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Abstract
The problem of modeling a default time is well represented in the literature. There are two main
approaches: either the default time τ is a stopping time in the asset’s filtration or it is a stopping time in
a larger filtration (see Coper and Martin 1996 for a comparison between these approaches). In the first
approach, the so-called structural form pioneered by Merton (1974), the default time τ is a stopping time
in the filtration of the prices. In the second case, the idea is also to compute the value of the defaultable
claim, and it is fruitful to introduce the notion of intensity of the default. The intensity of the default time
acts as a change of the spot interest rate in the pricing formula. In this work, we consider the so-called
\-model. It is a one-default model which gives the conditional law of a random time with respect to a
reference filtration. In this paper, we work on a stochastic differential equation (called equation (\) below);
this equation plays an essential role in this article, but its application has been submitted to a hypothesis
of continuity. Then it is important to know under what conditions the hypothesis of continuity is satisfied.
This is the main motivation of our research.
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1. Introduction
We consider one-default model, i.e. the data of a random time τ combined with a filtration F under a probability

measure Q. The one-default models are widely applied in modeling financial risk and in price valuation of financial
products such as Credit default swap. The usefulness of a one-default model depends upon the way the conditional
laws of τ can be computed with respect to the filtration F. The most used examples of random times, therefore, are
the independent time, the Cox time, the honest time, the pseudo stopping time, the initial time, etc (for example,[9–
11]). In the paper [8] a new class of random times has been introduced. Precisely, on the filtered probability space
(Ω,F = (Ft)t≥0,P), it is proved that, for any continuous increasing process Λ null at the origin, for any continuous
non-negative local martingale N such that 0 < Nte

−Λt < 1, t > 0, for any continuous local martingale Y , for any
Lipschitz function f on R null at the origin, there exists a random variable τ such that the family of conditional
expectations Xu

t = Q[τ ≤ |Ft], u > 0, t <∞, satisfy the following stochastic differential equation :

(\u) :

 dXt = Xt

(
− e−Λt

1− Zt
dNt + f (Xt − (1− Zt))dYt

)
, t ∈ [u,∞)

Xu = x

We call this setting a \-model, where the initial condition x can be any Fu-mesurable random variable.
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There are two remarkable properties about the \-model. It is the only one in which the conditional laws of
τ with respect to F are defined by a system of dynamic equations. The \-equation displays the evolution of the
defaultable market. The knowledge of market evolution is a valuable property. This evolution form of the \-model
had allowed [8] to establish the so-called enlargement of filtration formula. It is also proved in [8] that, reciprocally,
the \-equation can be recovered from the enlargement of filtration formula in a way similar to that a differentiable
function can be deduced from its derivative.

We recall that the formula of enlargement of filtration is essential, when the no-arbitrage price valuation is
considered in an one-default model. Much as the enlargement of filtration formula is universally valid before the
default time τ , for a long time, the part of the enlargement of filtration formula after τ was merely proved for
the honest time model or the initial time model. The \-models constitute the third family of models where the
enlargement of filtration formula is valid on the whole R+. In addition, the enlargement of filtration formula in the
\-model has a richer structure than that of honest time model, and has a more accurate expression than that of the
initial time model.

We recall also how widely the financial models are defined by stochastic differential equations, because it is one
of the best ways to represent the evolution of a financial market. Usually, in a one-default model, there is no such a
possibility to design the evolution. Now with the \-model, this becomes available.

The second remarkable property of the \-model is its rich and flexible system of parameters Z, Y, f . The parame-
ter Z determines the default intensity. The parameters Y and f describe the evolution of the market after the default
time τ . Such a system of parameters sets up a propitious framework for inferring the market behavior and for
calibrating the financial data. We believe that the \-model can be a useful instrument to modeling financial market.

In this paper, we want to show that the continuity of the process Xu
t (x) such as :

Xu
t (x) = x +

∫ t

u

Xs

(
− e−Λs

1− Zs

)
dNs +

∫ t

u

Xsf (Xs − (1− Zs))dYs , u ≤ s ≤ t

is the solution of the equation (\u).

Our aim is to look at the regularity of the process (u, t, x) 7−→ Xu
t (x) with respect to all the variables u , t ,x .

