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Abstract
Let P (z) be a polynomial of degree n and for any complex number α, let DαP (z) = nP (z) + (α− z)P ′(z)
denote the polar derivative of P (z) with respect to α. Here, we consider the class of polynomials

P (z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, having all zeros in |z| ≤ k, k ≤ 1 and thereby establish several

interesting results regarding the integral mean estimates for the polar derivative of P (z). Our results not
only generalize and refine some known polynomial inequalities, but also a variety of interesting results
can be deduced from these by a fairly uniform procedure.
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1. Introduction and Statement of results.

Let Pn be the class of polynomials P (z) =
n∑
ν=0

aνz
ν of degree n. For P ∈ Pn, define

‖ P ‖γ :=

{
1

2π

2π∫
0

|P (eiθ)|γ
} 1
γ

, γ > 0, ‖ P ‖∞ := max
|z|=1

|P (z)|, m := min
|z|=k

|P (z)| and m1 := min
|z|=1

|P (z)|.

For fixed µ, 1 ≤ µ ≤ n, let Pn,µ , denote the class of polynomials P (z) = anz
n +

n∑
υ=µ

an−υz
n−υ, 1 ≤ µ ≤ n, of degree

n having all zeros in |z| ≤ k, k ≤ 1.
If P ∈ Pn, then we have

‖ P ′ ‖∞≤ n ‖ P ‖∞ . (1.1)

Equality holds in (1.1) if and only if P (z) has all its zeros at the origin.
The above inequality (1.1) is better known as S. Bernestein’s inequality (for example see [7]), although it first

appeared in a paper of M. Riesz [[16], p.357].
For the class of polynomials P ∈ Pn having all zeros in |z| ≤ 1, Turán [17] proved that

‖ P ′ ‖∞≥
n

2
‖ P ‖∞ . (1.2)

Inequality (1.2) was refined by Aziz and Dawood [2] and they proved under the same hypothesis that

‖ P ′ ‖∞≥
n

2

{
‖ P ‖∞ +m1

}
. (1.3)
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Both the inequalities (1.2) and (1.3) are best possible and become equality for polynomials P (z) = αzn+β where
|α| = |β|. As an extension of (1.2), it was shown by Malik [15], that if P ∈ Pn,1 , then

‖ P ′ ‖∞≥
n

1 + k
‖ P ‖∞, (1.4)

where as the corresponding extension of (1.3) and a refinement of (1.4) was given by Govil [12] who under the same
hypothesis proved that

‖ P ′ ‖∞≥
n

1 + k

{
‖ P ‖∞ +

m

kn−1

}
. (1.5)

In the literature, there already exist some refinements and generalizations of all the above inequalities, for example
see Aziz and Shah [6], Dewan, Mir and Yadav [10], Govil, Rahman and Schemeisser [13], Dewan, Singh and Lal [8],
etc.
Aziz and Shah [6] (see also Dewan, Mir and Yadav [10]) generalized inequality (1.5) and proved that, if P ∈ Pn,µ ,
then

‖ P ′ ‖∞≥
n

1 + kµ

{
‖ P ‖∞ +

m

kn−µ

}
. (1.6)

For µ = 1, inequality (1.6) reduces to inequality (1.5).
Let DαP (z) denotes the polar derivative of the polynomial P (z) of degree n with respect to the point α ∈ C. Then

DαP (z) = nP (z) + (α− z)P ′(z).

The polynomial DαP (z) is of degree at most n− 1 and it generalizes the ordinary derivative in the sense that

lim
α→∞

{
DαP (z)

α

}
= P ′(z).

