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Abstract
Generalized order statistics constitute a unified model for ordered random variables that includes order
statistics and record values among others. In this article, bivariate Pareto distribution is considered.
Some new simple explicit expressions for single and product moments of concomitants of generalized
order statistics based on a random sample drown from the considered distribution are derived. Further,
applications of these results is seen in establishing some well known results given separately for order
statistics and record values and obtaining some new results. Finally, the means, and variances of the
concomitants of order statistics and record values are computed for various values of the parameters.
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1. Introduction
Pareto distributions have been extensively employed for modeling and analysis of statistical data under different

contexts. Orginally, the distribution was first proposed as a model to explain the allocation of wealth among
individuals. Later, various forms of the Pareto distribution have been formulated for modeling and analysis of data
from engineering, environment, geology, hydrology etc. These diverse applications of the Pareto distributions lead
researchers to develop different kinds of bivariate (multivariate) Pareto distributions. Accordingly, Mardia (1962)
introduced two types of bivariate (multivariate) Pareto models which are referred as bivariate Pareto distributions
of first kind and second kind respectively. Since then there has been a lot of works in the form, alternative derivation
of bivariate Pareto models, their extensions, inference, characterizations and applications to a variety of fields. The
literature on bivariate (multivariate) Pareto model is vast, disjoint, and scattered across many different journals. See
for example Lindley and Singpurwalla (1986), Arnold (1985), Arnold (1990), Sankaran and Nair (1993), Hutchinson
and Lai (1990), Langseth (2002), Balakrishnan and Lai (2009) and Sankaran and Kundu (2014), Sankaran et al (2015),
among others have extended the use of the bivariate Pareto models to other branches of statistics, such as reliability,
risk and quality control.

Lindley and Singpurwalla (1986) proposed the bivariate Pareto distribution, which was further studied by
Nayak (1987), Sankaran and Nair (1993), Langseth (2002), Balakrishnan and Lai (2009), Sankaran and Kundu (2014)
and Sankaran et al. (2015). Nayak (1987) Proposed multivariate lomax distribution, discuss several properties and
usefulness in reliability theory. Sankaran and Nair (1993) proposed a bivariate Pareto distribution and discuss
the different applications in reliability set up, and finally propose a multivariate generalization. Langseth (2002)
investigate the mathematical modelling of maintenance and repair of components that can fail due to a variety of
failure mechanisms. Balakrishnan and Lai (2009) studied the Continuous bivariate distributions and describes in
detail their forms, properties, dependence structures, computation, and applications. Sankaran and Kundu (2014)
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obtained maximum likelihood estimates of the parameters of bivariate Pareto model. Further, They observed that
this model can used quite effectively to analyze competing risk data. Sankaran et al. (2015) have characterized a
family of bivariate Pareto distributions through a generalized version of the univariate dullness property.

Order statistics and functions of these statistics play an important role in a wide range of theoretical and practical
problems such as characterization of probability distributions and goodness-of-fit tests, entropy estimation, analysis
of censored samples, reliability analysis, quality control and strength of materials; see Arnold et al. (1992) and
David and Nagaraja (2003) and the references therein for more details. The practicability of moments of order
statistics can be seen in many areas such as quality control testing, reliability, etc. For instance, when the reliability
of an item or product is high, the duration of the failed items will be high which in turn will make the product too
expensive, both in terms of time and money. This fact prevents a practitioner from knowing enough about the
product in a relatively short time. Therefore, a practitioner needs to predict the failure of future items based on the
times of a few early failures. These predictions are often based on moments of order statistics.

Recently, Balakrishnan et al. (2015) established some recurrence relations for single and product moments of
order statistics of the complementary exponential-geometric distribution. The computation of moments of order
statistics is a challenging task for many distributions. For this reason, recursive computational methods are often
sought.

