5.1), we have for J;
JEX0 = X2 =-X°
JEXY = X3 = -X!

J2X? = —J;X0 = — X2

J2X3 = X! = — X3

the calculations for J3 and JZ are analogous to J7.

For the anti-commutation rules, we have

J2J1X0 = J2X2 == PXO = J3XO
Jo 1 X = X3 = PX! = J3X!

Jo1 X?2 = - X" = -PX?%2=J;X?

Jo 1 X3 = —JhX! = -PX3=J3X3

Its similar for —J; Jo = J3, thus

— J2X =X

— JQJl)A(: = Jg)?

Ji=—J3=—-Ji=—-Idand JoJ, = —J1Jo = J3

Using the definition (5.1) for J;, we have

Pg(i X% 11Y0) = Pg(X°, V") Pg(h X 1Y?) =0= Pg(X",Y?
Pg(h X0, 1Y) =0= Pg(X° Y1) Pg(h XY, J1Y3) =0= Pg(X',Y3)
Pg(i X% 1Y?) =0= Pg(X°Y?) and{ Pg(/iX> 1Y?) = Pg(X?Y?)

Po(J1 X0 J1Y3) =0= Pg(X°V?) Po(1, X2, 1,Y3) =0= Pg(Xx2,Y?
Pg(/y X1, 1Y) = Pg(X1 YY) Pg(1 X3, 11Y3) =0= Pg(X3,Y?)

Do(nX, 1Y) =P g(X,Y).

And similarly for J, and .J5, we get the compatibility of J with g? defined in formula (4.2)

Dy(h X, 1Y) = — Pg(JoX, 1Y) = = Pg(J3X, J3Y) = Pg(X,Y).

Thus, J is a para-hyperhermitian structure with respect to ”g. O

6. Study of integrability

First of all, we mention a general proposition:

Proposition 6.1. Let (M, g, P) be an almost product manifold, then we have
1/ [PX,PY] = (VpxP)(Y)— (VpyP)(X)+ P(VpxY — Vpy X),
2/ P[PX,Y]=PVpxY — PVyPX,
3/ P|X,PY]=PVxPY — PVpyX,

for all vector fields X,Y on M.

The integrability of structure Jis given by 16 equations for each j,i = 0, 3, in following proposition.

Proposition 6.2. The Nijenhuis tensor of structure Jy is given by

Ni(X° Y% = (RX,Y)u)!' + (R(X,Y)v)? + (R(X,Y)w)?
N (X2Y?) = (RX,Y)u)'+ (R(X,Y)v)? 4+ (R(X,Y)w)?
Ni(X2 Y% = N(X2Y9)

= J((RX,Y)u)' + (R(X,Y)v)? + (R(X,Y)w)?)

Il
=
Is

~

u)? — (R(X,Y)0)’ — (R(X,Y)w)'
Ni(X",Y?) = Oforalli,j=0,3and (i,5) # {(0,0),(0,2),(2,0),(2,2)}
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Similarly, we deduce for J,

Ny(XPY?) = —(P(VxP)Y)" + (R(X,Y)u)' + (R(X,Y)v)? + (R(X,Y)w)?
No(X°Y?) = —(P(VxP)Y + (VpyP)Y)?
+(R(X, PY)u)® + (R(X, PY)v)" + (R(X, PY)w)*
Ny(X2 Y% = (P(VyP)X + (VpxP)X)?
+(R(PX,Y)u)® + (R(PX,Y)v)" + (R(PX,Y)w)*
Ny (X0 Y7 (P(VxP)Y)" fori=13
No(X' Y% = —(P(VyP)X)' fori=1,3
No(XHY9) = Ofori,j=1,3
No(X',Y?) = —((VpyP)X)?
No(X2, YY) = ((VpxP)Y)?
No(X2Y?) = ((VpxP)Y — (VpyP)X)°
—(R(PX,PY)u)' + (R(PX,PY)v)? + (R(PX, PY)w)?
Ny(X%Y?%) = (VpxP)Y)'
Ny (X3, Y?) —((VpyP)X)*
and finally for Js
N3 (X0, 7Y (VpxP)Y — (VpyP)X — P(VxP)Y + P(VyPX))? +

forall X,Y vector fields on M and S(p) =

+H(P(R(PX
+(P(R(

,Y)u) + P(R(X, PY)u) — R(PX,PY)u — R(X,Y)u)!
v) + P(R(X, PY)v) — R(PX,PY)v — R(X,Y)v)?

PX,Y)
+(P(R(PX,Y)w) + P(R(X, PY)w) — R(PX, PY)w — R(X,Y)w)?