Aziz and Rather [5] extended (1.4) to the polar derivative of a polynomial and proved that if P ∈ Pn,1 , then for
every complex number α with |α| ≥ k,

‖ DαP ‖∞≥ n
( |α| − k

1 + k

)
‖ P ‖∞ . (1.7)

Aziz and Rather [4] refined inequality (1.7) and proved that if P ∈ Pn,µ , then for every complex number α with
|α| ≥ sµ,

‖ DαP ‖∞≥ n
( |α| − sµ

1 + sµ

)
‖ P ‖∞, (1.8)

where

sµ =
n|an|k2µ + µ|an−µ|kµ−1

n|an|kµ−1 + µ|an−µ|
. (1.9)

As a generalization of (1.6), Dewan, Singh and Lal [8] proved that if P ∈ Pn,µ , then for every complex number α
with |α| ≥ kµ,

‖ DαP ‖∞≥ n
(
|α| − kµ

1 + kµ

)
‖ P ‖∞ +

nm(|α|+ 1)

kn−µ(1 + kµ)
. (1.10)

Recently, Dewan et.al.[9] refined the above inequality (1.10) and proved for the same class of polynomials
P ∈ Pn,µ , that if α is any complex number with |α| ≥ kµ, then

‖ DαP ‖∞≥ n
(
|α| −Aµ
1 + kµ

)
‖ P ‖∞ +

mn

kn

(
|α|kµ +Aµ
1 + kµ

)
, (1.11)

where

Aµ =
n
(
|an| − m

kn

)
k2µ + µ|an−µ|kµ−1

n
(
|an| − m

kn

)
kµ−1 + µ|an−µ|

. (1.12)

In the proof of the inequality (1.11) given by Dewan, Singh and Mir [9], the authors while using Laguerre’s
theorem claim to have deduced on page 814 that if P (z) − mλzn

kn has all its zeros in |z| < k, k ≤ 1, then for

|α| ≥ kµ, 1 ≤ µ ≤ n, the polynomial Dα

[
P (z)− mλzn

kn

]
also has all its zeros in |z| < k, k ≤ 1, which is true when

|α| ≥ k and not for |α| ≥ kµ, 1 ≤ µ ≤ n, in general. It is worth to mention that the result still follows without using
Laguerre’s theorem, for example see [1].
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Main Results
In this paper, we shall prove some integral inequalities for the polar derivative of a polynomial having zeros in

|z| ≤ k, k ≤ 1 and thereby obtain generalizations of many known results. We first prove the following interesting
generalization of inequality (1.8).

Theorem 1.1. If P ∈ Pn,µ , then for every complex number α with |α| ≥ sµ and for each γ > 0, p > 1, q > 1 with
p−1 + q−1 = 1, we have

n(|α| − sµ) ‖ P ‖γ≤‖ 1 + sµz ‖pγ‖ DαP ‖qγ , (1.13)

where sµ is defined by (1.9).

It is well known that ‖ P ‖γ increases with γ unlessP is a constant, and that limγ→∞ ‖ P ‖γ= max0≤θ<2π |P (eiθ)| =‖
P ‖∞ . If we let γ →∞, p→∞(so that q → 1) in (1.13), we get inequality (1.8).
Dividing both sides of (1.13) by |α| and let |α| → ∞, we get a result recently proved by Aziz and Rather ([3],
Theorem 3). The following corollary immediately follows by letting q →∞ (so that p→ 1) in Theorem 1.1

Corollary 1.1. If P ∈ Pn,µ , then for every complex number α with |α| ≥ sµ and for each γ > 0, we have

n(|α| − sµ) ‖ P ‖γ≤‖ 1 + sµz ‖γ‖ DαP ‖∞, (1.14)

where sµ is defined by (1.9).

Dividing both sides of (1.14) by |α| and let |α| → ∞, we get a result of Aziz and Rather ([3], Corollary 5). If we
take µ = 1 in Corollary 1.1, we get the following result.

Corollary 1.2. If P ∈ Pn,1 , then for every complex number α with |α| ≥ s1 and for each γ > 0,

n(|α| − s1) ‖ P ‖γ≤‖ 1 + s1z ‖γ‖ DαP ‖∞, (1.15)

where

s1 =
n|an|k2 + |an−1|
n|an|+ |an−1|

.

Remark 1.1. For k = 1, Corollary 1.2 reduces to a result of Dewan, Singh, Mir and Bhat [11].