A random variable X has the bivariate Pareto distribution with parameters α1, α2 and θ, if its probability density
function (pdf) is

f(x, y) = θ(θ + 1)α1α2(1 + α1x+ α2y)−(θ+2), x, y > 0, α1, α2, θ > 0 (1.1)

the corresponding cumulative distribution function (cdf) is

F (x, y) = 1− (1 + α1x+ α2y)−θ, x, y > 0, α1, α2, θ > 0. (1.2)

The conditional pdf of Y given X is

f(y|x) =
α2(θ + 1)(1 + α1x)θ+1

(1 + α1x+ α2y)θ+2
, y > 0, (1.3)

the corresponding marginal pdf and cdf are

f(x) = θα1(1 + α1x)−(θ+1), x > 0, (1.4)

and
F (x) = 1− (1 + α1x)−θ, x > 0. (1.5)

Various developments on generalized order statistics (GOS) and related topics have been studied by Kamps and
Gather (1997), Ahsanullah (2000), Pawlas and Szynal (2001), Kamps and Cramer (2001), Ahmad and Fawzy (2003),
Ahmad (2007), Kumar (2010, 2011 and 2013) among others. Kumar (2015a, 2015b ) have established the exact
moments of GOS from type II exponentiated log-logistic distribution and lower generalized order statistics based
on inverse Burr distribution respectively. Characterizations based on GOS have been studied by some authors,
Keseling (1999) characterized some continuous distributions based on conditional distributions of GOS. Bieniek
and Szynal (2003) characterized some distributions via linearity of regression of GOS. Cramer et al. (2004) gave a
unifying approach on characterization via linear regression of ordered random variables.

Rest of the paper is organized as follows: In Section 2, we describe briefly the preliminaries of GOS. In Section 3,
we present the marginal pdf of concomitant of GOS from bivariate Pareto distribution. In Section 4, we obtained
some new explicit expressions for single moments of concomitants of GOS from bivariate Pareto distribution. In
Section 5, we discussed the joint of concomitant of GOS from bivariate Pareto distribution. In Section 6, we obtained
the explicit expressions for product moments of concomitant of GOS from bivariate Pareto distribution. Tabulations
of means, variances and covariances of order statistics are given in Section 7. Two applications are performed in
Section 8. Finally, in Section 9, we make some concluding remarks.

2. Generalized order statistics and preliminaries

The concept of generalized order statistics (GOS) was introduced by Kamps (1995). Several models of ordered
random variables such as order statistics, record values, sequential order statistics, progressive type II censored
order statistics and Pfeifer’s record values can be discussed as special cases of the GOS. Suppose X(1, n,m, k), . . . ,
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X(n, n,m, k), (k is a positive integer and m is a real number), are n GOS from an absolutely continuous cumulative
distribution function F (x) with probability density function f(x), if their joint pdf is of the form

k

n−1∏
j=1

γj

(n−1∏
i=1

[1− F (xi)]
mf(xi)

)
[1− F (xn)]k−1f(xn) (2.1)

on the cone F−1(0) ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ F−1(1), where γj = k + (n− j)(m+ 1) > 0 for all j, 1 ≤ j ≤ n, k is a
positive integer and m ≥ −1.

If m = 0 and k = 1, then this model reduces to the ordinary rth order statistic and (2.1) will be the joint pdf of
n order statistics X1:n ≤ X2:n ≤ . . . ≤ Xn:n from cdf F (x). If m = −1 and k = 1, then (2.1) will be the joint pdf of
the first n record values of the identically and independently distributed (iid) random variables with cdf F (x) and
corresponding pdf f(x).

In view of (2.1), the marginal pdf of the rth GOS, X(r, n,m, k), 1 ≤ r ≤ n, is

fX(r,n,m,k)(x) =
Cr−1

(r − 1)!
[F̄ (x)]γr−1f(x)gr−1m (F (x)) (2.2)

and the joint pdf of X(r, n,m, k) and X(s, n,m, k), 1 ≤ r < s ≤ n, is

fX(r,n,m,k),X(s,n,m,k)(x, y) =
Cs−1

(r − 1)!(s− r − 1)!
[F̄ (x)]mf(x)gr−1m (F (x))

× [hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γs−1f(y), x < y, (2.3)

where

F̄ (x) = 1− F (x), Cr−1 =

r∏
i=1

γi , γi = k + (n− i)(m+ 1),

hm(x) =

{
− 1

m+1 (1−x)
m+1, m 6=−1

−ln(1−x), m=−1

and
gm(x) = hm(x)− hm(1), x ∈ [0, 1).