Our useful fundamentals are the theorem of Kolmogorov and the lemma of Gronwall.

The continuity of the stochastic flow has been studied by Philip E.Protter (see [1]) for a general system of

equations in the form Xx
t = Hx

t +

∫ t

0

F (Xx)s−dZs, where Xx
t and Hx

t are column vectors in Rn, Z is a column

vector of m semimartingales, and F is an n×m matrix. His study is a direct application of Kolmogorov’s lemma.

The same study was also done by H.Kunita (see [2]) but with a detailed proof, for a general system of equations

of the form ξmst (x) = x+

m∑
k=0

∫ t

0

Vk(r, ξsr(x))dBkr , where Vk is a family of vector fields on Rd and Bk is a family of

standard brownian motions, such that this result has been based on Kolmogorov’s lemma, Itô’s formula and the
inequality of Burkholder-Davis-Gundy.

A technical proof based on the use of the Kolmogorov’s lemma has been also done by G.Barles and Bernt

Oksendal (see [3, 4]), for a general system Xt = Z+

∫ t

0

α(r,Xr)dr+

∫ t

0

σ(r,Xr)dWr, where α and σ are measurable

functions, Z is a square integrable random variable and W is a d-dimensional brownian motion.

The paper is organized as follows. In the next section, we prove the theorem of Kolmogorov, Gronwall’s lemma,
and an other lemma to finish our calculus. Section 3 presents the main result of this paper.
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2. The Kolmogorov’s theorem and basic lemmas

There are several versions of Kolmogorov’s theorem; we give here a quite general one.
Theorem 2.1. [8]. Let (E, d) be a complete metric space, and let Ux be an E-valued random variable for all x dyadic
rationals in Rn. Suppose that for all x and y, we have d(Ux, Uy) which is a random variable and that there exist
strictly positive constants ε, C, β such that

E{d(Ux, Uy)ε} ≤ C‖x− y‖n+β

Then for almost all ω the function x 7−→ Ux can be extended uniquely to a continuous function from Rn to E.

Proof. We prove the theorem for the unit cube [0, 1]n. Before the statement of the theorem we establish some
notations. Let ∆ denote the dyadic rational points of the unit cube [0, 1]n in Rn, and let ∆m denote all x ∈ ∆ whose
coordinates are of the form k2−m, 0 ≤ k ≤ 2m. Two points x and y in ∆m are neighbors if sup

i
|xiyi| = 2−m. We use

Chebyshev’s inequality on the inequality hypothesized to get

P{d(Ux, Uy) ≥ 2−αm} ≤ C2αεm2−m(n+β)

Let

Λm = {ω : ∃neighbors x, y ∈ ∆m with d(Ux(ω), Uy(ω)) ≥ 2−αm}

Since each x ∈ ∆m has at most 3n neighbors, and the cardinality of ∆m is 2mn, we have

P(Λm) ≤ c2m(αε−β)

Where the constant c = 3nC. Take α a sufficiently small so that αε < β. Then

P(Λm) ≤ c2−mδ

Where δ = β − αε > 0. The Borel-Cantelli lemma then implies P(Λm infinitely often) = 0. In other words, there
exists an m0 such that for m ≥ m0 and every pair (u, v) of points of ∆m that are neighbors,

d(Uu, Uv) ≤ 2−αm

We now use the preceding to show that x 7−→ Ux is uniformly continuous on ∆ and hence extendable uniquely
to a continuous function on [0, 1]n. To this end, let x, y ∈ ∆ be such that ‖x − y‖ ≤ 2−k−1. We will show that
d(Ux, Uy) ≤ c2−αk for a constant c, and this will complete the proof.

Without loss of generality assume k ≥ m0. Then x = (x1, ..., xn) and y = (y1, ..., yn) in ∆ with ‖x− y‖ ≤ 2−k−1

have dyadic expansions of the form

xi = ui +
∑
j>k

aij2
−j

yi = vi +
∑
j>k

bij2
−j

where aij , b
i
j are each 0 or 1 and u,v are points of ∆k which are either equal or neighbors. Next set u0 = u, u1 =

u0 + ak+12−k−1, u2 = u1 + ak+22−k−2,...
We also make analogous definitions for v0, v1, v2, ... then ui−1 and ui are equal or neighbors in ∆k+i each i, and
analogously for vi−1 and vi. Hence

d(Ux(ω), Uu(ω)) ≤
∞∑
j=k

2−αj

d(Uy(ω), Uv(ω)) ≤
∞∑
j=k

2−αj

and moreover

d(Uu(ω), Uv(ω)) ≤ 2−αk
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The result now follows by the triangle inequality.