Next, we shall prove the following general result which provides a refinement of inequality (1.11) and hence of
(1.10) as well. The interesting thing we shall see here is that the refinement of inequality (1.11) provided by Theorem
1.2 is independent of Laguerre’s theorem.

Theorem 1.2. If P ∈ Pn,µ, then for every complex numbers α, β with |α| ≥ Aµ, |β| < 1 and for each γ > 0, p > 1, q > 1
with p−1 + q−1 = 1, we have

n(|α| −Aµ) ‖ P −
mβzn

kn
‖γ≤‖ 1 +Aµz ‖pγ‖ DαP −

αβmnzn−1

kn
‖qγ , (1.16)

where Aµ is defined by (1.12).

Remark 1.2. If we let γ →∞ and p→∞(so that q → 1) in (1.16), we get for |α| ≥ Aµ and |β| < 1,

‖ DαP −
αβmnzn−1

kn
‖∞≥ n

(
|α| −Aµ
1 +Aµ

)
‖ P − mnβzn

kn
‖∞ . (1.17)

Let z0 be a point on |z| = 1 such that∣∣∣DαP (z0)−
mnαβzn−10

kn

∣∣∣ = max
|z|=1

∣∣∣DαP (z)−
mnαβzn−1

kn

∣∣∣,
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then from (1.17), we get for |α| ≥ Aµ and |β| < 1,∣∣∣DαP (z0)−
mnαβzn−10

kn

∣∣∣ ≥ n( |α| −Aµ
1 +Aµ

)
max
|z|=1

∣∣∣P (z)− mβzn

kn

∣∣∣. (1.18)

If in (1.18), we choose the argument of β such that∣∣∣DαP (z0)−
mnαβzn−10

kn

∣∣∣ = ∣∣∣DαP (z0)
∣∣∣− mn|α||β||z0|n−1

kn
,

which is possible by Lemma 2.5 (stated in section 2), we get for |α| ≥ Aµ and |z| = 1,∣∣∣DαP (z0)
∣∣∣− mn|α||β||z0|n−1

kn
≥ n

(
|α| −Aµ
1 +Aµ

)∣∣∣P (z)− mβzn

kn

∣∣∣
≥ n

(
|α| −Aµ
1 +Aµ

){
|P (z)| − m|β|

kn

}
. (1.19)

Since z0 lies on |z| = 1, above inequality reduces to∣∣∣DαP (z0)
∣∣∣ ≥ n( |α| −Aµ

1 +Aµ

)
|P (z)| − n

(
|α| −Aµ
1 +Aµ

)
m|β|
kn

+
mn|α||β|

kn
for |z| = 1. (1.20)

Now, if in (1.20), we make |β| → 1, we get for |α| ≥ Aµ,

‖ DαP ‖∞≥ n
(
|α| −Aµ
1 +Aµ

)
‖ P ‖∞ +

mn(|α|+ 1)Aµ
kn(1 +Aµ)

. (1.21)

Remark 1.3. Since by Lemma 2.3 (stated in Section 2) Aµ ≤ kµ, it follows that the inequality (1.21) holds for |α| ≥ kµ
as well.

It is easy to see that the inequality (1.21) provides a refinement of inequality (1.11) and hence of (1.10) as well.
For this it needs to show that

n

(
|α| −Aµ
1 + kµ

)
‖ P ‖∞ +

mn

kn

(
|α|kµ +Aµ
1 + kµ

)
≤ n

(
|α| −Aµ
1 +Aµ

)
‖ P ‖∞ +

mn(|α|+ 1)Aµ
kn(1 +Aµ)

,

or (
|α| −Aµ

)(
Aµ − kµ

)
‖ P ‖∞ ≤

m

kn

{
Aµ
(
|α| −Aµ

)
− kµ

(
|α| −Aµ

)}
.

Since |α| ≥ Aµ and Aµ ≤ kµ, above inequality is equivalent to

m

kn
≤‖ P ‖∞,

which is always true by Lemma 2.6 (stated in section 2).