Let a random sample (Xi, Yi), i = 1, 2, . . . be a sequence of i.i.d. from a bivariate random variables (X,Y ) with
an absolutely continuous cdf F (x, y). If the pairs are ordered by their X variates, then the Y variates associated
with rth GOS X(r, n,m, k) of X will be denoted by Y[r,n,m,k], 1 ≤ r ≤ n and called the concomitant of the rth GOS.
The pdf and cdf of Y[r,n,m,k], 1 ≤ r ≤ n the rth concomitant of GOS, denoted by g[r,n,m,k] and G[r,n,m,k] respectively
are given by

g[r,n,m,k](y) =

∫ ∞
−∞

fy|x(y|x)fr,n,m,k(x)dx (2.4)

and

G[r,n,m,k](y) =

∫ ∞
−∞

Fy|x(y|x)fr,n,m,k(x)dx, (2.5)

where fr,n,m,k(x) is the pdf of X(r, n,m, k).
Let Y[r,n,m,k] and Y[s,n,m,k] be concomitants of rth and sth GOS, respectively. Then the joint pdf and cdf of

Y[r,n,m,k] and Y[s,n,m,k] are respectively given by

g[r,sn,m,k](y1, y2) =

∫ ∞
−∞

∫ x2

−∞
fy|x(y1|x1)fy|x(y2|x2)fr,s,n,m,k(x1, x2)dx1dx2 (2.6)

and

G[r,sn,m,k](y1, y2) =

∫ ∞
−∞

∫ x2

−∞
Fy|x(y1|x1)fy|x(y2|x2)fr,s,n,m,k(x1, x2)dx1dx2 (2.7)

where fr,s,n,m,k(x1, x2) is the joint pdf of X(r, n,m, k), X(s, n,m, k), 1 ≤ r < s ≤ n.
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3. Concomitants of Generalized Order Statistics

In this Section, the marginal pdf of concomitants of GOS from bivariate Pareto distribution are considered. For
the bivariate Pareto distribution as given in (1.1), in view of (1.3), (1.4), (1.5), (2.2) and (2.4), the marginal pdf of
g[r,n,m,k] is given as

g[r,n,m,k](y) =
Cr−1

(r − 1)!

∫ ∞
0

(θ + 1)α2(1 + α1x)θ+1

(1 + α1x+ α2y)θ+2
[F̄ (x)]γr−1f(x)gr−1m (F (x))dx

=
θ(θ + 1)α2Cr−1

(r − 1)!(m+ 1)r−1

r−1∑
u=0

(−1)u
(
r − 1
u

)∫ ∞
0

α1

(1 + α1x+ α2y)θ+2(1 + α1x)θ(γr−u−1)
dx. (3.1)

Making the substitution z = α1x (3.1), we get

g[r,n,m,k](y) =
θ(θ + 1)α2Cr−1

(r − 1)!(m+ 1)r−1

r−1∑
u=0

(−1)u
(
r − 1
u

)∫ ∞
0

(1 + z + α2y)−(θ+2)(1 + z)−θ(γr−u−1)dz

=
θ(θ + 1)α2Cr−1

(r − 1)!(m+ 1)r−1

r−1∑
u=0

(−1)u
(
r − 1
u

)
(1 + α2y)−(θ+1)

(θγr−u + 1)

× 2F1

[
θγr−u − θ, 1
θγr−u + 2

;−α2y

]
, (3.2)

where 2F1

[
a, b
c

; z

]
denotes the Gauss hypergeometric function defined by

2F1

[
a, b
c

; z

]
=

∞∑
p=0

(a)p(b)p
(c)p

zp

p!
, (3.3)

where (e)k = e(e + 1) · · · (e + k − 1) denotes the ascending factorial. In-built routines for computing these
special functions are available in packages like Maple, Matlab and Mathematica. For example, Hypergeometric

2F1

[
a, b
c

; z

]
in Mathematica computes the Gauss hypergeometric function. Using the definition, (3.3), we can

rewrite (3.2)

g[r,n,m,k](y) =
θ(θ + 1)α2Cr−1

(r − 1)!(m+ 1)r−1

r−1∑
u=0

(−1)u
(
r − 1
u

)
1

(θγr−u + 1)

×
∞∑
p=0

(θγr−u − θ)p(1)p
(θγr−u + 2)p

(1 + α2y)−(θ+1)(−α2y)p

p!
. (3.4)