The following section is the heart of our article. To show our main result, we need the following lemmas :

Lemma 2.1. [6]. Let a(t) be a non-negative right-continuous increasing (extented real-valued) function on R+.Set

C(t) = inf{s : a(s) > t}, t ∈ R+

Then C(t) is a non-negative right-continuous increasing function on R+, and is called the right-inverse function of a(t). For
t ∈ R+,C(t) < +∞ if and only if t < a(∞) = lim

t−→∞
a(t). Set

a−(t) = a(t−) = lim
s↑↑t

a(s), t > 0 (such that s ↑↑ t means s −→ t, s < t),

C−(t) = C(t−) = lims↑↑t C(s) = inf{s : a(s) ≥ t} = sup{s : a(s) < t}, t > 0,
a(0−) = a(0), C(0−) = C(0).

Then we have

a−(C−(t)) ≤ a−(C(t)) ≤ t , t ∈ R+

and

a(C(t)) ≥ a(C−(t)) ≥ t ,t < a(∞)

Lemma 2.2. [7]. Let (a, b) ∈ R2 with a < b, ϕ and ψ : [a, b] −→ R non-negative continuous functions, such that

∃ρ ∈ R+,∀t ∈ [a, b], ϕ(t) ≤ ρ+

∫ t

a

ϕ(s)ψ(s)ds then:

∀t ∈ [a, b], ϕ(t) ≤ ρ exp(

∫ t

a

ψ(s)ds)

Proof. We assume G : [a, b] −→ R

u 7−→
(∫ u

a

ϕ(s)ψ(s)ds

)
exp

(
−
∫ u

a

ψ(s)ds

)
Because ϕ and ψ are continuous functions, then G is the is continuously derivable on [a, b] and:

∀u ∈ [a, b], G̀(u) = ϕ(u)ψ(u) exp

(
−
∫ u

a

ψ(s)ds

)
− ψ(u)

(∫ u

a

ϕ(s)ψ(s)ds

)
exp

(
−
∫ u

a

ψ(s)ds

)

∀u ∈ [a, b], G̀(u) = ψ(u) exp

(
−
∫ u

a

ψ(s)ds

)(
ϕ(u)−

∫ u

a

ϕ(s)ψ(s)ds

)
But, by hypothesis

∀u ∈ [a, b],ϕ(u) ≤ ρ+

∫ u

a

ϕ(s)ψ(s)ds

So

∀u ∈ [a, b], G̀(u) ≤ ρ ψ(u) exp

(
−
∫ u

a

ψ(s)ds

)
Let t ∈ [a, b], integrating this inequality for i from a and t:

G(t)−G(a) ≤ ρ
∫ t

a

ψ(u) exp

(
−
∫ u

a

ψ(s)ds

)
du



The Application of Kolmogorov’s theorem in the \-model 75

By definition of G and as G(a) = 0:(∫ t

a

ϕ(s)ψ(s)ds

)
exp

(
−
∫ t

a

ψ(s)ds

)
≤ ρ

[
− exp

(
−
∫ u

a

ψ(s)ds

)]t
a

≤ −ρ exp

(
−
∫ t

a

ψ(s)ds

)
+ ρ exp(0)

From where (∫ t

a

ϕ(s)ψ(s)ds

)
≤ −ρ+ ρ exp

(∫ t

a

ψ(s)ds

)
and finally

ϕ(t) ≤ ρ exp

(∫ t

a

ψ(s)ds

)

3. Our approach to the \-model

In our model, we show the continuity of the solution of the \-equation by applying the theorem of Kolmogorov
presented in the previous section and the lemma of Gronwall (lemma 2.2) such that we take ε = p and β = p− n
with p > 0. We have for u ≤ s ≤ t:

Xu
t (x) = x +

∫ t

u

Xs

(
− e−Λs

1− Zs

)
dNs +

∫ t

u

Xsf (Xs − (1− Zs))dYs

We know that the quantity f (Xs − (1− Zs)) is bounded because f is a Lipschitz function, but as we do not know a

priori if the quantity
(
− e−Λs

1− Zs

)
is finite or not, we introduce the stopping time τn = inf{t, 1−Zt <

1

n
}. Therefore,

we assume the process X̃ instead of X :

dX̃t = X̃t

(
− e−Λt

1− Zt∧τn
dNt + f (X̃t − (1− Zt))dYt

)
, Such as X̃t = Xt, ∀ t ≤ τn , n ∈ N

We denote At = X̃u
t (x)− X̃u

t (y) and we apply Itô’s formula to the process |At|p, we find:
A = X̃x − X̃y =⇒ dAt = d(X̃x

t − X̃
y
t )

=⇒ d|At|p = p|At|p−1dAt + |At|p−2

2 p(p− 1)[d < At, At >]
Such as
dAt = d(X̃x

t − X̃
y
t )

= (X̃x
t − X̃

y
t )

(
− e−Λt

1− Zt∧τn

)
dNt + [X̃x

t f (X̃x
t − (1− Zt))− X̃y

t f (X̃y
t − (1− Zt))]dYt

Noting

Vt(X̃x
t ) = X̃x

t f (X̃x
t − (1− Zt))

Vt(X̃y
t ) = X̃y

t f (X̃y
t − (1− Zt))

So

d|At|p = p|At|p−1dAt + |At|p−2

2 p(p− 1)d < At, At >

d|At|p = p|At|p−1dAt + |At|p−2

2 p(p − 1)[(X̃x
t − X̃y

t )2

(
− e−Λt

1− Zt∧τn

)2

d < N,N >t +(Vt(X̃x
t ) − Vt(X̃y

t ))2d <

Y, Y >t +2(X̃x
t − X̃

y
t )

(
− e−Λt

1− Zt∧τn

)
(Vt(X̃x

t )− Vt(X̃y
t ))d < N, Y >t]
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By lemma of Jacod (see [5], page 128, 129), there always exists an increasing matrix G, such that:

C11dG = d < N,N > , C22dG = d < Y, Y > and C12dG = d < N, Y > with C =

(
C11 C12

C21 C22

)
is a symmetric

nonnegative matrix, and the choice of the latter is arbitrary, then:

d|At|p = p|At|p−1dAt +
Ap−2

t

2 p(p− 1)[
(

(X̃x − X̃y),Vt(X̃x
t )− Vt(X̃y

t )
) − e−Λt

1− Zt∧τn
0

0 1

( C11 C12

C21 C22

)
 − e−Λt

1− Zt∧τn
0

0 1

( X̃x
t − X̃

y
t

Vt(X̃x
t )− Vt(X̃y

t )

)
]dGt

We denote

WT
t =

(
(X̃x − X̃y),Vt(X̃x

t )− Vt(X̃y
t )
)

M =

 − e−Λt

1− Zt∧τn
0

0 1

( C11 C12

C21 C22

) − e−Λt

1− Zt∧τn
0

0 1


Wt =

(
X̃x
t − X̃

y
t

Vt(X̃x
t )− Vt(X̃y

t )

)
So
d|At|p = p|At|p−1dAt +

Ap−2
t

2 p(p− 1)[WT
t MWt]dGt

=⇒ |At|p = |x− y|p +

[∫ t

u

p|As|p−1dAs +

∫ t

u

p(p− 1)

2
Ap−2
s WT

s MWsdGs

]
=⇒ E[|At|p] = |x− y|p + E[

∫ t

u

p|As|p−1dAs] + E[

∫ t

u

p(p− 1)

2
Ap−2
s WT

s MWsdGs]

=⇒ E[|At|p] ≤ |x− y|p + E[

∫ t

u

p(p− 1)

2
Ap−2
s WT

s MWsdGs]

≤ |x− y|p + E[

∫ t

u

p(p− 1)

2
Ap−2
s ms|Ws|2dGs]

such that

M =

(
b11 b12

b21 b22

)
and m = |b11|+ |b12|+ |b21|+ |b22|

So

E[|At|p] ≤ |x− y|p + E[

∫ t

u

p(p− 1)