2. Lemmas
For the proof of these theorems, we need the following lemmas.

Lemma 2.1. If P ∈ Pn,µ and Q(z) = znP ( 1z ), then

|Q′(z)| ≤ sµ|P ′(z)| for |z| = 1, (2.1)

where sµ is defined by (1.9).

The above lemma is due to Aziz and Rather [3].
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Lemma 2.2. If P ∈ Pn,1 with k > 0 and Q(z) = znP ( 1z ), then |Q(z)| ≥ m
kn for |z| ≤ 1

k and in particular

|an| >
m

kn
. (2.2)

Lemma 2.3. If P ∈ Pn,µ , then
Aµ ≤ kµ, (2.3)

where Aµ is defined by the formula (1.12).

Lemma 2.4. If P ∈ Pn,µ and Q(z) = znP ( 1z ), then on |z| = 1

|Q′(z)| ≤ kµ|P ′(z)| − nm

kn−µ
. (2.4)

The above Lemmas 2.2, 2.3 and 2.4 are all due to Dewan et.al. [9].

Lemma 2.5. If P ∈ Pn,µ , then for every complex number α with |α| ≥ kµ,∣∣∣DαP (z)
∣∣∣ ≥ |α|mn

kn
for |z| = 1.

Proof of Lemma 2.5. If P has a zero on |z| = k then m = 0 and in this case Lemma 2.5 holds trivially. Hence we
suppose that all the zeros of P lie in |z| < k, k ≤ 1 so that m > 0. Now m ≤ |P (z)| for |z| = k, therefore it follows
by Rouche’s theorem that for every complex number λ with |λ| < 1, the polynomial P − mλzn

kn has all its zeros in
|z| < k, k ≤ 1, therefore,by Guass-Lucas theorem, the polynomial P ′− mnλzn−1

kn also has all its zeros in |z| < k k ≤ 1
and hence

|P ′(z)| ≥ mn|z|n−1

kn
for |z| ≥ k. (2.5)

Because, if (2.5) is not true, then there is a point z = z0 with |z0| ≥ k such that

|P ′(z0)| <
mn|z0|n−1

kn
.

If we take λ = knP ′(z0)

mnzn−1
0

, so that |λ| < 1, then we have

P ′(z0)−
mnλzn−10

kn
= 0,

where |z0| ≥ k, which contradicts to the fact that all the zeros of P ′ − mnλzn−1

kn lie in |z| < k, k ≤ 1.
Also for |z| = 1, we have ∣∣∣DαP (z)

∣∣∣ = ∣∣∣nP (z) + (α− z)P ′(z)
∣∣∣

≥ |α||P ′(z)| − |nP (z)− zP ′(z)|
= |α||P ′(z)| − |Q′(z)|. (2.6)

Combining this with inequality (2.4) of Lemma 2.4, we get for |z| = 1 and |α| ≥ kµ,∣∣∣DαP (z)
∣∣∣ ≥ (|α| − kµ)|P ′(z)|+ mn

kn−µ
. (2.7)

Inequality (2.7) in conjunction with (2.5) gives for |z| = 1 and |α| ≥ kµ,∣∣∣DαP (z)
∣∣∣ ≥ |α|mn

kn
. (2.8)

This completes the proof of Lemma 2.5.
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Lemma 2.6. If P ∈ Pn,µ , then

m

kn
≤‖ P ‖∞ . (2.9)

Proof of Lemma 2.6. Since P has all its zeros in |z| ≤ k, k ≤ 1, we have from Lemma 2.4,

|Q′(z)| ≤ kµ|P ′(z)| − mn

kn−µ
for |z| = 1. (2.10)

On using (1.1) in above inequality, we get for |z| = 1,

|Q′(z)| ≤ kµn ‖ P ‖∞ −
mn

kn−µ

= nkµ
{
‖ P ‖∞ −

m

kn

}
,

which is true and this proves Lemma 2.6.

Lemma 2.7. The function

sµ(x) =
nxk2µ + µ|an−µ|kµ−1

nxkµ−1 + µ|an−µ|

where k ≤ 1, µ ≥ 1, is a non-increasing function of x.