4. Single moments of concomitants of generalized order statistics

Here, we derive explicit expressions for single moments of concomitants of GOS from bivariate Pareto distribu-
tion. Using the results of the previous section, we derive the moments of Y[r,n,m,k] as follows:

For the bivariate Pareto distribution given in (1.1), the jth moment of Y[r,n,m,k] is given as
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E
(
Y j[r,n,m,k]

)
=

∫ ∞
−∞

yjg[r,n,m,k](y)dy

=
θ(θ + 1)α2Cr−1

(r − 1)!(m+ 1)r−1

∞∑
p=0

r−1∑
u=0

(−1)u
(
r − 1
u

)
(θγr−u − θ)p(1)p

p!(θγr−u + 1)(θγr−u + 2)p

×
∫ ∞
0

yj(1 + α2y)−(θ+1)(−α2y)pdy

=
θ(θ + 1)Cr−1

αj2(r − 1)!(m+ 1)r−1

∞∑
p=0

r−1∑
u=0

(−1)u+p
(
r − 1
u

)
(θγr−u − θ)p(1)p

p!(θγr−u + 1)(θγr−u + 2)p

×
∫ ∞
1

z−(θ+1)(z − 1)j+pdz, (4.1)

where z = 1 + α2y and using equation (3.191.2) in Gradshteyn and Ryzhik (2000) the equation (4.1) reduced to.

E
(
Y j[r,n,m,k]

)
=

θ(θ + 1)Cr−1

αj2(r − 1)!(m+ 1)r−1

∞∑
p=0

r−1∑
u=0

(−1)u+p
(
r − 1
u

)
× (θγr−u − θ)p(1)pΓ(θ − j − p)Γ(j + p+ 1)

p!(θγr−u + 1)(θγr−u + 2)pΓ(θ + 1)

=
θ(θ + 1)Cr−1

αj2(r − 1)!(m+ 1)r−1

∞∑
p=0

r−1∑
u=0

(−1)u+p
(
r − 1
u

)
× (θγr−u − θ)p(1)p(j + 1)pΓ(j + 1)Γ(θ − j)

p!(θγr−u + 1)(θγr−u + 2)p(1− θ + j)pΓ(θ + 1)
. (4.2)

We have generalized Gauss series or the generalized hypergeometric series and see Prudnikov et al., (1986) then the
(4.2) reduced to

E
(
Y j[r,n,m,k]

)
=

Cr−1

αj2(r − 1)!(m+ 1)r

r−1∑
u=0

(−1)u
(
r − 1
u

)
Γ(θ + 1− j)Γ(j + 1)

Γ(θ + 1)
(
γr−u − j

θ

)
=

Cr−1

αj2(r − 1)!(m+ 1)r

r−1∑
u=0

(−1)u
(
r − 1
u

)
Γ(θ + 1− j)Γ(j + 1)

Γ(θ + 1)

× B

(
k

m+ 1
+ n− r + u− j

θ(m+ 1)
, 1

)
. (4.3)

since
b∑

a=0

(−1)a
(
b
a

)
B(a+ k, c) = B(k, c+ b), (4.4)

where B(a, b) is the complete beta function.
Therefore,

E
(
Y j[r,n,m,k]

)
=

Cr−1

αj2 (m+ 1)r

Γ(θ + 1− j)Γ(j + 1)Γ
[
k+(n−r)(m+1)−(j/θ)

m+1

]
Γ(θ + 1)Γ

[
k+n(m+1)−(j/θ)

m+1

] (4.5)

=
Γ(θ + 1− j)Γ(j + 1)

αj2 Γ(θ + 1)

1∏r
i=1

(
1− j

θγi

) . (4.6)

Remark 4.1. Putting m = 0, k = 1 in (4.5), we get moments of order statistics from bivariate Pareto distribution as;

E
(
Y j[r:n]

)
=

n!Γ(θ + 1− j)Γ(j + 1)Γ [n− r + 1− (j/θ)]

αj2(n− r)! Γ(θ + 1)Γ [n+ 1− (j/θ)]
.
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For r = n

E
(
Y j[n:n]

)
=

n!Γ(θ + 1− j)Γ(j + 1)Γ [1− (j/θ)]

αj2 Γ(θ + 1)Γ [n+ 1− (j/θ)]
.