N3(X° YY) = (VpxPY — P(VxP)Y — PVpxY)!
= ((VpxP)Y — P(VxP)Y)!
N3 (X', Y% = —(VpyPX —P(VyP)X — PVpyX)"
= (P(VyP)X — (VpyP)X)'
N3(X%Y") = (PVpxY — P(VxP)Y —VpxPY)'
= —(P(VxP)Y +(VpxP)Y) fori=2,3
N3(X" Y% = —(PVpyX — P(VyP)X —VpyPX)"
= (P(VyP)X +(VpyP)X) fori=2,3
N3(X*,Y7) 0fori,j=1,3
(u,w, z).

Proof. We recall that the Nijenhuis tensor of the structures I=¢( Jo)a=1,23 18

N (XL YT = [J X%, Y] = T,
2,3and j,i =0, 3.

fora =

CTYI) = Jo[Jo X Y 4+ T2 (X, Y

Using the definition (5.1) and the formula (4.3), we get the Nijenhuis tensor of J; (i.e IV1). For IV, and N3, we use

also the proposition (6.1).

Then, we have the following theorem

Theorem 6.1. The structure ] = (Ja)o

O

_13 is an almost para-hypercomplex structure on T3M which becomes almost

para-hyperhermitian with respect to the diagonal lift metric P g. Moreover, (T3M,P 9,J) is para-hyperhermitian (i.e Jis
integrable) if and only if (M, P, g) is a flat para-Kihler manifold.
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7. Para-quaternionic structures

Let (M, 0, g) be an almost hermitian para-quaternionic 4n-dimensional manifold. We can locally choose a
para-hypercomplex structure J ={Ji, J2, Js} which is a basis of ¢. In fact, by the definition an almost hermitian
para-quaternionic manifold is locally almost hermitian para-hypercomplex.

We can locally define a nondegenerate 2-forms

Q7 (X, Y)=9g(X,J.Y), a=1,2,3 (7.1)

However, the 4-form
Q=Q;, ANQsy, = Q1 AQy, —Qu, AQy,

is defined globally on M.

Definition 7.1. An almost hermitian para-hypercomplex 4n-dimensional manifold (M,g,J) (n > 1) is para-
hyperKéhler if V] = 0 (i.e VJ, = 0, a = 1, 3), where V is the Levi-Civita connection with respect to the metric g.
An almost hermitian para-quaternionic 4n-dimensional manifold (M, o, g) (n > 2) is called para-quaternionic
Kéhler manifold if VQ2 = 0 and M is not para-hyperKahler. (see [17],[13],[19])

Let (M, P, g) be an almost para-hermitian n-dimensional manifold. We shall call an almost para-quaternionic
structure on T°M any sub bundle & of the vector bundle End(T?M), locally spanned by a para-hyperhermitian
structure J. The pair (T3M, 6) will be called an almost para-quaternionic manifold and (73 M, 5,7 g) is called an
almost hermitian para-quaternionic manifold.

We define three nondegenerate 2-forms in (73 M, &,” g) by

Qs (X,Y)= Pg(X, 1Y), a=173 (7.2)
for any vector fields X and Y in T3 M. The 4-form is given by

Q:QJ1AQJ1—QJ2/\QJ2—Q]3/\QJ3

Proposition 7.1. The Levi-Civita connection of © g satisfies V) = 0 if and only if (M, P, g) is a flat para-Kihler manifold.

In order to prove the proposition, first, we need the following lemma.

Lemma 7.1.  i. From the formulas (4.2), (7.1) and the definition (5.1), the three 2-forms Q;_ are given by

O, (X, Y7) = g(X,Y) for (i, §) = (2,0) and (3,1)
{ Q-h( ‘
Q,(

7) = —g(X,Y) for (i,§) = (0,2) and (1,3)
0 for the remaining cases (4, j)

0 for the remaining cases (1, j)

LYY) = g(X, PY) for (i,5) = (0,0),(1

X
X1,y
XY

1)
) = —9(X, PY) for (i,j) = (2,2),(3,3)
) = 0 for the remaining cases (i, j)

J )
)
) =
@‘72(Xi7YJ) 9(X, PY) for (i,j) = (2,0),(3,1),(0,2) and (1,3)
Q, (X1, Y7) =
J )
)
) =
with i, j = 0,3 and for any vector fields X,Y in TM.
ii.
PV, A )XY 25 W = 2 Y (Pe(XY (PVp o) YD), (25, W
Yi,Zk Wl
7, (X1 Y7) Py(2, (PN i Ja) W)

where the sum is taken over cyclic permutations of Y3, Z* Wland i, j,k,1 =0, 3.
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ii.
PV xiJa)Y? =P Vi (JoY7) = Jo(PV i YY) (7.3)

Using the formulas (4.3) and (7.3), we have

(PVx0J,)Y? = DVXo(J YO) — Jo(VxY)° (7.4)
Ja((R(X,Y)u)' + (R(X,Y)w)? + (R(X,Y)2)?)