Proof of Lemma 2.7. The proof is simple and follows by first derivative test.

3. Proofs of the theorems

Proof of Theorem 1.1. Let Q = znP ( 1z ), then P = znQ( 1z ) and it can be easily verified that for |z| = 1,

|Q′(z)| = |nP (z)− zP ′(z)| (3.1)

and

|P ′(z)| = |nQ(z)− zQ′(z)|. (3.2)

Since P has all its zeros in |z| ≤ k, therefore, by using Lemma 2.1 and (3.2), we have for |z| = 1,

|Q′(z)| ≤ sµ|nQ(z)− zQ′(z)|. (3.3)

Now for every α ∈ C with |α| ≥ sµ, we have

|DαP (z)| = |nP (z) + (α− z)P ′(z)|
≥ |α||P ′(z)| − |nP (z)− zP ′(z)|,

which on using (3.1) and Lemma 2.1 gives for |z| = 1,

|DαP (z)| ≥ |α||P ′(z)| − |Q′(z)|
≥ (|α| − sµ)|P ′(z)|. (3.4)

Again since P has all its zeros in |z| ≤ k, k ≤ 1, it follows by Guass-Lucas theorem that all the zeros of P ′ also lie in
|z| ≤ k, k ≤ 1. This implies that the polynomial

zn−1P (
1

z
) = nQ− zQ′

has all its zeros in |z| ≥ 1
k ≥ 1. Therefore, it follows from (3.3) that the function

W (z) =
zQ′(z)

sµ(nQ(z)− zQ′(z))
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is analytic for |z| ≤ 1 and |W (z)| ≤ 1 for |z| ≤ 1. Furthermore, W (0) = 0 and so the function 1 + sµW (z) is
subordinate to the function 1 + sµz for |z| ≤ 1. Hence by a well-known property of sub-ordination [14], we have for
each γ > 0,

2π∫
0

∣∣∣1 + sµW (eiθ)
∣∣∣γdθ ≤ 2π∫

0

∣∣∣1 + sµe
iθ
∣∣∣γdθ. (3.5)

Now

1 + sµW (z) =
nQ(z)

nQ(z)− zQ′(z)
,

which gives with the help of (3.2) that for |z| = 1

n|Q(z)| = |1 + sµW (z)||P ′(z)|. (3.6)

Since |P (z)| = |Q(z)| for |z| = 1, therefore from (3.6), we get

|P ′(z)| = n|P (z)|
|1 + sµW (z)|

for |z| = 1. (3.7)

From (3.4) and (3.7), we deduce that for each γ > 0,

nγ(|α| − sµ)γ
2π∫
0

∣∣∣P (eiθ)∣∣∣γdθ ≤ 2π∫
0

∣∣∣1 + sµW (eiθ)
∣∣∣γ∣∣∣DαP (e

iθ)
∣∣∣γdθ.

This gives with the help of Holder’s inequality for p > 1, q > 1 with p−1 + q−1 = 1, that

nγ(|α| − sµ)γ
2π∫
0

∣∣∣P (eiθ)∣∣∣γdθ
≤
{ 2π∫

0

∣∣∣1 + sµW (eiθ)
∣∣∣pγdθ} 1

p
{ 2π∫

0

∣∣∣DαP (e
iθ)
∣∣∣qγdθ} 1

q

.

The above inequality in conjunction with (3.5) gives

n(|α| − sµ)
{ 2π∫

0

∣∣∣P (eiθ)∣∣∣γdθ} 1
γ

≤
{ 2π∫

0

∣∣∣1 + sµe
iθ
∣∣∣pγdθ} 1

pγ
{ 2π∫

0

∣∣∣DαP (e
iθ)
∣∣∣qγdθ} 1

qγ

,

which completes the proof of Theorem 1.1.
Proof of Theorem 1.2. If P has a zero on |z| = k, then m = 0 and the result follows from Theorem 1.1 in this case.
Hence forth, we suppose that all the zeros of P lie in |z| < k, k ≤ 1, so that m > 0. Now m ≤ |P (z)| for |z| = k,
therefore if β is any complex number with |β| < 1, then∣∣∣∣mβznkn

∣∣∣∣ < |P (z)| for |z| = k.