Remark 4.2. Putting m = −1 in (4.6), to get moments of kth record values from bivariate Pareto distribution as;

E
(
Y j[r,n,−1,k]

)
=

Γ(θ + 1− j)Γ(j + 1)

αj2Γ(θ + 1)
(
1− j

θk

)r ,
and hence for upper records

E
(
Y j[U(r)]

)
=

Γ(θ + 1− j)Γ(j + 1)

αj2Γ(θ + 1)
(
1− j

θ

)r .
5. Joint distribution of two concomitants of generalized order statistics

In this Section, the joint pdf of concomitants of GOS from bivariate Pareto distribution are considered. For the
bivariate Pareto distribution as given in (1.1), in views of (1.3), (1.4), (1.5), (2.3), and (2.6), the joint pdf of Y[r,n,m,k]
and Y[s,n,m,k] is given by

g[r,s,n,m,k](y1, y2) =
[α2θ(θ + 1)2]Cs−1
(r − 1)!(s− r − 1)!

∫ ∞
−∞

∫ x2

−∞

(1 + α1x1)θ+1(1 + α2x1)θ+1

(1 + α1x1 + α2y1)θ+2(1 + α1x2 + α2y2)θ+2

× [F̄ (x)]mf(x)gr−1m (F (x))[hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γs−1f(y)

=
α1[α2θ(θ + 1)2]Cs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

r−1∑
u=0

s−r−1∑
v=0

(−1)u+v
(
r − 1
u

)(
s− r − 1

u

)
×

∫ ∞
0

1

(1 + α1x1)θ(s−r+u−v)(m+1)−θ(1 + α1x1 + α2y1)θ+2
G(x1, y2)dx1, (5.1)

where

G(x1, y2) =

∫ ∞
x1

α1

(1 + α1x2)θ(γs−v−1)(1 + α1x1 + α2y2)θ+2
dx2. (5.2)

By setting t = 1 + α1x2 in (5.2), and after simplification we get

G(x1, y2) =

∞∑
p=0

(−1)p
(θ + 2)p(1 + α1x1)−[θ(γs−v−1)−p−1]

(α2y2)p+θ+2 p![1− θ(γs−v − 1) + p]
.

On substituting the above expression of G(x1, y2) in (5.1), and simplifying the resulting equation, we get

g[r,s,n,m,k](y1, y2) =
[θ(θ + 1)2]Cs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

r−1∑
u=0

s−r−1∑
v=0

(−1)u+v
(
r − 1
u

)(
s− r − 1

u

)
× 1

[1− θ(γs−v − 1)][2− θ(γs−v − 2)]

[
α2

(α2y2)θ+2

] [
α2

(α2y1)θ+2

]
×

∞∑
p=0

∞∑
q=0

(2− θ(γr−u − 2))p+q(θ + 2)p(1− θ(γs−v − 1))p(θ + 2)q
(3− θ(γr−u − 2))p+q(2− θ(γr−u − 1))p

× 1

p!q!

(
− 1

α2y2

)p(
− 1

α2y1

)q
. (5.3)
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6. Product moments of two concomitants of generalized order statistics

In this Section, the explicit expressions for product moments of two concomitants of GOS from bivariate Pareto
distribution are considered. Using the results of the previous section, we derive the product moments of Y[r,n,m,k]
and Y[s,n,m,k] as follows:

For the bivariate Pareto distribution given in (1.1), the ith and jth moments of Y[r,n,m,k] and Y[s,n,m,k] is given as

E
(
Y i[r,n,m,k], Y

j
[s,n,m,k]

)
=

∫ ∞
0

∫ ∞
y2

yi1y
j
2g[r,s,n,m,k](y1, y2)dy1dy2

= A

∫ ∞
0

∫ ∞
y2

yi1y
j
2

[
α2

(α2y2)θ+2

] [
α2

(α2y1)θ+2

] ∞∑
p=0

∞∑
q=0

(2− θ(γr−u − 2))p+q
(3− θ(γr−u − 2))p+q

× (θ + 2)p(1− θ(γs−v − 1))p(θ + 2)q
p!q!(2− θ(γr−u − 1))p

dy1dy2, (6.1)

where

A =
[θ(θ + 1)2]Cs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

r−1∑
u=0

s−r−1∑
v=0

(−1)u+v
(
r − 1
u

)(
s− r − 1

u

)
× 1

[1− θ(γs−v − 1)][2− θ(γs−v − 2)]
.