(PVxoJo)Y' = DVXo(J V7Y = Jo(VxY) + 3 J0(R(u,Y)X)°

PVxido)Y? = PVxi(JY0) + 3T0(R(X,Y)u)°

PVxiJa)Y? = PVixi(J, Yﬂ)fom i=1,3

Proof of the proposition 10. PV Qis given by 4* = 256 identities when the indices i, j, k, [ varies from 0 to 3. For
this, we have used a computer program with matlab software. PV x:  is calculated in three parts as follows

DVXi(QJl /\QJI) -b VX'L‘(QJZ /\sz) -b VXi(QJS /\QJg)
- L -L—1I i=03 (7.5)

Py i

Taking account of lemma (7.1)-(i,ii) as databases of computer program, each part I, (o = 1,2, 3) is calculated in (256)
identities when the indices 1, j, k, [ vary from 0 to 3. We remark that all (256) identities are a sum of terms of types

9(X,Y) Pg(Z*,(PV xiJo)W') and g(X, PY) Pg(Z"%, (PV xi Jo) W) (7.6)

where X, Y, Z, W commutes over cyclic permutations except X in PV x..
However, from the lemma (7.1) (iii), we have for the structure J;

(PVxo))Y? = L((R(X,Y)u)® - (R(X,Y)z)") (7.7)

(PVxo )Y = (R, Y)X)° + (R(u,Y)X)?))

(PVx0J1)Y? = L(RX,Y)u)' +2(R(X,Y)w)? + (R(X,Y)2)?)

PVxo)Y? = ((R(u,Y)X)* - (R(u,Y)X)?)

(PVx:i))Y? = (R(u,X)Y)?fori=T1,3

(PVx2))Y? = —3(R(u,X)Y)°

PV i J1)Y? = Ofori,j=1,3

and for J,

(PVx02)Y? = ((VxP)Y)? + 5((R(u, PY)X)" (7.8)
+(PR(X,Y)w)? + (PR(X,Y)2)! + (PR(X,Y)u)?)

(PVxo )Y = ((VxP)Y)’ + 3((R(u, PY)X)® + (PR(u,Y)X)?)

(PVxohb)Y? = (VxP)Y)? = 3((R(X, PY)u)"' + ((R(PX,Y)w)”
—(PR(u,Y)X))* + (R(PX,Y)2)*)

(PVxol2)Y? = (VxP)Y)' + 5((R(u, PY)X)" + (PR(u,Y)X)?)

(PVxil)Y? = L(PR(X,Y)u)?fori=1.3

(PV xiJy)Y? H(R(u, X)PY )’ fori=1,3

(PVyxiJy)Y? = 0Ofori=1,2,3andj=1,3
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finally for J3

(PVx0J3)Y? = ((VxP)Y)"? = 3((R(X,PY)u)' + (R(X, PY)w)* + (7.9)

(PVxod3)Y! = ((VxP)Y)'+ 3(PR(u,Y)X)°

(PV x0J3)Y? ~((VxP)Y)? + 3(PR(u,Y)X)°

(PV x0J3)Y? ~((VxP)Y)? + $(PR(u,Y)X)°
(PVxid3)Y? = L(R(u,X)PY + P(R(X,Y)u))" fori =1,3
(PVxiJa)Y? = Ofori,j=1,3

Taking into account the formulas (7.7), (7.8) and (7.9), the terms (7.6) vanishes if and only if P is parallel and without
curvature (i.e VP = 0 and R = 0). Then, PV x: Q vanishes if and only if (M, P, g) is a flat para-Kahler manifold. [

Remark 7.1. If P is not parallel or R # 0 then PV x: Q # 0.

Finally, we have the following theorems

Theorem 7.1. Let (T3M,P g) be the 3-jet bundle with para-hyperhermitian structure J with respect to the diagonal lift metric
gP. (T3M,P g) is para-hyperKihler manifold if and only if (M, P, g) is a flat para-Kihler manifold (ie VP = 0 and R = 0).

Proof. The proof is given from the formulas (7.7), (7.8) and (7.9). O

Theorem 7.2. The almost hermitian para-quaternionic manifold (T3M, &P g) is never para-quaternionic Kihler manifold.

Proof. From the proposition (7.1), we have PV = 0if (M, P, g) is a flat para-Kahler manifold i.e VP = 0 and R = 0
or in this case, (T®M, 5, g) is para-hyper Kéhler manifold (i.e V] = 0) and taking account about the definition
(7.1), (T®M, 5, g) is never para-quaternionic Kihler manifold. O

A possible extension of this paper is to construct a para-hyperhermitian (quaternionic) structures on r-jet bundle
with r = —1mod[4] as a naturally generalization of the tangent bundle of an almost para-hermitian manifold.
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