Since all the zeros of P lie in |z| < k, it follows by Rouche’s theorem that all the zeros of F = P − mβzn

kn also lie in

|z| < k. If G = znF ( 1z ) = Q− mβ
kn , then it can be easily verified that for |z| = 1,

|F ′(z)| = |nG(z)− zG′(z)| (3.8)



On Polynomials and Their Polar Derivative 117

and

|G′(z)| = |nF (z)− zF ′(z)|. (3.9)

As F has all its zeros in |z| < k, k ≤ 1, the inequality (2.1) of Lemma 2.1 in conjunction with (3.8) gives

|G′(z)| ≤ s′µ|nG(z)− zG′(z)| for |z| = 1, (3.10)

where

s′µ =
n|an − mβ

kn |k
2µ + µ|an−µ|kµ−1

n|an − mβ
kn |kµ−1 + µ|an−µ|

. (3.11)

Since for every β with |β| < 1, we have∣∣∣an − mβ

kn
∣∣ ≥ |an| − m|β|

kn
≥ |an| −

m

kn
(3.12)

and |an| > m
kn by Lemma 2.2, it follows by combining (3.11), (3.12) and Lemma 2.7 for every β with |β| < 1, that

s′µ =
n|an − mβ

kn |k
2µ + µ|an−µ|kµ−1

n|an − mβ
kn |kµ−1 + µ|an−µ|

≤
n
(
|an| − m

kn

)
|k2µ + µ|an−µ|kµ−1

n
(
|an| − m

kn

)
kµ−1 + µ|an−µ|

= Aµ. (3.13)

Using this in (3.10), we get

|G′(z)| ≤ Aµ|nG(z)− zG′(z)| for |z| = 1. (3.14)

Now for every complex number α with |α| ≥ Aµ, we have∣∣∣DαF (z)
∣∣∣ = ∣∣∣nF (z) + (α− z)F ′(z)

∣∣∣
≥ |α||F ′(z)| − |nF (z)− zF ′(z)|. (3.15)

On combining inequalities (3.8), (3.9), (3.14) and (3.15), we get for |z| = 1 and |α| ≥ Aµ,∣∣∣DαF (z)
∣∣∣ ≥ (|α| −Aµ)|F ′(z)|, (3.16)

which implies, ∣∣∣DαP (z)−
nmαβzn−1

kn

∣∣∣ ≥ (|α| −Aµ)
∣∣∣P ′(z)− nmβzn−1

kn

∣∣∣ for |z| = 1. (3.17)

Again since F has all its zeros in |z| < k, k ≤ 1, it follows by Guass-Lucas theorem that all the zeros of the
polynomial F ′ also lie in |z| < k, k ≤ 1. Therefore the polynomial zn−1F ′( 1z ) = nG − zG′ has all its zeros in
|z| > 1

k ≥ 1. Hence it follows from (3.14) that the function

W (z) =
zG′(z)

Aµ(nG(z)− zG′(z))
(3.18)

is analytic for |z| ≤ 1 with |W (z)| ≤ 1 for |z| ≤ 1 and W (0) = 0. Thus the function 1 +AµW (z) is subordinate to the
function 1 +Aµz for |z| ≤ 1. By a well known property of sub-ordination (see [14]), we have for each γ > 0,

2π∫
0

∣∣∣1 +AµW (eiθ)
∣∣∣γdθ ≤ 2π∫

0

∣∣∣1 +Aµe
iθ
∣∣∣γdθ. (3.19)
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Now by (3.18), we have

1 +AµW (z) =
nG(z)

nG(z)− zG′(z)
,

which gives with the help of (3.8) that for |z| = 1,

n|G(z)| =
∣∣∣1 +AµW (z)