By Srivastava and Karlsson (1985) and the setting z − 1 = α2y1 in (6.1), we have after simplification

E
(
Y i[r,n,m,k], Y

j
[s,n,m,k]

)
=

[θ(θ + 1)2]Cs−1Γ(θ + 1− i) Γ(i+ 1)Γ(θ + 1− j)Γ(j + 1)

αi+j2 (r − 1)!(s− r − 1)!(m+ 1)s−2Γ(θ + 2)Γ(θ + 2)

×
r−1∑
u=0

s−r−1∑
v=0

(
r − 1
u

)(
s− r − 1

u

)
(−1)u+v

[θ(k + (n− s+ v)(m+ 1))− j]

× 1

[θ(k + (n− r + u)(m+ 1))− (i+ j)]

=
[θ(θ + 1)2]Cs−1Γ(θ + 1− i) Γ(i+ 1)Γ(θ + 1− j)Γ(j + 1)

αi+j2 (r − 1)!(s− r − 1)!(m+ 1)s Γ(θ + 2)Γ(θ + 2)

×
r−1∑
u=0

(−1)u
(
r − 1
u

)
B

(
k

m+ 1
+ n− r + u− i+ j

θ(m+ 1)
, 1

)

×
s−r−1∑
v=0

(−1)v
(
s− r − 1

v

)
B

(
k

m+ 1
+ n− s+ v − j

θ(m+ 1)
, 1

)
. (6.2)

On using relation (4.4) in (6.2), and simplifying the resulting expression we get

E
(
Y i[r,n,m,k], Y

j
[s,n,m,k]

)
=

[θ(θ + 1)2]Cs−1Γ(θ + 1− i) Γ(i+ 1)Γ(θ + 1− j)Γ(j + 1)

αi+j2 (r − 1)!(s− r − 1)!(m+ 1)sΓ(θ + 2)Γ(θ + 2)

× B

(
k

m+ 1
+ n− r − i+ j

θ(m+ 1)
, r

)
B

(
k

m+ 1
+ n− s− j

θ(m+ 1)
, s− r

)
(6.3)

=
Γ(θ + 1− i) Γ(i+ 1)Γ(θ + 1− j)Γ(j + 1)

αi+j2 Γ(θ + 2)Γ(θ + 2)

× 1∏r
a=1

(
1 + i+j

θγa

)∏s
b=r+1

(
1 + j

θγb

) . (6.4)

Remark 6.1. Putting m = 0, k = 1 in (6.3), we get product moments of order statistics from bivariate Pareto
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distribution as;

E
(
Y i[r:n], Y

j
[s:n]

)
=

n!Γ(θ + 1− i) Γ(i+ 1)Γ(θ + 1− j)Γ(j + 1)

(n− s)! αi+j2 Γ(θ + 2)Γ(θ + 2)

×
Γ
(
n− r + 1− i+j

θ

)
Γ
(
n− s+ 1− j

θ

)
Γ
(
n+ 1− i+j

θ

)
Γ
(
n− r + 1− j

θ

) .

Remark 6.2. Putting m = −1 in (6.4), we get the product moments of kth record values from bivariate Pareto
distribution as;

E
(
Y i[r,n,−1,k], Y

j
[s,n,−1,k]

)
=

Γ(θ + 1− i) Γ(i+ 1)Γ(θ + 1− j)Γ(j + 1)

αi+j2 Γ(θ + 2)Γ(θ + 2)

1(
1 + i+j

θk

)r (
1 + j

θk

)s−r
and hence for upper records

E
(
Y i[r,n,−1,k], Y

j
[s,n,−1,k]

)
=

Γ(θ + 1− i) Γ(i+ 1)Γ(θ + 1− j)Γ(j + 1)

αi+j2 Γ(θ + 2)Γ(θ + 2)