2
Ap−2
s ms((X̃

x
s − X̃y

s )2 + (Vs(X̃
x
s )− Vs(X̃y

s ))2)dGs]

But f is a Lipschitz function, then there exists a real positive constant K, so:

|Vs(X̃x
s )− Vs(X̃y

s )|2 ≤ K|X̃x
s − X̃y

s |2

Therefore

E[|At|p] ≤ |x− y|p + E[

∫ t

u

p(p− 1)

2
Ap−2
s ms(A

2
s +K|As|2)dGs]

E[|At|p] ≤ |x− y|p + E[

∫ t

u

p(p− 1)

2
|As|pms(1 +K)dGs]

≤ |x− y|p +
p(p− 1)

2
(1 +K)E[

∫ t

u

|As|pmsdGs]

We denote

a = |x− y|p
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b =
p(p− 1)

2
(1 +K)

Then

E[|At|p] ≤ a+ bE[

∫ t

u

|As|pmsdGs]

To apply Gronwall’s lemma (lemma 2.2) we must use the technique of change of time to eliminate the matrix G, so
for this we will use the lemma (2.1). In our case, putting G(s) = a(s), we consider the stopping time:

C(t) = inf{s,G(s) > t}

Such that, for t ∈ R+, C(t) <∞ if and only if t < G(∞) = lim
t−→∞

G(t) and

G(C(t)) ≥ G(C−(t)) ≥ t , t ∈ R+.

In fact

E[|At|p] ≤ a+ bE[

∫ t

u

|As|pmsdGs]

For s, t, α ∈ R+ such that s < α:

E[ sup
t≤C(α)

|At|p] ≤ a+ bE[ sup
t≤C(α)

∫ C(α)

u

|As|pmsdGs]

We denote Bt = sup
t≤C(α)

|At|, then

E[Bpt ] ≤ a+ bE[

∫ α

u

BpC(s)mC(s)dGC(s)]

≤ a+ bE[

∫ α

u

BpC(s)mC(s)ds]

≤ a+ bE[

∫ C(α)

u

Bpsmsds]

Now, we can apply the lemma of Gronwall (lemma 2.2) to this last expression, we have:

E[Bpt ] ≤ a+ bE

[∫ C(α)

u

Bpsmsds

]
We take

ϕ(t) = E[Bpt ]

ψ(s) = ms

a = ρ

So, we find

E[Bpt ] ≤ a exp

(
b

∫ C(α)

u

msds

)

Eventually, if the quantity

(∫ C(α)

u

msds

)
is finite , there exists the constant C which satisfies the condition of

Kolmogorov’s lemma that is to say that C = exp

(
b

∫ C(α)

u

msds

)
.
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4. Conclusion
This document contains a new and original methodological approach to the subject in question and could

therefore be a good contribution to the theory of stochastic processes, based on a very interesting lemma of
Kolomogorov. Some difficulties have been encountered because the subject deals with a difficult area "the stochastic
differential equations". As prospects, we try to prove the same result of the paper, but in a vectorial case; moreover,
we also think of demonstrating that the stochastic flow associated with our model will be a diffeomorphism with
multidimensional parameters on the same space, and we will investigate whether it is possible to have the same
work on manifolds.

References
[1] Philip E.Protter., Stochastic integration and differential equations. Math.Appl, Second edition, Springer-Verlag,

2004.

[2] H.Kunita., Stochastic flows of diffeomorphisms. Lect.Notes in Math.Vol 1997, Springer-Verlag 1984.

[3] G.Barles., Solution de viscosité des équations de Hamilton-Jacobi. Math.Appl.Vol 17, Springer-Verlag, Paris,
1994.

[4] Bernt Oksendal., Stochastic differential equations. Springer-Verlag, Berlin, Heidelberg, 1985, 1989, 1992, 1995,
1998, 2003.

[5] J.Jacod., Calcul stochastique et problèmes de martingales. Springer-Verlag, Berlin, Heidelberg, New York 1979.

[6] Sheng-wu He, Jia-gang Wang and Jia-an Yan., Semimartingale theory and stochastic calculus. Science Press and
CRC press INC, 1992.
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