∣∣∣|F ′(z)|.
Since |G(z)| = |F (z)| for |z| = 1, therefore above equation reduces to

|F ′(z)| = n|F (z)|∣∣∣1 +AµW (z)
∣∣∣ for |z| = 1,

or

n
∣∣∣P (z)− mβzn

kn

∣∣∣∣∣∣1 +AµW (z)
∣∣∣ =

∣∣∣P ′(z)− nmβzn−1

kn

∣∣∣ for |z| = 1. (3.20)

The above equation (3.20) with the help of (3.17) gives for |z| = 1 and |α| ≥ Aµ,

n(|α| −Aµ)
∣∣∣P (z)− mβzn

kn

∣∣∣ ≤ ∣∣∣1 +AµW (z)
∣∣∣∣∣∣DαP (z)−

αnmβzn−1

kn

∣∣∣. (3.21)

From (3.21), we have for each γ > 0,

nγ(|α| −Aµ)γ
2π∫
0

∣∣∣P (eiθ)− mβeinθ

kn

∣∣∣γdθ
≤

2π∫
0

∣∣∣1 +AµW (eiθ)
∣∣∣γ∣∣∣DαP (e

iθ)− nmαβei(n−1)θ

kn

∣∣∣γdθ.
This gives with the help of Holder’s inequality for p > 1, q > 1 with p−1 + q−1 = 1,

nγ(|α| −Aµ)γ
2π∫
0

∣∣∣P (eiθ)− mβeinθ

kn

∣∣∣γdθ
≤
{ 2π∫

0

∣∣∣1 +AµW (eiθ)
∣∣∣pγ} 1

p
{ 2π∫

0

∣∣∣DαP (e
iθ)− nmαβei(n−1)θ

kn

∣∣∣qγdθ} 1
q

. (3.22)

Now using (3.19) with γ replaced by pγ in (3.22), we obtain for each γ > 0, p > 1, q > 1 with p−1 + q−1 = 1,

nγ(|α| −Aµ)γ
2π∫
0

∣∣∣P (eiθ)− mβeinθ

kn

∣∣∣γdθ
≤
{ 2π∫

0

∣∣∣1 +Aµe
iθ
∣∣∣pγ} 1

p
{ 2π∫

0

∣∣∣DαP (e
iθ)− nmαβei(n−1)θ

kn

∣∣∣qγdθ} 1
q

.

Equivalently,

n(|α| −Aµ)
{ 2π∫

0

∣∣∣P (eiθ)− mβeinθ

kn

∣∣∣γdθ} 1
γ

≤
{ 2π∫

0

∣∣∣1 +Aµe
iθ
∣∣∣pγ} 1

pγ
{ 2π∫

0

∣∣∣DαP (e
iθ)− nmαβei(n−1)θ

kn

∣∣∣qγdθ} 1
qγ

,

which is equivalent to inequality (1.16) and this completes the proof of Theorem 1.2.
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Further Remarks
Remark 3.1. If we make use of inequality (2.3) and the fact that
‖ 1 +Aµz ‖γ≤‖ 1 + kµz ‖γ , γ > 0,

we immediately get the following useful consequences from Theorem 1.2.

Corollary 3.1. If P ∈ Pn,µ, then for every complex numbers α, β with |α| ≥ kµ, |β| < 1 and for each γ > 0, p > 1, q > 1
with p−1 + q−1 = 1, we have

n(|α| −Aµ) ‖ P −
mβzn

kn
‖γ≤‖ 1 + kµz ‖pγ‖ DαP −

αβmnzn−1

kn
‖qγ , (3.23)

where Aµ is defined by (1.12).

Corollary 3.2. If P ∈ Pn,µ, then for every complex numbers α, β with |α| ≥ kµ, |β| < 1 and for each γ > 0, p > 1, q > 1
with p−1 + q−1 = 1, we have

n(|α| − kµ) ‖ P − mβzn

kn
‖γ≤‖ 1 + kµz ‖pγ‖ DαP −

αβmnzn−1

kn
‖qγ . (3.24)

Remark 3.2. Making γ → ∞ and p → ∞ (so that q → 1) in (3.23) and (3.24) and using the same arguments as in
Remark 1.2, we get inequalities (1.11) and (1.10), respectively.
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