1(
1 + i+j

θ

)r (
1 + j

θ

)s−r .
7. Numerical results and discussion

The explicit expressions obtained in the preceding sections allow us to evaluate the means, variances and
covariances of all concomitants of order statistics for all sample sizes. The mean and variances of concomitant order
statistics of a bivariate Pareto distribution for different values of θ and α2 are calculated in Tables 1-2, respectively.
The mean and variances of concomitant of record values of bivariate Pareto distribution for different values of θ
and α2 are calculated in Tables 3-4, respectively. It appears from the results that the mean of concomitant of order
statistics and record values decrease with both θ and α2 . Means, variances and covariances of all order statistics can
be used for various inferential purposes; for example, they are useful in determining best linear unbiased estimators
of location/scale parameters and best linear unbiased predictors of failure times. More details on BLUEs and BLUPs
based on order statistics can be seen in Balakrishnan and Cohen (1991) and Arnold et al. (1992).

Table 1. Means of the concomitant of order statistics

n r θ = 2 θ = 3 θ = 4
α2 = 1 α2 = 2 α2 = 3 α2 = 1 α2 = 2 α2 = 3 α2 = 1 α2 = 2 α2 = 3

1 1 0.500000 0.250000 0.166667 0.333333 0.166667 0.111111 0.250000 0.125000 0.083333

2 1 0.400000 0.200000 0.133333 0.285714 0.142857 0.095238 0.222222 0.111111 0.074074
2 0.600000 0.300000 0.200000 0.380952 0.190476 0.126984 0.277778 0.138889 0.092593

3
1 0.375000 0.187500 0.125000 0.272727 0.136364 0.090909 0.214286 0.107143 0.071429
2 0.450000 0.225000 0.150000 0.311688 0.155844 0.103896 0.238095 0.119048 0.079365
3 0.675000 0.337500 0.225000 0.415584 0.207792 0.138528 0.297619 0.148810 0.099206

4

1 0.363636 0.181818 0.121212 0.266667 0.133333 0.088889 0.210526 0.105263 0.070175
2 0.409091 0.204545 0.136364 0.290909 0.145455 0.096970 0.225564 0.112782 0.075188
3 0.490909 0.245455 0.163636 0.332468 0.166234 0.110823 0.250627 0.125313 0.083542
4 0.736364 0.368182 0.245455 0.443290 0.221645 0.147763 0.313283 0.156642 0.104428

5

1 0.357143 0.178571 0.119048 0.263158 0.131579 0.087719 0.208333 0.104167 0.069444
2 0.389610 0.194805 0.129870 0.280702 0.140351 0.093567 0.219298 0.109649 0.073099
3 0.438312 0.219156 0.146104 0.306220 0.153110 0.102073 0.234962 0.117481 0.078321
4 0.525974 0.262987 0.175325 0.349966 0.174983 0.116655 0.261069 0.130535 0.087023
5 0.788961 0.394481 0.262987 0.466621 0.233311 0.155540 0.326337 0.163168 0.108779
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Table 2. Variances of the concomitant of order statistics

n r θ = 2 θ = 3 θ = 4
α2 = 1 α2 = 2 α2 = 3 α2 = 1 α2 = 2 α2 = 3 α2 = 1 α2 = 2 α2 = 3

1 1 0.750000 0.187500 0.083333 0.222222 0.055555 0.024691 0.104167 0.026042 0.011575

2 1 0.340000 0.085000 0.037778 0.140590 0.035148 0.015621 0.075617 0.018904 0.008402
2 1.140000 0.285000 0.126667 0.299320 0.074830 0.033258 0.131172 0.032793 0.014575

3
1 0.287946 0.071987 0.031994 0.125620 0.031405 0.013958 0.069467 0.017366 0.007719
2 0.440357 0.110089 0.048929 0.169518 0.04238 0.018836 0.087542 0.021886 0.009727
3 1.472946 0.368237 0.163661 0.360623 0.090155 0.040069 0.151808 0.037952 0.016867

4

1 0.267769 0.066942 0.029752 0.119365 0.029841 0.013263 0.066791 0.016698 0.007421
2 0.346931 0.086732 0.038548 0.143943 0.035986 0.015994 0.077326 0.019331 0.008592
3 0.530437 0.132609 0.058937 0.194227 0.048556 0.021581 0.097442 0.024361 0.010827
4 1.772054 0.443013 0.196895 0.413018 0.103254 0.045891 0.168948 0.042237 0.018772

5

1 0.257064 0.064266 0.028563 0.115933 0.028983 0.012881 0.065293 0.016323 0.007255
2 0.309742 0.077436 0.034416 0.132846 0.033212 0.014761 0.072681 0.018170 0.008076
3 0.401290 0.100323 0.044588 0.160197 0.040049 0.017810 0.084146 0.021036 0.009350
4 0.613461 0.153365 0.068162 0.216148 0.054037 0.024017 0.106035 0.026509 0.011782
5 2.047871 0.511967 0.227541 0.459514 0.114878 0.051057 0.183824 0.045956 0.020425

Table 3. Means of the concomitant of record values

r θ = 2 θ = 3 θ = 4
α2 = 1 α2 = 2 α2 = 3 α2 = 1 α2 = 2 α2 = 3 α2 = 1 α2 = 2 α2 = 3

1 0.500000 0.250000 0.166667 0.333333 0.166667 0.111111 0.250000 0.125000 0.083333
2 0.750000 0.375000 0.250000 0.444444 0.222222 0.148148 0.312500 0.156250 0.104167
3 1.125000 0.562500 0.375000 0.592593 0.296296 0.197531 0.390625 0.195312 0.130208
4 1.687500 0.843750 0.562500 0.790123 0.395062 0.263374 0.488281 0.244141 0.162760
5 2.531250 1.265625 0.843750 1.053498 0.526749 0.351166 0.610352 0.305176 0.203451
6 3.796875 1.898437 1.265625 1.404664 0.702332 0.468221 0.762939 0.381470 0.254313
7 5.695312 2.847656 1.898437 1.872885 0.936443 0.624295 0.953674 0.476837 0.317891
8 8.542969 4.271484 2.847656 2.497180 1.248590 0.832393 1.192093 0.596046 0.397364
9 12.81445 6.407227 4.271484 3.329574 1.664787 1.109858 1.490116 0.745058 0.496705
10 19.22168 9.610840 6.407227 4.439432 2.219716 1.479811 1.862645 0.931323 0.620882

Table 4. Variances of the concomitant of record values

r θ = 2 θ = 3 θ = 4
α2 = 1 α2 = 2 α2 = 3 α2 = 1 α2 = 2 α2 = 3 α2 = 1 α2 = 2 α2 = 3

1 0.750000 0.187500 0.083333 0.222222 0.055555 0.024691 0.104167 0.026042 0.011575
2 2.437500 0.609375 0.270833 0.469137 0.117284 0.052126 0.180122 0.045030 0.020013
3 7.734375 1.933594 0.859375 0.982167 0.245542 0.10913 0.310375 0.077594 0.034486
4 24.15234 6.038086 2.683594 2.042373 0.510593 0.22693 0.533187 0.133296 0.059243
5 74.59277 18.64819 8.288086 4.223475 1.055868 0.469275 0.913478 0.228370 0.101498
6 228.5837 57.14594 25.39819 8.693586 2.173397 0.965954 1.561271 0.390318 0.173475
7 696.5634 174.1409 77.39594 17.82563 4.456408 1.980626 2.662751 0.665687 0.295861
8 2114.018 528.5044 234.8909 36.43076 9.10769 4.047863 4.532656 1.133164 0.503629
9 6396.790 1599.197 710.7544 74.24727 18.56182 8.249696 7.702457 1.925615 0.855829
10 19313.53 4828.382 2145.947 150.9581 37.73953 16.77312 13.06873 3.267180 1.452081
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8. Applications

In this Section we suggest some applications

1. Concomitants of order statistics have found a wide variety of applications in different fields. The most
important use of concomitants arises in selection procedures when k(< n) individuals are chosen on the basis
of their X− values. Then the corresponding Y− values represent performance on an associated characteristic.
For example, X might be the score of a candidate on a screening test and Y the score on a later test.

1. The single and product moments are given in Section 4 and 6 can be used to calculate the variance covariance
matrix.

9. Conclusions
In the study presented above, some new explicit expressions for the single and product moments of concomitants

of GOS from the Bivariate Pareto distribution has been derived. In addition the means and variances of concomitants
of order statistics and records values are calculated for some choices of the parameters. It will be interesting to
study the BLUE and BLUP of Bivariate Pareto distribution and to analyze the data. The work is in progress and it
will be reported later.
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